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The techniques for parametrizing nonsingular cubic surfaces have shown to be of great interest in
recent years. This paper is devoted to the rational parametrization of nonsingular cubic blending
surfaces. We claim that these nonsingular cubic blending surfaces can be parametrized using the
symbolic computation due to their excellent geometric properties. Especially for the specific forms
of these surfaces, we conclude that they must be F3, F4, or F5 surfaces, and a criterion is given
for deciding their surface types. Besides, using the algorithm proposed by Berry and Patterson in
2001, we obtain the uniform rational parametric representation of these specific forms. It should
be emphasized that our results in this paper are invariant under any nonsingular real projective
transform. Two explicit examples are presented at the end of this paper.

1. Introduction

In the areas of computer graphics and geometric modeling, we may sometimes encounter the
problems about cubic surfaces. A real nonsingular cubic surface V (f) can be defined either
by the implicit form, that is, the real zeros of a polynomial equation f(x1, x2, x3) = 0 of degree
3 in R3, or by the rational parametric form, that is,

x1 =
f1
(
y1, y2, y3

)

f4
(
y1, y2, y3

) , x2 =
f2
(
y1, y2, y3

)

f4
(
y1, y2, y3

) , x3 =
f3
(
y1, y2, y3

)

f4
(
y1, y2, y3

) , (1.1)

where f1, . . . , f4 are homogeneous polynomials and y1, y2, and y3 are parameters. Both
forms are appropriate for solving different types of problems. For example, in the geometric



2 Journal of Applied Mathematics

modeling systems, the implicit form offers many advantages when performing geometric
operations like union, intersection, blending, and warping. Besides, the rational parametric
form is preferred in the free-form surface modeling, because it guarantees manifoldness and
provides a way of generating points within the surface. So, the automatic transition between
these two forms is very important.

Generating a rational parametric representation of an algebraic surface (called
parametrization for short) is always difficult, even impossible sometimes, while the reverse
process called implicitization is always solvable (such as using Gröbner basis method).
Most of the parametrization algorithms for nonsingular cubic surfaces are based on
geometric information of nonsingular cubic surfaces, such as the existence of 27 lines on
nonsingular cubic surfaces [1]. In 1987, Sederberg and Snively parametrized cubic surfaces
in terms of biquadratic polynomials using pairs of skew lines on the surfaces in [2]. This
method is further developed by Bajaj et al. in [3] and Polo-Blanco and Top in [4]. In 2001,
Berry and Patterson unified the implicitization and parametrization of a nonsingular cubic
surface using Hilbert-Burch theorem in [5]. In 2007, Chen et al. presented an alternative
method for parametrizing quadric and cubic surfaces based on the theory of μ-basis in [6].

This paper is devoted to nonsingular cubic blending surfaces in [7–9], which meet two
quadratic surfaces with G1 continuity. The blending surfaces have attracted more and more
attention in recent years and have been used in particular for filling surface holes, smoothing
corners and edges, and making computer animation. Wu and Cheng in [10] discussed the
parametrization of the special blending surfaces defined by

f = (b1(x2 − d2) + b2(x1 − d1))
(
x2
1 + x2

2 + x2
3 − r2

)
− (x1 − d1)(x2 − d2), (1.2)

where b1, b2, d1, d2, and r are real numbers. We further develop their results in a more general
way in this paper. We consider successively two classes of these nonsingular cubic blending
surfaces: the specific forms and the general forms.

(i) For the specific forms, we conclude that they must be F3, F4, or F5 surfaces,
and present a criterion to decide their surface types. Besides, using the algorithm
proposed in [5], we obtain their uniform rational parametric representation.

(ii) For the general forms, although they do not have the analogous concise properties
as the specific forms do, we can still come to the conclusion that their rational
parametrizations can be computed using the symbolic computation.

Additionally, it should be pointed out that our results in this paper are invariant under any
nonsingular real projective transform.

The rest of the paper is organized as follows. Section 2 recalls some geometric
information of nonsingular cubic surfaces and introduces the constructions for nonsingular
cubic blending surfaces. Section 3 is devoted to the specific forms of nonsingular cubic
blending surfaces, and we study in detail the geometric information on them and their
uniform rational parametric representation. Section 4 discusses the analogous geometric
properties of the general forms of nonsingular cubic blending surfaces as the specific forms.
Two explicit examples are presented in Section 5. Finally, we conclude the paper in Section 6.
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Table 1: Some geometric information of nonsingular cubic surfaces (derived from [14]).

Surface type F1 F2 F3 F4 F5

Number of real lines 27 15 7 3 3
Number of real tritangent planes 45 15 5 7 13
Number of real components 1 1 1 1 2

2. Notations and Preliminaries

For the convenience of applications, we always consider the problem in R[x1, x2, x3]. Let
V (f) denote the algebraic surface determined by the polynomial equation f(x1, x2, x3) = 0.
Assume that F is a set of polynomials, and denote by V (F) the set of solutions of the system
of all polynomials in F. Let 〈g, h〉 be the ideal generated by the polynomials g and h.

2.1. Geometric Information of Nonsingular Cubic Surfaces

In 1849, Cayley and Salmon published the famous theorem that there are 27 lines lying
completely on a nonsingular cubic surface. Every line on a nonsingular cubic surface is met
by ten others. A plane containing three of the lines is called a tritangent plane. There are 45
such planes on a nonsingular cubic surface. Nonsingular cubic surfaces can be divided into 5
species F1, F2, . . . , F5 with respect to the number of real lines and real components. See Table 1
for more details.

Remark 2.1. Most of the parametrization algorithms lose effectiveness for F5 surfaces,
since the F5 surfaces have no real one-to-one parametrization. Thus, we will not address
nonsingular cubic blending surfaces of type F5 in this paper.

The computation of lines on a nonsingular cubic surface is our starting point for
the analysis and parametrization of the surface, since we could know other geometric
information of the surface from Table 1 once the number of real lines on the surface is verified.

Sederberg showed how to compute lines on a nonsingular cubic surface in [11].
Assume that we have a nonsingular cubic surface given by its implicit equation f(x1, x2, x3) =
0. The parametrization of a line with unknown coefficients is l(t) := (t, x20 + x21t, x30 + x31t).
Substituting the parametric equation of the line into the implicit equation of the surface yields
an equation f(l(t)) of degree 3 in the parameter t. If this equation is identically zero, that is, all
the coefficients vanish simultaneously, it guarantees that the line lies entirely on the surface.
In this way, the problem of finding a line on a nonsingular cubic surface is transformed into
the problem of solving a system of four nonlinear equations in four unknowns. We can find
at least one solution of this system using Gröbner basis method or some other techniques.

If one line l(t) is known, we can use this line to find other lines on the surface. We
take a pencil of planes through l(t) and intersect it with the surface. The intersection consists
of l(t) and a residual conic C. The condition for C to degenerate into a pair of lines is that
the determinant of its Hessian vanishes. The determinant of the Hessian of C is a polynomial
of degree 5. Each of the 5 roots corresponds to a plane in which the residual intersection is
degenerate. After computing the roots of this polynomial, it is possible to get other lines on
the surface.
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Remark 2.2. It is relatively expensive to compute one line on a nonsingular cubic surface.
Besides, since quintic equations can only be solved numerically, not analytically, we could
not obtain exact lines on the surface. However, nonsingular cubic blending surfaces in this
paper just avoid these obstacles.

2.2. Nonsingular Cubic Blending Surfaces

In this subsection, we briefly introduce the constructions of nonsingular cubic blending
surfaces. Suppose that we are given two quadratic surfaces V (g1), V (g2), and two associated
clipping planes V (h1), V (h2). Without loss of generality, we assume that V (h1) and V (h2)
intersect. Denote h3 = xi, where i ∈ {1, 2, 3} such that V (h1, h2, h3) is an isolated point in R3.

Wu et al. in [12] concluded that if the coefficients of g1, g2, h1, and h2 satisfy some
certain conditions, then there exists a cubic blending surface V (f) which is tangent to V (gi)
along V (gi, hi) (i = 1, 2). They expanded g1 and g2 with respect to h1, h2, and h3, that is,

gi = ĝi,21h
2
1 + ĝi,22h

2
2 + ĝi,23h

2
3 + ĝi,m1h2h3 + ĝi,m2h1h3 + ĝi,m3h1h2

+ ĝi,11h1 + ĝi,12h2 + ĝi,13h3 + ĝi,0 (i = 1, 2),
(2.1)

and obtained the following lemma.

Lemma 2.3 (see [12]). If the coefficients of g1 and g2 defined by (2.1) satisfy

ĝ1,23
ĝ2,23

=
ĝ1,13
ĝ2,13

=
ĝ1,0
ĝ2,0

= κ,

ĝ1,11 − κĝ2,11
ĝ1,12 − κĝ2,12

=
ĝ1,m2 − κĝ2,m2

ĝ1,m1 − κĝ2,m1
= μ,

(2.2)

where κ and μ are nonzero real numbers, then the cubic surface V (f) defined by

f =
(−μh1 + h2

)
g1 +

[(
ĝ1,21 − κĝ2,21

)(
μh1 − h2

)
+ μ
(
ĝ1,m3 − κĝ2,m3

)
h2

+μ
(
ĝ1,m2 − κĝ2,m2

)
h3 + μ

(
ĝ1,11 − κĝ2,11

)]
h2
1

(2.3)

meets V (gi) with G1 continuity along V (gi, hi) (i = 1, 2).

Now, we consider successively two classes of these nonsingular cubic blending
surfaces:

(i) the nonsingular cubic surfaces V (f) defined by (2.3), which are constructed under
the above general assumptions, are called the general forms,
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(ii) if we add some extra restrictions to V (g1), V (g2), V (h1), and V (h2):

(1) let V (g1) and V (g2) be quadratic surfaces defined by

gi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
j + x2

k − r2i ,

(xi − xi0)2 + x2
j + x2

k − r2i ,

x2
j + x2

k
− c2i (xi − xi0)2,

x2
j + x2

k
− 2pi(xi − xi0),

x2
j + x2

k
− c2i (xi − xi0)2 − l2i ,

x2
j + x2

k
− c2i (xi − xi0)2 + l2i ,

(i = 1, 2), (2.4)

where {j, k} = {1, 2, 3} \ {i} and ri, xi0, ci, pi, and li are nonzero real numbers;
(2) let V (h1) and V (h2) be associated clipping planes defined by

hi = xi + hi0 (i = 1, 2), (2.5)

where h10 and h20 are nonzero real numbers,

then the nonsingular cubic surfaces V (f) defined by (2.3), which are constructed
under this specific assumptions, are called the specific forms.

For these two classes of nonsingular cubic blending surfaces, our question is whether
or not they have any good geometric property or any fast/exact parametrization algorithm.

3. Nonsingular Cubic Blending Surfaces: The Specific Forms

In this section, we mainly analyze some geometric information of the specific forms which
is useful for the parametrization process and compute their uniform rational parametric
representation.

3.1. Geometric Information

3.1.1. Lines on the Surfaces

According to the defining polynomial (2.3) and the results obtained in [13], we can easily
find that V (h1, h2) is just one line on the surfaces.

Let h3 = x3. As showed in Section 2.1, we substitute the equation h1 − λh2 = 0 (λ is a
parameter) of the pencil of planes into f(h1, h2, h3) = 0 and obtain

Q(h2, h3;λ) = A1,λh
2
3 +A2,λh

2
2 +A3,λh2 +A4,λ = 0, (3.1)

of the residual conic C after cancelling the factor h2. It is easy to demonstrate the following
proposition by checking each pair of V (g1) and V (g2) defined by (2.4).
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Proposition 3.1. A1,λ, . . . , A4,λ in (3.1) satisfy that

(1) A1,λ, A2,λ, A3,λ, A4,λ are polynomials of degree 1, 3, 2, 1 in λ, respectively,

(2) A2,λ = (λ2 + 1)A1,λ,

(3) A1,λ and A4,λ differ by a nonzero constant.

We let

D(λ) :=

∣
∣
∣
∣
∣
∣
∣

A2,λ
1
2
A3,λ

1
2
A3,λ A4,λ

∣
∣
∣
∣
∣
∣
∣
= A2,λA4,λ − 1

4
A2

3,λ, (3.2)

which is a polynomial of degree 4 in λ. Let bi denote the coefficient of λi in D(λ), i = 0, 1, . . . , 4,
respectively. In other words, D(λ) = b4λ

4 + b3λ
3 + b2λ

2 + b1λ + b0.
The determinant of the Hessian of Q(h2, h3;λ) is

D(λ) =

∣∣∣∣∣∣∣∣∣∣

A1,λ 0 0

0 A2,λ
1
2
A3,λ

0
1
2
A3,λ A4,λ

∣∣∣∣∣∣∣∣∣∣

= A1,λD(λ). (3.3)

Since D(λ) factors into the product of A1,λ and D(λ), now it is possible to solve the equation
D(λ) = 0 analytically by some fixed formula. So, we can find all the exact lines on the surfaces
by repeating the same process on the new lines that have been found.

3.1.2. A Classification of the Surfaces

Let a + I · b be an arbitrary complex number, where a, b ∈ R and I denotes the imaginary unit.
We formulate

√
a + I · b =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
2
2

(√√
a2 + b2 + a + I ·

√√
a2 + b2 − a

)
, if b > 0 or b = 0 and a < 0,

√
2
2

(√√
a2 + b2 + a − I ·

√√
a2 + b2 − a

)
, if b < 0 or b = 0 and a ≥ 0.

(3.4)

The real and complex roots of the equation D(λ) = 0 correspond to the real and
complex tritangent planes of the surfaces, respectively. In the complex tritangent planes,
Q(h2, h3;λ) factors into two complex lines, that is,

Q
(
h2, h3;λ

)
=

⎛

⎜
⎝
√
A2,λh2 + I ·

√
A1,λh3 +

A3,λ

2
√
A2,λ

⎞

⎟
⎠

⎛

⎜
⎝
√
A2,λh2 − I ·

√
A1,λh3 +

A3,λ

2
√
A2,λ

⎞

⎟
⎠,

(3.5)
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Table 2: A classification of nonsingular cubic surfaces (derived from [14]).

Surface type F1 F3 F5 F2 F4 F3

Number of real roots of D(λ) = 0 5 5 5 3 3 1
Number of real factorizations 5 3 1 3 1 1

where λ denotes a complex root of D(λ) = 0. However, in the real tritangent planes, some of
the factorizations of Q(h2, h3;λ) are real, and some are complex.

Segre in [14] classifies nonsingular cubic surfaces using Table 2, according to the
number of real roots of D(λ) = 0 and whether or not the factorization of Q(h2, h3;λ) in the
corresponding tritangent plane is real or complex.

Using Table 2 and Proposition 3.1, we can arrive at the following theorem.

Theorem 3.2. The specific forms of nonsingular cubic blending surfaces must be F3, F4, or F5

surfaces.

Proof. Let λ1 be the root of A1,λ = 0. For all λ ∈ R \ {λ1}, we have

A1,λA2,λ =
(
1 + λ2

)
A2

1,λ > 0. (3.6)

The factorization of Q(h2, h3;λ) in a real tritangent plane is real if and only if there exists a
λ∗ ∈ R such that

D(λ∗) = 0, A1,λ∗A2,λ∗ ≤ 0. (3.7)

Obviously, λ1 is the only one which satisfies (3.7). Thus, the number of real factorizations in
Table 2 is at most 1, and this completes the proof.

In what follows, we will give a complete solution for the surface type problem of the
surfaces. The main tool we will use is the complete discrimination system for any polynomial
with real coefficients proposed by Yang et al. in [15].

Lemma 3.3 (see [15]). Given a polynomial G(x) = a0x
m + a1x

m−1 + · · · + am ∈ R[x], if the
number of sign changes in the revised sign list with respect to G(x) is ν, then the number of pairs
of the distinct conjugate imaginary roots of G(x) is ν. Moreover, if the number of nonvanishing
members in the revised sign list with respect to G(x) is η, then the number of the distinct real roots is
η − 2ν.

Applying Lemma 3.3 to D(λ) defined in (3.2) and according to Table 2 and
Theorem 3.2, we can eventually arrive at the following proposition.
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Proposition 3.4. The discriminant sequence [D1, D2, D3, D4] of D(λ) is of the form

D1 = 1,

D2 = −8b2b4 + 3b23,

D3 =
(
16b0b2 − 18b21

)
b24 +

(
14b1b2b3 − 6b0b23 − 4b32

)
b4 + b22b

2
3 − 3b1b33,

D4 = 256b30b
3
4 +
(
144b0b21b2 − 27b41 − 192b20b1b3 − 128b20b

2
2

)
b24

+
(
18b31b2b3 − 4b21b

3
2 + 16b0b42 − 80b0b1b22b3 − 6b0b21b

2
3 + 144b20b2b

2
3

)
b4

− 4b0b32b
2
3 + 18b0b1b2b33 − 27b20b

4
3 + b21b

2
2b

2
3 − 4b31b

3
3,

(3.8)

where bi is the coefficient of λi in D(λ), i = 0, 1, . . . , 4, respectively.

(1) If one of the following conditions holds:

D2 < 0 ∧D3 < 0 ∧D4 > 0; D2 ≥ 0 ∧D3 ≤ 0 ∧D4 > 0;

D2 < 0 ∧D3 ≥ 0; D2 = 0 ∧D3 > 0,
(3.9)

then the specific forms of nonsingular cubic blending surfaces are F3 surfaces.

(2) If one of the following conditions holds:

D2 ≤ 0 ∧D3 < 0 ∧D4 ≤ 0; D2 = 0 ∧D3 = 0 ∧D4 < 0;

D2 > 0 ∧D3 < 0 ∧D4 = 0; D2 > 0 ∧D4 < 0,
(3.10)

then the specific forms of nonsingular cubic blending surfaces are F4 surfaces.

(3) If one of the following conditions holds:

D2 > 0 ∧D3 > 0 ∧D4 ≥ 0; D2 ≥ 0 ∧D3 = 0 ∧D4 = 0, (3.11)

then the specific forms of nonsingular cubic blending surfaces are F5 surfaces.

The above symbol “∧” indicates logical conjunction, which means that A ∧ B holds if and only if both
A and B hold simultaneously.

3.2. The Uniform Rational Parametric Representation

Since our results of this subsection are based on the algorithm proposed by Berry and
Patterson in [5], we first outline the strategy of their algorithm.
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Suppose that an Fi (i = 3, 4) surface is given by f(x1, x2, x3) = 0.

(1) Find a line l on the surface.

(2) Find a pair of complex conjugate tritangent planes through l, and denote them bym
andm∗.

(3) Compute the factorizations of the residual conic C (mentioned in Section 2.1) in m
andm∗, and denote them bym1 ·m2 and m∗

1 ·m∗
2, respectively.

(4) Construct a 3 × 3 complex matrix U of the form

⎛

⎜
⎜
⎝

m 0 m1

0 m∗ m∗
1

km2 k∗m∗
2 p

⎞

⎟
⎟
⎠, (3.12)

such that k is a complex number; p is a real plane; det(U) = f .

(5) Find a real matrix U which is equivalent to U and satisfies det(U) = f .

(6) Compute the Hilbert-Burch matrix H from the equation

U
(
y1, y2, y3

)T = H(x1, x2, x3, 1)T . (3.13)

A rational parametrization of the surface V (f) is

x1 = −det(H1)
det(H4)

, x2 =
det(H2)
det(H4)

, x3 = −det(H3)
det(H4)

, (3.14)

where Hi are the 3 × 3 submatrices of H by cancelling the ith column.
Now, using the notations and conclusions in Section 3.1, we apply the algorithm to the

specific forms of type F3 and F4.
According to Theorem 3.2, we can only choose a pair of complex conjugate roots,

denoted by α and α∗, of the equation D(λ) = 0. In the two corresponding complex tritangent
planes, the factorizations of Q(h2, h3;α) and Q(h2, h3;α∗) must be the form (3.5). Thus, we
can construct the uniform 3 × 3 complex matrix U of the form

⎛

⎜⎜⎜⎜⎜⎜
⎝

h1 − αh2 0
√
A2,αh2 + I ·√A1,αh3 +

A3,α

2
√
A2,α

0 h1 − α∗h2
√
A2,α∗h2 − I ·√A1,α∗h3 +

A3,α∗

2
√
A2,α∗

u31 u32 p1h1 + p2h2 + p3h3 + p0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (3.15)
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where

u31 = k

(√
A2,αh2 − I ·

√
A1,αh3 +

A3,α

2
√
A2,α

)

,

u32 = k∗
(√

A2,α∗h2 + I ·
√
A1,α∗h3 +

A3,α∗

2
√
A2,α∗

)

.

(3.16)

Proposition 3.5. p0, . . . , p3, and k inU are given by

p0 = −μκĝ2,11, p1 = −μκĝ2,21, p3 = −μκĝ2,m2,

p2 = −μκ(α + α∗)ĝ2,21 + κ
(
ĝ2,21 − μĝ2,m3

)
,

k =
1

A2,αA3,α∗ −A2,α∗A3,α

[
(α + α∗)

(
p0A2,α∗ − p2A3,α∗

)
+ αα∗p1A3,α∗

+
(
ĝ1,11 − μĝ1,12

)
A2,α∗ − (ĝ1,m3 − μĝ1,22

)
A3,α∗

]
.

(3.17)

Similarly, the uniform Hilbert-Burch matrix H can be constructed. We let Re(z) and
Im(z) denote the real part and the imaginary part of the complex number z, respectively.

Proposition 3.6. The uniform Hilbert-Burch matrixH is of the form

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2y1 −2Re(α)y1 + Im(α)y2 + 2Re
(√

A2,α

)
y3 −2 Im

(√
A1,α

)
y3 Re

(
A3,α
√
A2,α

)

y3

1
2
y2 − Im(α)y1 − 1

2
Re(α)y2 + Im

(√
A2,α

)
y3 Re

(√
A1,α

)
y3 Im

(
A3,α
√
A2,α

)

y3

p1y3 2 Re
(
k
√
A2,α

)
y1 − Im

(
k
√
A2,α

)
y2 + p2y3 e33 e34

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(3.18)

where

e33 = 2 Im
(
k
√
A1,α

)
y1 + Re

(
k
√
A1,α

)
y2 + p3y3,

e34 = Re

(

k
A3,α
√
A2,α

)

y1 − 1
2
Im

(

k
A3,α
√
A2,α

)

y2 + p0y3.

(3.19)

Finally, the uniform rational parametric representation for the specific forms of type
F3 and F4 is

x1 = −det(H1) + h10 det(H4)
det(H4)

, x2 =
det(H2) − h20 det(H4)

det(H4)
, x3 = −det(H3)

det(H4)
, (3.20)

where Hi are the 3 × 3 submatrices of (3.18) by cancelling the ith column.
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4. Nonsingular Cubic Blending Surfaces: The General Forms

In this section, we will see that for the general forms, their parametrizations can also
be computed using the symbolic computation. However, their parametrizations are too
complicated to be written down in a uniform form.

Similarly as the analysis in Section 3, we can easily come to the following results.
According to the defining polynomial (2.3),

(i) V (h1, h2) is just one line on the surfaces,

(ii) the equation of the residual conic C is

Q(h2, h3;λ) = a11h
2
3 + a12h3h2 + a22h

2
2 + a13h3 + a23h2 + a33 = 0, (4.1)

where

a11 = ĝ1,23
(
1 − μλ

)
,

a12 = ĝ1,m1
(
1 − μλ

)
+
(
ĝ1,m2 − μκĝ2,m2λ

)
λ,

a22 =
(
1 − μλ

)(
κĝ2,21λ

2 + ĝ1,m3λ + ĝ1,22
)
+ μ
(
ĝ1,m3 − κĝ2,m3

)
λ2,

a13 = ĝ1,13
(
1 − μλ

)
,

a23 = ĝ1,12
(
1 − μλ

)
+
(
ĝ1,11 − μκĝ2,11λ

)
λ,

a33 =
(
1 − μλ

)
ĝ1,0,

(4.2)

(iii) the determinant of the Hessian of Q(h2, h3;λ) is

D(λ) =

∣∣∣∣∣∣∣∣∣∣∣

a11
1
2
a12

1
2
a13

1
2
a12 a22

1
2
a23

1
2
a13

1
2
a23 a33

∣∣∣∣∣∣∣∣∣∣∣

=
(
1 − μλ

)(
T4λ

4 + · · ·
)
, (4.3)

where the second factor in the above product is some certain polynomial of degree
4 in λ. Thus we can solve the equation D(λ) = 0 analytically,

(iv) at each root of D(λ) = 0, we discuss the sign of the minor

∣∣∣∣∣∣∣

a11
1
2
a12

1
2
a12 a22

∣∣∣∣∣∣∣
, (4.4)

of (4.3). Then, we can determine the surface type and other geometric information
using Table 2 and Table 1.
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Because of the existence of the mixed term h3h2 in (4.1), the uniform representation of
the factorization of (4.1) is very complicated, and so, we omit it. Finally, using the algorithm
in [5], the rational parametrization of the general forms can be achievedwithout approximate
calculation.

5. Example

Example 5.1. We are given a nonsingular cubic blending surface V (f) defined by the implicit
equation

f(x1, x2, x3) = x3
1 + x2

1x2 + x1x
2
2 + x1x

2
3 + x3

2 + x2x
2
3 − 6x2

1 − 12x1x2 − 6x2
2

− 6x2
3 + 21x1 + 21x2 − 18 = 0,

(5.1)

and we also know that V (f)meets the circular cone V (gi)with G1 continuity along V (gi, hi),
i = 1, 2, where

g1 = x2
2 + x2

3 −
3
2
(x1 − 1)2, h1 = x1 − 3,

g2 = x2
1 + x2

3 −
3
2
(x2 − 1)2, h2 = x2 − 3.

(5.2)

First, we let h3 = x3, and rewrite f(x1, x2, x3) = 0 in the following form:

f(h1, h2, h3) = (h1 + h2)
[
(h2 + 3)2 + h2

3 −
3
2
(h1 + 2)2

]
+
(
5
2
h1 +

5
2
h2 + 12

)
h2
1 = 0. (5.3)

Geometric Information

V (h1, h2) is a line on V (f). The equation of the residual conic C is

Q(h2, h3;λ) = (λ + 1)h2
3 + (λ + 1)

(
λ2 + 1

)
h2
2 + 6

(
λ2 + 1

)
h2 + 3(λ + 1) = 0. (5.4)

The determinant of the Hessian of Q(h2, h3;λ) is

D(λ) = (λ + 1)D(λ) = −6(λ + 1)
(
λ2 + 1

)(
λ2 − λ + 1

)
. (5.5)

The discriminant sequence [D1, D2, D3, D4] of D(λ) satisfies that

D1 = 1, D2 = −468 < 0, D3 = 6480 > 0, D4 = 559872 > 0. (5.6)

According to Proposition 3.4, we know that V (f) is an F3 surface and other information of
V (f) from Table 1.
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Rational Parametrization

We choose a pair of complex conjugate roots of D(λ) = 0, I and −I. Asmentioned in Section 3.2,
we construct the complex matrix U as

⎛

⎜
⎜
⎜
⎜
⎝

h1 − I · h2 0 (1 + I)
(
h3 +

√
3 · I
)

0 h1 + I · h2 (1 − I)
(
h3 −

√
3 · I
)

1
2
· I ·
(
h3 −

√
3 · I
)

−1
2
· I ·
(
h3 +

√
3 · I
)

h1 + h2 + 6

⎞

⎟
⎟
⎟
⎟
⎠

, (5.7)

and the Hilbert-Burch matrix H as

⎛

⎜⎜⎜⎜
⎝

2y1 y2 2y3 −2√3y3

1
2
y2 −y1 y3

√
3y3

y3 y3 −1
2
y2

√
3y1 + 6y3

⎞

⎟⎟⎟⎟
⎠

. (5.8)

Finally, the rational parametrization of V (f) is

x1 =
3y2

1y2 − 2
√
3y2

1y3 − 12y1y
2
3 + (3/4)y3

2 −
(√

3/2
)
y2
2y3 − 4

√
3y3

3

y2
1y2 + (1/4)y3

2 + 2y2y
2
3

,

x2 =
3y2

1y2 + 2
√
3y2

1y3 + 12y1y
2
3 + (3/4)y3

2 +
(√

3/2
)
y2
2y3 + 4

√
3y3

3

y2
1y2 + (1/4)y3

2 + 2y2y
2
3

,

x3 =
2
√
3y3

1 + 12y2
1y3 +

(√
3/2
)
y1y

2
2 + 4

√
3y1y

2
3 + 3y2

2y3

y2
1y2 + (1/4)y3

2 + 2y2y
2
3

.

(5.9)

Example 5.2. We are given a nonsingular cubic blending surface V (f) defined by the implicit
equation

f(x1, x2, x3) = x3
1 + 4x2

1x2 + 4x2
1x3 + 6x1x

2
2 + 12x1x2x3 + 7x1x

2
3 + 4x3

2 + 12x2
2x3

+ 14x2x
2
3 + 6x3

3 − 2x2
1 − 8x1x2 − 6x1x3 − 8x2

2 − 12x2x3 − 8x2
3

− x1 − 2x2 − 10x3 + 4 = 0,

(5.10)

and we also know that V (f) meets the quadratic V (gi) with G1 continuity along V (gi, hi),
i = 1, 2, where

g1 = x2
1 + 2x1x2 + 2x1x3 + 2x2

2 + 4x2x3 + 3x2
3 − 6x1 − 4x2 − 2x3 + 7,

g2 = x2
1 + 2x1x2 + 2x1x3 + 2x2

2 + 4x2x3 + 3x2
3 + 2x1 − 4x2 − 2x3 + 7,

h1 = x1 + x2 + x3 − 2, h2 = x2 + x3 − 2.

(5.11)
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First, we let h3 = x3 and rewrite f(x1, x2, x3) = 0 in the following form:

f(h1, h2, h3) = (h1 + h2)
[
(h2 + 3)2 + (h3 + 1)2 + (h1 − 1)2 − 4

]
+ 8h2

1 = 0. (5.12)

Geometric Information

V (h1, h2) is a line on V (f). The equation of the residual conic C is

Q(h2, h3;λ) = (λ + 1)h2
3 + (λ + 1)

(
λ2 + 1

)
h2
2 + 2(λ + 1)h3

+
(
6λ2 + 4λ + 6

)
h2 + 7(λ + 1) = 0.

(5.13)

The determinant of the Hessian of Q(h2, h3;λ) is

D(λ) =

∣∣∣∣∣∣∣∣

λ + 1 0 λ + 1

0 (λ + 1)
(
λ2 + 1

)
3λ2 + 2λ + 3

λ + 1 3λ2 + 2λ + 3 7(λ + 1)

∣∣∣∣∣∣∣∣

= −(λ + 1)
(
3λ4 + 10λ2 + 3

)
.

(5.14)

The discriminant sequence [D1, D2, D3, D4] of −(3λ4 + 10λ2 + 3) satisfies that

D1 = 1, D2 = −240 < 0, D3 = −7680 < 0, D4 = 589824 > 0. (5.15)

According to Lemma 3.3 and the coefficients of h2
3 and h2

2 in Q(h2, h3;λ), we know that V (f)
is an F3 surface and other information of V (f) from Table 1.

Rational Parametrization

We choose a pair of complex conjugate roots of D(λ) = 0,
√
3 · I and −√3 · I. We can construct

the complex matrix U as

⎛

⎜⎜⎜
⎝

h1 −
√
3 · I · h2 0

(
1 +

√
3 · I
)(

h3 +
√
2h2 + 1 − √

6 · I
)

0 h1 +
√
3 · I · h2

(
1 − √

3 · I
)(

h3 +
√
2h2 + 1 +

√
6 · I
)

u31 u32 h1 + h2 + 6

⎞

⎟⎟⎟
⎠

, (5.16)

where

u31 =
√
3
6

· I ·
(
h3 −

√
2h2 + 1 +

√
6 · I
)
,

u32 = −
√
3
6

· I ·
(
h3 −

√
2h2 + 1 −

√
6 · I
)
,

(5.17)



Journal of Applied Mathematics 15

and the Hilbert-Burch matrix H as

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2y1
√
3y2 + 2

√
2y3 2y3

(
2 + 6

√
2
)
y3

1
2
y2 −√3y1 +

√
6y3

√
3y3

(
1 − √

6
)
y3

y3

√
6
6

y2 + y3 −
√
3
6

y2 −√2y1 −
√
3
6

y2 + 6y3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5.18)

Finally, the rational parametrization of V (f) is

(x1 : x2 : x3) =
(
Y1

Y4
:
Y2

Y4
:
Y3

Y4

)
, (5.19)

where

Y1 = 4
√
6y2

1y3 − 24
√
3y1y

2
3 +

√
6y2

2y3 + 4y2y
2
3 + 16

√
6y3

3 ,

Y2 = 2
√
6y3

1 + 3y2
1y2 −

(
2
√
6 + 16

√
3
)
y2
1y3 +

√
6
2

y1y
2
2 +
(
4 − 6

√
2
)
y1y2y3

+
(
12
√
3 + 20

√
6
)
y1y

2
3 +

3
4
y3
2 +

(√
6
2

− 2
√
3

)

y2
2y3 +

(
6 − 6

√
2
)
y2y

2
3

−
(
8
√
6 + 16

√
3
)
y3
3 ,

Y3 = −2
√
6y3

1 − y2
1y2 + 16

√
3y2

1y3 −
√
6
2

y1y
2
2 +
(
2
√
2 − 4

)
y1y2y3 − 20

√
6y1y

2
3

− 1
4
y3
2 +

(

2
√
3 −

√
6
3

)

y2
2y3 +

(
6
√
2 − 4

)
y2y

2
3 + 16

√
3y3

3 ,

Y4 = y2
1y2 − 2

√
2y1y2y3 +

1
4
y3
2 +

√
6
3

y2
2y3 + 4y2y

2
3 .

(5.20)

6. Conclusions

This paper is concerned with nonsingular cubic blending surfaces. We mainly discuss
geometric information and rational parametrization of them. Since their underlying
geometric properties, the rational parametrization can be implemented using the symbolic
computation, while for general nonsingular cubic surfaces, it has to resort to floating point
numbers. In the future, we will focus on the analysis of singular cubic blending surfaces and
nonsingular cubic blending surfaces of type F5.
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