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Motivated essentially by the success of the applications of the Mittag-Leffler functions in many
areas of science and engineering, the authors present, in a unified manner, a detailed account or
rather a brief survey of the Mittag-Leffler function, generalized Mittag-Leffler functions, Mittag-
Leffler type functions, and their interesting and useful properties. Applications of G. M. Mittag-
Leffler functions in certain areas of physical and applied sciences are also demonstrated. During
the last two decades this function has come into prominence after about nine decades of its
discovery by a Swedish Mathematician Mittag-Leffler, due to the vast potential of its applications
in solving the problems of physical, biological, engineering, and earth sciences, and so forth. In
this survey paper, nearly all types of Mittag-Leffler type functions existing in the literature are
presented. An attempt is made to present nearly an exhaustive list of references concerning the
Mittag-Leffler functions to make the reader familiar with the present trend of research in Mittag-
Leffler type functions and their applications.

1. Introduction

The special function

Eα(z) =
∞∑

k=0

zk

Γ(1 + αk)
, α ∈ C, R(α) > 0, z ∈ C (1.1)

and its general form

Eα,β(z) =
∞∑

k=0

zk

Γ
(
β + αk

) , α, β ∈ C, R(α) > 0, R
(
β
)
> 0, z ∈ C (1.2)
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with C being the set of complex numbers are called Mittag-Leffler functions [1, Section
18.1]. The former was introduced by Mittag-Leffler [2, 3], in connection with his method
of summation of some divergent series. In his papers [2–4], he investigated certain properties
of this function. Function defined by (1.2) first appeared in the work of Wiman [5, 6]. The
function (1.2) is studied, among others, by Wiman [5, 6], Agarwal [7], Humbert [8], and
Humbert and Agarwal [9] and others. The main properties of these functions are given in the
book by Erdélyi et al. [1, Section 18.1], and a more comprehensive and a detailed account of
Mittag-Leffler functions is presented in Dzherbashyan [10, Chapter 2]. In particular, functions
(1.1) and (1.2) are entire functions of order ρ = 1/α and type σ = 1; see, for example, [1, page
118].

The Mittag-Leffler function arises naturally in the solution of fractional order integral
equations or fractional order differential equations, and especially in the investigations of the
fractional generalization of the kinetic equation, random walks, Lévy flights, superdiffusive
transport and in the study of complex systems. The ordinary and generalized Mittag-Leffler
functions interpolate between a purely exponential law and power-law-like behavior of
phenomena governed by ordinary kinetic equations and their fractional counterparts, see
Lang [11, 12], Hilfer [13, 14], and Saxena [15].

The Mittag-Leffler function is not given in the tables of Laplace transforms, where it
naturally occurs in the derivation of the inverse Laplace transform of the functions of the
type pα(a + bpβ), where p is the Laplace transform parameter and a and b are constants. This
function also occurs in the solution of certain boundary value problems involving fractional
integrodifferential equations of Volterra type [16]. During the various developments of
fractional calculus in the last four decades this function has gained importance and
popularity on account of its vast applications in the fields of science and engineering. Hille
and Tamarkin [17] have presented a solution of the Abel-Volterra type equation in terms
of Mittag-Leffler function. During the last 15 years the interest in Mittag-Leffler function and
Mittag-Leffler type functions is considerably increased among engineers and scientists due to
their vast potential of applications in several applied problems, such as fluid flow, rheology,
diffusive transport akin to diffusion, electric networks, probability, and statistical distribution
theory. For a detailed account of various properties, generalizations, and application of this
function, the reader may refer to earlier important works of Blair [18], Torvik and Bagley
[19], Caputo and Mainardi [20], Dzherbashyan [10], Gorenflo and Vessella [21], Gorenflo
and Rutman [22], Kilbas and Saigo [23], Gorenflo and Luchko [24], Gorenflo and Mainardi
[25, 26], Mainardi and Gorenflo [27, 28], Gorenflo et al. [29], Gorenflo et al. [30], Luchko [31],
Luchko and Srivastava [32], Kilbas et al. [33, 34], Saxena and Saigo [35], Kiryakova [36, 37],
Saxena et al. [38], Saxena et al. [39–43], Saxena and Kalla [44], Mathai et al. [45], Haubold
and Mathai [46], Haubold et al. [47], Srivastava and Saxena [48], and others.

This paper is organized as follows: Section 2 deals with special cases of Eα(z).
Functional relations of Mittag-Leffler functions are presented in Section 3. Section 4 gives the
basic properties. Section 5 is devoted to the derivation of recurrence relations for Mittag-
Leffler functions. In Section 6, asymptotic expansions of the Mittag-Leffler functions are
given. Integral representations of Mittag-Leffler functions are given in Section 7. Section 8
deals with the H-function and its special cases. The Melllin-Barnes integrals for the
Mittag-Leffler functions are established in Section 9. Relations of Mittag-Leffler functions
with Riemann-Liouville fractional calculus operators are derived in Section 10. Generalized
Mittag-Leffler functions and some of their properties are given in Section 11. Laplace
transform, Fourier transform, and fractional integrals and derivatives are discussed in
Section 12. Section 13 is devoted to the application of Mittag-Leffler function in fractional
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kinetic equations. In Section 14, time-fractional diffusion equation is solved. Solution of
space-fractional diffusion equation is discussed in Section 15. In Section 16, solution of a
fractional reaction-diffusion equation is investigated in terms of theH-function. Section 17 is
devoted to the application of generalized Mittag-Leffler functions in nonlinear waves. Recent
generalizations of Mittag-Leffler functions are discussed in Section 18.

2. Some Special Cases

We begin our study by giving the special cases of the Mittag-Leffler function Eα(z).

(i)

E0(z) =
1

1 − z , |z| < 1, (2.1)

(ii)

E1(z) = ez, (2.2)

(iii)

E2(z) = cosh
(√

z
)
, z ∈ C, (2.3)

(iv)

E2

(
−z2

)
= cos z, z ∈ C, (2.4)

(v)

E3(z) =
1
2

[
ez

1/3
+ 2e−(1/2)z

1/3
cos

(√
3
2
z1/3

)]
, z ∈ C, (2.5)

(vi)

E4(z) =
1
2

[
cos
(
z1/4

)
+ cosh

(
z1/4

)]
, z ∈ C, (2.6)

(vii)

E1/2

(
±z1/2

)
= ez

[
1 + erf

(
±z1/2

)]
= ez erfc

(
∓z1/2

)
, z ∈ C, (2.7)

where erfc denotes the complimentary error function and the error function is
defines as

erf(z) =
2√
π

∫z

0
exp

(
−t2
)
dt, erfc(z) = 1 − erf(z), z ∈ C. (2.8)
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For half-integer n/2 the function can be written explicitly as

(viii)

En/2(z) = 0 Fn−1

(
:
1
n
,
2
n
, . . . ,

n − 1
n

;
z2

nn

)
+
2(n+1)/2z
n!
√
π

1 F2n−1

(
1;
n + 2
2n

,
n + 3
2n

, . . . ,
3n
2n

;
z2

nn

)
,

(2.9)

(ix)

E1,2(z) =
ez − 1
z

, E2,2(z) =
sinh

(√
z
)

√
z

. (2.10)

3. Functional Relations for the Mittag-Leffler Functions

In this section, we discuss the Mittag-Leffler functions of rational order α = m/n, withm,n ∈
N relatively prime. The differential and other properties of these functions are described in
Erdélyi et al. [1] and Dzherbashyan [10].

Theorem 3.1. The following results hold:

dm

dzm
Em(zm) = Em(zm), (3.1)

dm

dzm
Em/n

(
zm/n

)
= Em/n

(
zm/n

)
+
n−1∑

r=1

z−rm/n

Γ(1 − rm/n) , n = 2, 3, . . . , (3.2)

Em/n(z) =
1
m

m−1∑

r=1

E1/n

(
z1/m exp

(
i2πr
m

))
, (3.3)

E1/n

(
z1/n

)
= ez

[
1 +

n−1∑

r=1

γ(1 − r/n, z)
Γ(1 − r/n)

]
, n = 2, 3, . . . , (3.4)

where γ(a, z) denotes the incomplete gamma function, defined by

γ(a, z) =
∫z

0
e−tta−1dt. (3.5)

In order to establish the above formulas, we observe that (3.1) and (3.2) readily follow
from definition (1.2). For proving formula (3.3), we recall the identity

m−1∑

r=0

exp
[
i2πkr
m

]
=

⎧
⎨

⎩
m if k = 0 (modm),

0 if k /= 0 (modm).
(3.6)
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By virtue of the results (1.1) and (3.6), we find that

m−1∑

r=0

Eα
(
zei2πr/m

)
= mEαm(zm), m ∈N (3.7)

which can be written as

Eα(z) =
1
m

m−1∑

r=0

Eα/m
(
z1/mei2πr/m

)
, m ∈N (3.8)

and result (3.3) now follows by taking α = m/n. To prove relation (3.4), we setm = 1 in (3.1)
and multiply it by exp(−z) to obtain

d
dz

[
e−zE1/n

(
z1/n

)]
= e−z

m−1∑

r=1

z−r/m

Γ(1 − r/m)
. (3.9)

On integrating both sides of the above equation with respect to z and using the definition of
incomplete gamma function (3.5), we obtain the desired result (3.4). An interesting case of
(3.8) is given by

E2α

(
z2
)
=

1
2
[Eα(z) + Eα(−z)]. (3.10)

4. Basic Properties

This section is based on the paper of Berberan-Santos [49]. From (1.1) and (1.2) it is not
difficult to prove that

Eα(−x) = E2α

(
x2
)
− xE2α,1+α

(
x2
)
, (4.1)

Eα(−ix) = E2x

(
−x2

)
− ixE2α,1+α

(
−x2

)
, i =

√
−1. (4.2)

It is shown in Berberan-Santos [49, page 631] that the following three equations can be used
for the direct inversion of a function I(x) to obtain its inverseH(k):

H(k) =
eck

π

∫∞

0
R[I(c + iω)] cos(kω) − I[I(c + iω)] sin(kω)dω (4.3)

=
2eck

π

∫∞

0
R[I(c + iω)] cos(kω)dω, k > 0 (4.4)

= −2e
ck

π

∫∞

0
I[I(c + iω)] sin(kω)dω, k > 0. (4.5)
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With help of the results (4.2) and (4.4), it yields the following formula for the inverse Laplace
transformH(k) of the function Eα(−x):

Hα(k) =
2
π

∫∞

0
E2α

(
−t2
)
cos(kt)dt, k > 0, 0 ≤ α ≤ 1. (4.6)

In particular, the following interesting results can be derived from the above result:

H1(k) =
2
π

∫∞

0
cosh(it) cos(kt)dt =

2
π

∫∞

0
cos(t) cos(kt)dt = δ(k − 1), i =

√
−1,

H1/2(k) =
2
π

∫∞

0
e−t

2
cos(kt)dt =

1√
π
e−k

2/4,

H1/4(k) =
2
π

∫∞

0
et

2
erfc

(
t2
)
cos(kt)dt.

(4.7)

Another integral representation of Hα(k) in terms of the Lévy one-sided stable distribution
Lα(k) was given by Pollard [50] in the form

Hα(k) =
1
α
k−(1+1/α)Lα

(
k−1/α

)
. (4.8)

The inverse Laplace transform of Eα(−xβ), denoted byHβ
α(k)with 0 < α ≤ 1, is obtained as

H
β
α(k) =

∫∞

0
tα/βLα(t)Lβ

(
ktα/β

)
dt, (4.9)

where Lα(t) is the one-sided Lévy probability density function. From Berberan-Santos [49,
page 432] we have

Hα(k) =
1
π

∫∞

0

[
E2α

(
−ω2

)
cos(kω) +ωE2α,1+α

(
−ω2

)
sin(kω)

]
dω, 0 < α ≤ 1. (4.10)

Expanding the above equation in a power series, it gives

Hα(k) =
1
π

∞∑

n=0

bn(α)kn, 0 ≤ α < 1 (4.11)

with

b0(α) =
∫∞

0
E2α

(
−t2
)
dt. (4.12)
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The Laplace transform of (4.11) is the asymptotic expansion of Eα(−x) as

Eα(−x) = 1
π

∞∑

n=0

bn(α)
xn+1

, 0 ≤ α < 1. (4.13)

5. Recurrence Relations

By virtue of definition (1.2), the following relations are obtained in the following form:

Theorem 5.1. One has

Eα,β(z) = zEα,α+β(z) +
1

Γ
(
β
) ,

Eα,β(z) = βEα,β+1(z) + αz
d
dz
Eα,β+1(z),

dm

dzm
[
zβ−1Eα,β(zα)

]
= zβ−m−1Eα,β−m(zα), R

(
β −m) > 0, m ∈N,

d
dz

Eα,β(z) =
Eα,β−1(z) −

(
β − 1

)
Eα,β(z)

αz
.

(5.1)

The above formulae are useful in computing the derivative of the Mittag-Leffler
function Eα,β(z). The following theorem has been established by Saxena [15].

Theorem 5.2. If R(α) > 0, R(β) > 0 and r ∈N then there holds the formula

zrEα,β+rα(z) = Eα,β(z) −
r−1∑

n=0

zn

Γ
(
β + nα

) . (5.2)

Proof. We have from the right side of (5.2)

Eα,β(z) −
r−1∑

n=0

zn

Γ
(
β + nα

) =
∞∑

n=r

zn

Γ
(
β + nα

) . (5.3)

Put n − r = k or n = k + r. Then,

∞∑

n=r

zn

Γ
(
β + nα

) =
∞∑

k=0

zk+r

Γ
(
β + rα + kα

)

= zrEα,β+rα(z).

(5.4)

For r = 2, 3, 4 we obtain the following corollaries.
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Corollary 5.3. If R(α) > 0, R(β) > 0 then there holds the formula

z2Eα,β+2α(z) = Eα,β(z) − 1
Γ
(
β
) − z

Γ
(
α + β

) . (5.5)

Corollary 5.4. If R(α) > 0, R(β) > 0 then there holds the formula

z3Eα,β+3α(z) = Eα,β(z) − 1
Γ
(
β
) − z

Γ
(
α + β

) − z2

Γ
(
2α + β

) . (5.6)

Corollary 5.5. If R(α) > 0, R(β) > 0 then there holds the formula

z4Eα,β+4α(z) = Eα,β(z) − 1
Γ
(
β
) − z

Γ
(
α + β

) − z2

Γ
(
2α + β

) − z3

Γ
(
3α + β

) . (5.7)

Remark 5.6. For a generalization of result (5.2), see Saxena et al. [38].

6. Asymptotic Expansions

The asymptotic behavior of Mittag-Leffler functions plays a very important role in the
interpretation of the solution of various problems of physics connected with fractional
reaction, fractional relaxation, fractional diffusion, and fractional reaction-diffusion, and so
forth, in complex systems. The asymptotic expansion of Eα(z) is based on the integral
representation of the Mittag-Leffler function in the form

Eα(z) =
1

2πi

∫

Ω

tα−1 exp(t)
tα − z dt, R(α) > 0, α, z ∈ C, (6.1)

where the path of integrationΩ is a loop starting and ending at −∞ and encircling the circular
disk |t| ≤ |z|1/α in the positive sense, | arg t| < π onΩ. The integrand has a branch point at t = 0.
The complex t-plane is cut along the negative real axis and in the cut plane the integrand is
single-valued the principal branch of tα is taken in the cut plane. Equation (6.1) can be proved
by expanding the integrand in powers of t and integrating term by term by making use of the
well-known Hankel’s integral for the reciprocal of the gamma function, namely

1
Γ
(
β
) =

1
2πi

∫

Ha

eζ

ζβ
dζ. (6.2)

The integral representation (6.1) can be used to obtain the asymptotic expansion of the
Mittag-Leffler function at infinity [1]. Accordingly, the following cases are mentioned.
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(i) If 0 < α < 2 and μ is a real number such that

πα

2
< μ < min[π,πα], (6.3)

then forN∗ ∈N,N∗ /= 1 there holds the following asymptotic expansion:

Eα(z) =
1
α
z(1−β)/α exp

(
z1/α

)
−

N∗∑

r=1

1
Γ(1 − αr)

1
zr

+O
[

1
zN∗+1

]
, (6.4)

as |z| → ∞, | arg z| ≤ μ and

Eα(z) = −
N∗∑

r=1

1
Γ(1 − αr)

1
zr

+O
[

1
zN∗+1

]
, (6.5)

as |z| → ∞, μ ≤ | arg z| ≤ π .
(ii) When α ≥ 2 then there holds the following asymptotic expansion:

Eα(z) =
1
α

∑

n

z1/n exp
[
exp

(
2nπi
α

)
z1/α

]
−

N∗∑

r=1

1
Γ(1 − αr)

1
zr

+O
[

1
zN∗+1

]
(6.6)

as |z| → ∞, | arg z| ≤ απ/2 and where the first sum is taken over all integers n such
that

∣∣arg(z) + 2πn
∣∣ ≤ απ

2
. (6.7)

The asymptotic expansion of Eα,β(z) is based on the integral representation of the
Mittag-Leffler function Eα,β(z) in the form

Eα,β(z) =
1

2πi

∫

Ω

tα−β exp(t)
tα − z dt, R(α) > 0, R

(
β
)
> 0, z, α, β ∈ C, (6.8)

which is an extension of (6.1) with the same path. As in the previous case, the
Mittag-Leffler function has the following asymptotic estimates.

(iii) If 0 < α < 2 and μ is a real number such that

πα

2
< μ < min[π,πα], (6.9)

then there holds the following asymptotic expansion:

Eα,β(z) =
1
α
z(1−β)/α exp

(
z1/α

)
−

N∗∑

r=1

1
Γ
(
β − αr)

1
zr

+O
[

1
zN∗+1

]
(6.10)
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as |z| → ∞, | arg z| ≤ μ and

Eα,β(z) = −
N∗∑

r=1

1
Γ
(
β − αr)

1
zr

+O
[

1
zN∗+1

]
, (6.11)

as |z| → ∞, μ ≤ | arg z| ≤ π .

(iv) When α ≥ 2 then there holds the following asymptotic expansion:

Eα,β(z) =
1
α

∑

n

z1/n exp
[
exp

(
2nπi
α

)
z1/α

]1−β
−

N∗∑

r=1

1
Γ
(
β − αr)

1
zr

+O
[

1
zN∗+1

]
, (6.12)

as |z| → ∞, | arg z| ≤ απ/2 and where the first sum is taken over all integers n such
that

∣∣arg(z) + 2πn
∣∣ ≤ απ

2
. (6.13)

7. Integral Representations

In this section several integrals associated with Mittag-Leffler functions are presented, which
can be easily established by the application by means of beta and gamma function formulas
and other techniques, see Erdélyi et al. [1], Gorenflo et al. [29, 51, 52],

∫∞

0
e−ζEα(ζαz)dζ =

1
1 − z , |z| < 1, α ∈ C, R(α) > 0,

∫∞

0
e−xxβ−1Eα,β(xαz)dx =

1
1 − z , |z| < 1, α, β ∈ C, R(α) > 0, R

(
β
)
> 0,

∫x

0
(x − ζ)β−1Eα(ζα)dζ = Γ

(
β
)
xβEα,β+1(xα), R

(
β
)
> 0,

∫∞

0
e−sζEα(−ζα)dζ = sα−1

1 + sα
, R(s) > 0,

∫∞

0
e−sζζmα+β−1E(m)

α,β (±aζα)dζ =
m!sα−β

(sα ∓ a)m+1
, R(s) > 0, R(α) > 0, R

(
β
)
> 0,

(7.1)
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where α, β ∈ C and

E
(m)
α,β (z) =

dm

dzm
Eα,β(z),

Eα(−xα) = 2
π

sin
(απ

2

)∫∞

0

ζα−1 cos(xζ)
1 + 2ζα cos(απ/2) + ζ2α

dζ, α ∈ C, R(α) > 0,

(7.2)

Eα(−x) = 1
π

sin(απ)
∫∞

0

ζα−1

1 + 2ζα cos(απ) + ζ2α
e−ζx

1/α
ζdζ, α ∈ C, R(α) > 0, (7.3)

Eα(−x) = 1 − 1
2α

+
x1/α

π

∫∞

0
arctan

[
ζα + cos(απ)

sin(απ)

]
e−ζx

1/α
ζdζ, α ∈ C, R(α) > 0. (7.4)

Note 1. Equation (7.3) can be employed to compute the numerical coefficients of the leading
term of the asymptotic expansion of Eα(−x). Equation (7.4) yields

b0(α) =
α

π
Γ(α) sin(2απ)

∫∞

0

ζα−1

1 + 2ζ2α cos(2απ) + ζ4α
dζ, α <

1
2
. (7.5)

From Berberan-Santos [49] and Gorenflo et al. [29, 51] the following results hold:

Eα(−x) = 2x
π

∫∞

0

E2α
(−t2)

x2 + t2
dt, 0 ≤ α ≤ 1, α ∈ C. (7.6)

In particular, the following cases are of importance:

E1(−x) = 2x
π

∫∞

0

cosh(it)
x2 + t2

dt = exp(−x),

E1/2(−x) = 2x
π

∫∞

0

exp
(−t2)

x2 + t2
dt = ex

2
erfc(x),

E1/4(−x) = 2x
π

∫∞

0

et
2
erfc

(−t2)

x2 + t2
dt.

(7.7)

Note 2. Some new properties of the Mittag-Leffler functions are recently obtained by Gupta
and Debnath [53].
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8. The H-Function and Its Special Cases

TheH-function is defined by means of a Mellin-Barnes type integral in the following manner
[54]:

Hm,n
p,q (z) = Hm,n

p,q

[
z|(ap,Ap)

(bq,Bq)

]
= Hm,n

p,q

[
z|(a1,A1),...,(ap,Ap)

(b1,B1),...,(bq,Bq)

]

=
1

2πi

∫

Ω
Θ(ζ)z−ζdζ,

(8.1)

where i =
√
(−1) and

Θ(s) =

{∏m
j=1Γ

(
bj + sBj

)}{∏n
j=1Γ

(
1 − aj − sAj

)}

{∏q

j=m+1Γ
(
1 − bj − sBj

)}{∏p

j=n+1Γ
(
aj + sAj

)} , (8.2)

and an empty product is interpreted as unity, m,n, p, q ∈ N0 with 0 ≤ n ≤ p, 1 ≤ m ≤ q,
Ai, Bj ∈ R+, ai, bj ∈ C, i = 1, . . . , p; j = 1, . . . , q such that

Ai

(
bj + k

)
/=Bj(ai − λ − 1), k, λ ∈N0; i = 1, . . . , n; j = 1, . . . , m, (8.3)

where we employ the usual notations:N0 = 0, 1, 2, . . ., R = (−∞,∞), R+ = (0,∞), and C being
the complex number field. The contour Ω is the infinite contour which separates all the poles
of Γ(bj +sBj), j = 1, . . . , m from all the poles of Γ(1−ai+sAi), i = 1, . . . , n. The contourΩ could
beΩ = L−∞ orΩ = L+∞ orΩ = Liγ∞, where L−∞ is a loop starting at −∞ encircling all the poles
of Γ(bj + sBj), j = 1, . . . , m and ending at −∞. L+∞ is a loop starting at +∞, encircling all the
poles of Γ(1 − ai − sAi), i = 1, . . . , n and ending at +∞. Liγ∞ is the infinite semicircle starting
at γ − i∞ and going to γ + i∞. A detailed and comprehensive account of the H-function is
available from the monographs of Mathai and Saxena [54], Prudnikov et al. [55] and Kilbas
and Saigo [56]. The relation connecting the Wright’s function pψq(z) and the H-function is
given for the first time in the monograph of Mathai and Saxena [54, page 11, equation (1.7.8)]
as

pψq

[
(a1, A1), . . . ,

(
ap,Ap

)

(b1, B1), . . . ,
(
bq, Bq

)
∣∣∣∣z
]
= H1,p

p,q+1

[
−z|(1−a1·A1),...,(1−ap,Ap)

(0,1),(1−b1,B1),...,(1−bq,Bq)
]
, (8.4)

where pψq(z) is the Wright’s generalized hypergeometric function [57, 58]; also see Erdélyi
et al. [59, Section 4.1], defined by means of the series representation in the form

pψq(z) =
∞∑

r=0

{∏p

j=1Γ
(
aj +Ajr

)}

{∏q

j=1Γ
(
bj + Bjr

)}
zr

r!
, (8.5)
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where z ∈ C, ai, bj ∈ C, Ai, Bj ∈ R+, Ai /= 0, Bj /= 0; i = 1, . . . , p; j = 1, . . . , q,

q∑

j=1

Bj −
p∑

i=1

Ai = Δ > −1. (8.6)

The Mellin-Barnes contour integral for the generalized Wright function is given by

pψq

[ (
ap,Ap

)
(
bq, Bq

)
∣∣∣∣z
]
=

1
2πi

∫

Ω

Γ(s)
∏p

j=1Γ
(
aj −Ajs

)

∏q

j=1Γ
(
bj − sBj

) (−z)−sds, (8.7)

where the path of integration separates all the poles of Γ(s) at the points s = −ν, ν ∈N0 lying
to the left and all the poles of

∏p

j=1Γ(aj − sAj), j = 1, . . . , p at the points s = (Aj + νj)/Aj ,
νj ∈N0, j = 1, . . . , p lying to the right. IfΩ = (γ − i∞, γ + i∞), then the above representation is
valid if either of the conditions are satisfied:

(i)

Δ < 1,
∣∣arg(−z)∣∣ < (1 −Δ)π

2
, z /= 0, (8.8)

(ii)

Δ = 1, (1 + Δ)γ +
1
2
< R(δ), arg(−z) = 0, z /= 0, δ =

q∑

j=1

bj −
p∑

j=1

aj +

(
p − q)

2
. (8.9)

This result was proved by Kilbas et al. [60].
The generalized Wright function includes many special functions besides the Mittag-

Leffler functions defined by equations (1.1) and (1.2). It is interesting to observe that for
Ai = Bj = 1, i = 1, . . . , p; j = 1, . . . , q, (8.5) reduces to a generalized hypergeometric function
pFq(z). Thus

pψq

[ (
ap, 1

)
(
bq, 1

)
∣∣∣∣z
]
=

∏p

j=1Γ
(
aj
)

∏q

j=1Γ
(
bj
) p Fq

(
a1, . . . , ap; b1, . . . , bq; z

)
, (8.10)

where aj /= − v, j = 1, . . . , p, v = 0, 1, . . ., bj /= − λ, j = 1, . . . , q, λ = 0, 1, . . ., p ≤ q or p = q + 1,
|z| < 1. Wright [61] introduced a special case of (8.5) in the form

φ(a, b; z) = 0ψ1[(b, a) | z] =
∞∑

r=0

1
Γ(ar + b)

zr

r!
, (8.11)
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which widely occurs in problems of fractional diffusion. It has been shown by Saxena et al.
[41], also see Kiryakova [62], that

Eα,β(z) = 1ψ1

[
(1, 1)
(
β, α

)

∣∣∣∣∣z
]
= H1,1

1,2

[
−z|(0,1)(0,1),(1−β,α)

]
. (8.12)

If we further take β = 1 in (8.12)we find that

Eα,1(z) = Eα(z) = 1ψ1

[
(1, 1)

(1, α)

∣∣∣∣∣z
]
= H1,1

1,2

[
−z|(0,1)(0,1),(0,α)

]
, (8.13)

where α ∈ C, R(α) > 0.

Remark 8.1. A series of papers are devoted to the application of the Wright function in partial
differential equation of fractional order extending the classical diffusion and wave equations.
Mainardi [63] has obtained the result for a fractional diffusion wave equation in terms of the
fractional Green function involving the Wright function. The scale-variant solutions of some
partial differential equations of fractional order were obtained in terms of special cases of the
generalized Wright function by Buckwar and Luchko [64] and Luchko and Gorenflo [65].

9. Mellin-Barnes Integrals for Mittag-Leffler Functions

These integrals can be obtained from identities (8.12) and (8.13).

Lemma 9.1. If R(α) > 0, R(β) > 0 and z ∈ C the following representations are obtained:

Eα(z) =
1

2πi

∫ γ+i∞

γ−i∞

Γ(s)Γ(1 − s)
Γ(1 − αs) (−z)−sds,

Eα,β(z) =
1

2πi

∫ γ+i∞

γ−i∞

Γ(s)Γ(1 − s)
Γ
(
β − αs) (−z)−sds,

(9.1)

where the path of integration separates all the poles of Γ(s) at the points s = −ν, ν = 0, 1, . . . from those
of Γ(1 − s) at the points s = 1 + v, v = 0, 1, . . ..

On evaluating the residues at the poles of the gamma function Γ(1 − s) we obtain the
following analytic continuation formulas for the Mittag-Leffler functions:

Eα(z) =
1

2πi

∫ γ+i∞

γ−i∞

Γ(s)Γ(1 − s)
Γ(1 − αs) (−z)−sds = −

∞∑

k=1

z−k

Γ(1 − αk) ,

Eα,β(z) =
1

2πi

∫ γ+i∞

γ−i∞

Γ(s)Γ(1 − s)
Γ
(
β − αs) (−z)−sds = −

∞∑

k=1

z−k

Γ
(
β − αk) .

(9.2)
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10. Relation with Riemann-Liouville Fractional Calculus Operators

In this section, we present the relations of Mittag-Leffler functions with the left- and right-
sided operators of Riemann-Liouville fractional calculus, which are defined

(
Iα0+φ

)
(x) =

1
Γ(α)

∫x

0
(x − t)α−1φ(t)dt, R(α) > 0, (10.1)

(Iα−)(x) =
1

Γ(α)

∫∞

x

(t − x)α−1φ(t)dt, R(α) > 0, (10.2)

(
Dα

0+φ
)
(x) =

(
d
dx

)[α]+1[
I
1−{α}
0+

φ
]
(x)

=
1

Γ(1 − {α})
(

d
dx

)[α]+1 ∫x

0
(x − t)α−1φ(t)dt, R(α) > 0

(10.3)

(
Dα

−φ
)
(x) =

(
− d
dx

)[α]+1[
I
1−{α}
− φ

]
(x)

=
1

Γ(1 − {α})
(
− d
dx

)[α]+1 ∫∞

x

(t − x)−{α}φ(t)dt, R(α) > 0,

(10.4)

where [α]means the maximal integer not exceeding α and {α} is the fractional part of α.

Note 3. The fractional integrals (10.1) and (10.2) are connected by the relation [66, page 118]

[
Iα−φ

(
1
t

)]
(x) = xα−1

(
Iα0+

[
t−α−1φ(t)

])( 1
x

)
. (10.5)

Theorem 10.1. Let R(α) > 0 and R(β) > 0 then there holds the formulas

(
Iα0+

[
tα−1Eα,β(atα)

])
(x) =

xβ−1

a

[
Eα,β(axα) − 1

Γ
(
β
)
]
, a /= 0,

(
Iα0+[Eα(at

α)]
)
(x) =

1
a
[Eα(axα) − 1], a /= 0

(10.6)

which by virtue of definitions (1.1) and (1.2) can be written as

(
Iα0+

[
tβ−1Eα,β(atα)

])
(x) = xα+β−1Eα,α+β(axα),

(
Iα0+[Eα(at

α)]
)
(x) = xαEα,α+1(axα).

(10.7)
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Theorem 10.2. Let R(α) > 0 and R(β) > 0 then there holds the formulas

(
Iα−
[
t−α−βEα,β

(
at−α

)])
(x) =

xα−β

a

[
Eα,β

(
ax−α) − 1

Γ
(
β
)
]
, a /= 0,

(
Iα−
[
t−α−1Eα

(
at−α

)])
(x) =

1
a
xα−1

[
Eα
(
ax−α) − 1

]
, a /= 0.

(10.8)

Theorem 10.3. Let 0 < R(α) < 1 and R(β) > R(α) then there holds the formulas

(
Dα

0+

[
tβ−1Eα,β(atα)

])
(x) =

xβ−α−1

Γ
(
β − α) + axβ−1Eα,β(axα),

(
Dα

0+[Eα(at
α)]
)
(x) =

x−α

Γ(1 − α) + aEα(ax
α).

(10.9)

Theorem 10.4. Let R(α) > 0 and R(β) > [R(α)] + 1 then there holds the formula

(
Dα

−
[
tα−βEα,β

(
at−α

)])
(x) =

x−β

Γ
(
β − α) + ax−α−βEα,β

(
ax−α). (10.10)

11. Generalized Mittag-Leffler Type Functions

By means of the series representation a generalization of (1.1) and (1.2) is introduced by
Prabhakar [67] as

E
γ

α,β(z) =
∞∑

n=0

(
γ
)
n

n!Γ
(
β + αn

) , α, β, γ ∈ C, R(α) > 0, R
(
β
)
> 0, (11.1)

where

(
γ
)
n = γ

(
γ + 1

) · · · (γ + n − 1
)
=

Γ
(
γ + n

)

Γ
(
γ
) (11.2)

whenever Γ(γ) is defined, (γ)0 = 1, γ /= 0. It is an entire function of order ρ = [R(α)]−1 and type
σ = (1/ρ)[{R(α)}R(α)]

−ρ
. It is a special case of Wright’s generalized hypergeometric function,

Wright [57, 68] as well as the H-function [54]. For various properties of this function with
applications, see Prabhakar [67]. Some special cases of this function are enumerated below

Eα(z) = E1
α,1(z),

Eα,β(z) = E1
α,β(z),

αγE
γ+1
α,β (z) =

(
1 + αγ − β)Eγ

α,β(z) + E
γ

α,β−1(z),

φ
(
α, β; z

)
= Γ
(
β
)
Eα1,β(z),

(11.3)
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where φ(α, β; z) is the Kummer’s confluent hypergeometric function. Eγα,β(z) has the
following representations in terms of the Wright’s function andH-function:

E
γ

α,β(z) =
1

Γ
(
γ
) 1 ψ1

[ (
γ, 1
)

(
β, α

) ; z
]

=
1

Γ
(
γ
)H1,1

1,2

[
−z|(1−γ,1)(0,1),(1−β,α)

]

=
1

2πωΓ
(
γ
)
∫ c+i∞

c−i∞

Γ(s)Γ
(
γ − s)

Γ
(
β − αs) (−z)−sds, R

(
γ
)
> 0,

(11.4)

where 1ψ1(·) and H1,1
1,2(·) are, respectively, Wright generalized hypergeometric function and

theH-function. In theMellin-Barnes integral representation,ω =
√−1 and the c in the contour

is such that 0 < c < R(γ), and it is assumed that the poles of Γ(s) and Γ(γ − s) are separated
by the contour. The following two theorems are given by Kilbas et al. [34].

Theorem 11.1. If α, β, γ, a ∈ C, R(α) > 0, R(β) > n, R(γ) > 0 then for n ∈N the following results
hold:

dn

dzn
[
zβ−1Eγ

α,β(az
α)
]
= zβ−n−1Eγ

α,β−n(az
α). (11.5)

In particular,

dn

dzn
[
zβ−1Eα,β(azα)

]
= zβ−n−1Eα,β−n(azα),

dn

dzn
[
zβ−1φ

(
γ, β;az

)]
=

Γ
(
β
)

Γ
(
β − n)z

β−n−1φ
(
γ ; β − n;az).

(11.6)

Theorem 11.2. If α, β, γ, a, ν, σ ∈ C, R(α) > 0, R(β) > 0, R(γ) > 0, R(ν) > 0, R(σ) > 0 then,

∫x

0
(x − t)β−1Eγα,β

[
a(x − t)α]tν−1Eσα,ν(atα)dt = xβ+ν−1Eγ+σα,β+ν(ax

α). (11.7)

The proof of (11.7) can be developed with the help of the Laplace transform formula

L
[
xβ−1Eγα,β(ax

α)
]
(s) = s−β

(
1 − as−α)−γ , (11.8)

where α, β, γ, a ∈ C, R(α) > 0, R(β) > 0, R(γ) > 0, s ∈ C, R(s) > 0, |as−α| < 1. For γ = 1, (11.8)
reduces to

L
[
xβ−1Eα,β(axα)

]
(s) = s−β

(
1 − as−α)−1. (11.9)
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Generalization of the above two results is given by Saxena [15]

L
[
tρ−1Eδβ,γ(at

α)
]
(s) =

s−ρ

Γ(δ) 2 ψ1

[
(δ, 1),

(
ρ, α

)

(
γ, β
) ;

a

sα

]
, (11.10)

where R(β) > 0,R(γ) > 0,R(s) > 0,R(ρ) > 0, s > |a|1/R(α),R(δ) > 0.
Relations connecting the function defined by (11.1) and the Riemann-Liouville

fractional integrals and derivatives are given by Saxena and Saigo [35] in the form of nine
theorems. Some of the interesting theorems are given below.

Theorem 11.3. Let α > 0, β > 0, γ > 0, and a ∈ R. Let Iα0+ be the left-sided operator of Riemann-
Liouville fractional integral. Then there holds the formula

(
Iα0+

[
tγ−1Eδβ,γ

(
atβ
)])

(x) = xα+γ−1Eδβ,α+γ
(
axβ

)
. (11.11)

Theorem 11.4. Let α > 0, β > 0, γ > 0, and a ∈ R. Let Iα− be the right-sided operator of Riemann-
Liouville fractional integral. Then there holds the formula

(
Iα−
[
t−α−γEδβ,γ

(
at−β

)])
(x) = x−γEδβ,α+γ

(
ax−β

)
. (11.12)

Theorem 11.5. Let α > 0, β > 0, γ > 0, and a ∈ R. Let Dα
0+

be the left-sided operator of Riemann-
Liouville fractional derivative. Then there holds the formula

(
Dα

0+

[
tγ−1Eδβ,γ

(
atβ
)])

(x) = xγ−α−1Eδβ,γ−α
(
axβ

)
. (11.13)

Theorem 11.6. Let α > 0, β > 0, γ − α + {α} > 1, and a ∈ R. Let Dα
− be the right-sided operator of

Riemann-Liouville fractional derivative. Then there holds the formula

(
Dα

−
[
tα−γEδβ,γ

(
at−β

)])
(x) = x−γEδβ,γ−α

(
ax−β

)
. (11.14)

In a series of papers by Luchko and Yakubovich [69, 70], Luckho and Srivastava [32],
Al-Bassam and Luchko [71], Hadid and Luchko [72], Gorenflo and Luchko [24], Gorenflo
et al. [73, 74], Luchko and Gorenflo [75], the operational method was developed to solve
in closed forms certain classes of differential equations of fractional order and also integral
equations. Solutions of the equations and problems considered are obtained in terms of
generalized Mittag-Leffler functions. The exact solution of certain differential equation of
fractional order is given by Luchko and Srivastava [32] in terms of function (11.1) by using
operational method. In other papers, the solutions are established in terms of the following
functions of Mittag-Leffler type: if z, ρ, βj ∈ C, R(αj) > 0, j = 1, . . . , m andm ∈N then,

Eρ
((
αj , βj

)
1,m; (z)

)
=

∞∑

k=0

(
ρ
)
k∏m

j=1Γ
(
ajk + βj

)
zk

k!
. (11.15)
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Form = 1, (11.15) reduces to (11.1). The Mellin-Barnes integral for this function is given by

Eρ
((
αj , βj

)
1,m; (z)

)
=

1
2πiΓ

(
ρ
)
∫ γ+i∞

γ−i∞

Γ(s)Γ
(
ρ − s)

∏m
j=1Γ

(
βj − αjs

) (−z)−sds, i =
√
−1

=
1

Γ
(
ρ
)H1,1

1,m+1

[
−z|(1−ρ,1)(0,1),(1−βj ,αj ),j=1,...,m

]
,

(11.16)

where 0, γ < R(ρ), R(ρ) > 0, and the contour separates the poles of Γ(s) from those of Γ(ρ−s).
R(αj) > 0, j = 1, . . . , m, arg(−z) < π . The Laplace transform of the function defined by (11.15)
is given by

L
[
Eρ
((
αj , βj

)
1,m;−t

)]
(s) =

1
sΓ
(
ρ
) 2 ψm

[ (
ρ, 1
)
, (1, 1)

(
αj , βj

)
1,m

∣∣∣∣∣
1
s

]
, (11.17)

where R(s) > 0.

Remark 11.7. In a recent paper, Kilbas et al. [33] obtained a closed form solution of a fractional
generalization of a free electron equation of the form

Dα
τa(τ) = λ

∫ τ

0
tδa(τ − t)Ebρ,δ+1(iνtρ)dt + βτσE

γ

ρ,σ+1(iνt
ρ), 0 ≤ τ ≤ 1, i =

√
−1, (11.18)

where b, λ ∈ C, ν, β ∈ R+, α > 0, ρ > 0, α > −1, ρ > −1, δ > −1, and Ebρ,δ+1(·) is the generalized
Mittag-Leffler function given by (11.1), and α(τ) is the unknown function to be determined.

Remark 11.8. The solution of fractional differential equations by the operational methods
are also obtained in terms of certain multivariate Mittag-Leffler functions defined below:
The multivariate Mittag-Leffler function of n complex variables z1, . . . , zn with complex
parameters a1, . . . , an, b ∈ C is defined as

E(a1,...,an),b(z1, . . . , zn) =
∞∑

k=0

L1+···+Ln=k∑

L1,...,Ln≥0

(
k

L1, . . . , Ln

) ∏n
j=1z

Lj
j

Γ
(
b ±∑n

j=1 ajLj
) (11.19)

in terms of the multinomial coefficients
(

k

L1, . . . , Ln

)
=

k!
L1! · · ·Ln! , k, Lj ,∈N0, j = 1, . . . , m. (11.20)

Another generalization of the Mittag-Leffler function (1.2) was introduced by Kilbas
and Saigo [23, 76] in terms of a special function of the form

Eα,m,β(z) =
∞∑

k=0

ckz
k, c0 = 1, ck =

k−1∏

i=0

Γ
(
α
(
im + β

)
+ 1
)

Γ
(
α
(
im + β + 1

)
+ 1
) , k ∈N0 = {0, 1, 2, . . .},

(11.21)
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where an empty product is to be interpreted as unity; α, β ∈ C are complex numbers and
m ∈ R, R(α) > 0,m > 0, α(im + β) /∈ Z− = {0,−1,−2, . . .}, i = 0, 1, 2, . . . and form = 1 the above
defined function reduces to a constant multiple of the Mittag-Leffler function, namely

Eα,1,β(z) = Γ
(
αβ + 1

)
Eα,αβ+1(z), (11.22)

where R(α) > 0 and α(i + β) /∈ Z−. It is an entire function of z of order [R(α)]−1 and
type σ = 1/m, see Gorenflo et al. [30]. Certain properties of this function associated with
Riemann-Liouville fractional integrals and derivatives are obtained and exact solutions of
certain integral equations of Abel-Volterra type are derived by their applications [23, 76, 77].
Its recurrence relations, connection with hypergeometric functions and differential formulas
are obtained by Gorenflo et al. [30], also see, Gorenflo and Mainardi [25]. In order to
present the applications of Mittag-Leffler functions we give definitions of Laplace transform,
Fourier transform, Riemann-Liouville fractional calculus operators, Caputo operator and
Weyl fractional operators in the next section.

12. Laplace and Fourier Transforms, Fractional Calculus Operators

We will need the definitions of the well-known Laplace and Fourier transforms of a function
N(x, t) and their inverses, which are useful in deriving the solution of fractional differential
equations governing certain physical problems. The Laplace transform of a function N(x, t)
with respect to t is defined by

L{N(x, t)} = Ñ(x, s) =
∫∞

0
e−stN(x, t)dt, t > 0, x ∈ R, (12.1)

where R(s) > 0 and its inverse transform with respect to s is given by

L−1
{
Ñ(x, s)

}
= L−1

{
Ñ(x, s); t

}
=

1
2πi

∫ c+i∞

c−i∞
estÑ(x, s)ds. (12.2)

The Fourier transform of a functionN(x, t)with respect to x is defined by

F{N(x, t)} = F∗(k, t) =
∫∞

−∞
eikxN(x, t)dx. (12.3)

The inverse Fourier transform with respect to k is given by the formula

F−1{F∗(k, t)} =
1
2π

∫∞

−∞
e−ikxF∗(k, t)dk. (12.4)

From Mathai and Saxena [54] and Prudnikov et al. [55, page 355, (2.25.3)] it follows that the
Laplace transform of theH-function is given by

L

{
tρ−1Hm,n

p,q

[
ztσ |(ap,Ap)

(bq,Bq)

]}
= s−ρHm,n+1

p+1,q

[
zs−σ

∣∣(1−ρ,σ),(ap,Ap)

(bq,Bq)

]
, (12.5)
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where R(s) > 0, R(ρ + σmin1≤j≤m(bj/Bj) > 0, σ > 0,

∣∣arg z
∣∣ <

1
2
πΩ, Ω > 0, Ω =

n∑

i=1

Ai −
p∑

i=n+1

Ai +
m∑

j=1

Bj −
q∑

j=m+1

Bj. (12.6)

By virtue of the cancelation law for theH-function [54] it can be readily seen that

L−1
{
s−ρHm,n

p,q

[
zsσ |(ap,Ap)

(bq,Bq)

]}
= tρ−1Hm,n

p+1,q

[
zt−σ

∣∣(ap,Ap),(ρ,σ)

(bq,Bq)

]
, (12.7)

where σ > 0, R(s) > 0, R[ρ + σmax1≤i≤n((1 − ai)/Ai)] > 0, | arg z| < (1/2)πΩ1, Ω1 > 0,
Ω1 = Ω − ρ. In view of the results

J−1/2(x) =

√
2
πx

cosx (12.8)

the cosine transform of theH-function [54, page 49] is given by

∫∞

0
tρ−1 cos(kt)Hm,n

p,q

[
atμ|(ap,Ap)

(bq,Bq)

]
dt

=
π

kρ
Hm+1,n

q+1,p+2

[
kμ

a

∣∣∣∣∣

(
1 − bq, Bq

)
,
((
1 + ρ

)
/2, μ/2

)

(
ρ, μ

)
,
(
a − ap,Ap

)
,
((
1 + ρ

)
/2, μ/2

)

]
,

(12.9)

where R[ρ + μmin1≤j≤m(bj/Bj)] > 0, R[ρ + μmax1≤j≤n((aj − 1)/Aj) < 0, | arga| < (1/2)πΩ,
Ω > 0; Ω =

∑m
j=1 Bj −

∑q

j=m+1 Bj +
∑n

j=1Aj −
∑p

j=n+1Aj , and k > 0.
The definitions of fractional integrals used in the analysis are defined below. The

Riemann-Liouville fractional integral of order ν is defined by [78, page 45]

0D
−ν
t f(x, t) =

1
Γ(ν)

∫ t

0
(t − u)ν−1f(x, u)du, (12.10)

where R(ν) > 0. Following Samko et al. [16, page 37] we define the Riemann-Liouville
fractional derivative for α > 0 in the form

0D
α
t f(x, t) =

1
Γ(n − α)

dn

dtn

∫ t

0
(t − u)n−α−1f(x, u)du, n = [α] + 1, (12.11)

where [α]means the integral part of the number α. From Erdélyi et al. [79, page 182]we have

L
{
0D

−ν
t f(x, t)

}
= s−νF(x, s), (12.12)
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where F(x, s) is the Laplace transform of f(x, t) with respect to t, R(s) > 0,R(ν) > 0. The
Laplace transform of the fractional derivative defined by (12.11) is given by Oldham and
Spanier [80, page 134, (8.1.3)]

L
{
0D

α
t f(x, t)

}
= sαF(x, s) −

n∑

k=1

sk−1 0D
α−k
t f(x, t)

∣∣
t=0, n − 1 < α ≤ n, (12.13)

In certain boundary value problems arising in the theory of visco elasticity and in the
hereditary solid mechanics the following fractional derivative of order α > 0 is introduced
by Caputo [81] in the form

Dα
t f(x, t) =

1
Γ(m − α)

∫ t

0
(t − τ)m−α−1f (m)(x, t)dt, m − 1 < α ≤ m, R(α) > 0, m ∈N

=
∂m

∂tm
f(x, t), if α = m,

(12.14)

where (∂m/∂tm)f is the mth partial derivative of the function f(x, t) with respect to t. The
Laplace transform of this derivative is given by Podlubny [82] in the form

L
{
Dα
t f(t); s

}
= sαF(s) −

m−1∑

k=0

sα−k−1f (k)(0+), m − 1 < α ≤ m. (12.15)

The above formula is very useful in deriving the solution of differintegral equations of
fractional order governing certain physical problems of reaction and diffusion. Making use
of definitions (12.10) and (12.11) it readily follows that for f(t) = tρ we obtain

0D
−ν
t tρ =

Γ
(
ρ + 1

)

Γ
(
ρ + ν + 1

) tρ+ν, R(ν) > 0, R
(
ρ
)
> −1; t > 0, (12.16)

0D
ν
t t
ρ =

Γ
(
ρ + 1

)

Γ
(
ρ − ν + 1

) tρ−ν, R(ν) < 0, R
(
ρ
)
> −1; t > 0. (12.17)

On taking ρ = 0 in (12.17) we find that

0D
ν
t [1] =

1
Γ(1 − ν) t

−ν, t > 0, R(ν) < 1. (12.18)

From the above result, we infer that the Riemann-Liouville derivative of unity is not zero. We
also need the Weyl fractional operator defined by

−∞D
μ
x =

1
Γ
(
n − μ)

dn

dtn

∫ t

−∞
(t − u)n−μ−1f(u)du, (12.19)
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where n = [μ] + 1 is the integer part of μ > 0. Its Fourier transform is [83, page 59, A.11]

F
{
−∞D

μ
xf(x)

}
= (ik)μf∗(k), (12.20)

where we define the Fourier transform as

h∗
(
q
)
=
∫∞

−∞
h(x) exp

(
iqx
)
dx. (12.21)

Following the convention initiated by Compte [84]we suppress the imaginary unit in Fourier
space by adopting a slightly modified form of the above result in our investigations [83, page
59, A.12]

F
{
−∞D

μ
xf(x)

}
= −|k|μf∗(k), (12.22)

instead of (12.20).
We now proceed to discuss the various applications of Mittag-Leffler functions in

applied sciences. In order to discuss the application of Mittag-Leffler function in kinetic
equations, we derive the solution of two kinetic equations in the next section.

13. Application in Kinetic Equations

Theorem 13.1. If R(ν) > 0, then the solution of the integral equation

N(t) −N0 = −cν 0D
−ν
t N(t) (13.1)

is given by

N(t) =N0Eν(−cνtν), (13.2)

where Eν(t) is the Mittag-Leffler function defined in (1.1).

Proof. Applying Laplace transform to both sides of (13.1) and using (12.12) it gives

Ñ(s) = L{N(t); s} =N0s
−1
[
1 +

(
s

c

)−ν]−1
. (13.3)

By virtue of the relation

L−1{s−ρ
}
=

tρ−1

Γ
(
ρ
) , R

(
ρ
)
> 0, R(s) > 0, s ∈ C, (13.4)
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it is seen that

L−1
[
N0s

−1
[
1 +

(
s

c

)−ν]−1]
=N0

∞∑

k=0

(−1)kcνkL−1
{
s−νk−1

}
(13.5)

=N0

∞∑

k=0

(−1)kcνk tνk

Γ(1 + νk)
=N0Eν(−cνtν). (13.6)

This completes the proof of Theorem 13.1.

Remark 13.2. If we apply the operator 0D
ν
t from the left to (13.1) andmake use of the formula

0D
ν
t [1] =

1
Γ(1 − ν) t

−ν, t > 0, R(ν) < 1, (13.7)

we obtain the fractional diffusion equation

0D
ν
t N(t) −N0

t−ν

Γ(1 − ν) = −cνN(t), t > 0, R(ν) < 1 (13.8)

whose solution is also given by (13.6).

Remark 13.3. We note that Haubold andMathai [46] have given the solution of (13.1) in terms
of the series given by (13.5). The solution in terms of the Mittag-Leffler function is given in
Saxena et al. [39].

Alternate Procedure

We now present an alternate method similar to that followed by Al-Saqabi and Tuan [85] for
solving some differintegral equations, also, see Saxena and Kalla [44] for details.

Applying the operator (−cν)m 0D
−mν
t to both sides of (13.1) we find that

(−cν)m 0D
−mν
t N(t) − (−cν)m+1

0D
−ν(m+1)
t N(t) =N0 0D

−mν
t [1], m = 0, 1, 2, . . . . (13.9)

Summing up the above expression with respect tom from 0 to∞, it gives

∞∑

m=0
(−cν)m 0D

−mν
t N(t) −

∞∑

m=0
(−cν)m+1

0D
−ν(m+1)
t N(t) =N0

∞∑

m=0
(−cν)m 0D

−mν
t [1] (13.10)

which can be written as

∞∑

m=0
(−cν)m 0D

−mν
t N(t) −

∞∑

m=1

(−cν)m 0D
−νm
t N(t) =N0

∞∑

m=0
(−cν)m 0D

−mν
t [1]. (13.11)
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Simplifying the above equation by using the result

0D
−ν
t tμ−1 =

Γ
(
μ
)

Γ
(
μ + ν

) tμ+ν−1, (13.12)

where min{R(ν),R(μ)} > 0, we obtain

N(t) =N0

∞∑

m=0
(−cν)m tmν

Γ(1 +mν)
(13.13)

for m = 0, 1, 2, . . .. Rewriting the series on the right in terms of the Mittag-Leffler function, it
yields the desired result (13.6). The next theorem can be proved in a similar manner.

Theorem 13.4. Ifmin{R(ν),R(μ)} > 0, then the solution of the integral equation

N(t) −N0t
μ−1 = −cν 0D

−ν
t N(t) (13.14)

is given by

N(t) =N0Γ
(
μ
)
tμ−1Eν,μ(−cνtν), (13.15)

where Eν,μ(t) is the generalized Mittag-Leffler function defined in (1.2).

Proof. Applying Laplace transform to both sides of (13.14) and using (1.11), it gives

Ñ(s) = {N(t); s} =N0Γ
(
μ
)
s−μ
[
1 +

(
s

c

)−ν]−1
. (13.16)

Using relation (13.4), it is seen that

L−1
{
N0Γ

(
μ
)
s−μ
[
1 +

(
s

c

)−ν]−1}
=N0

∞∑

k=0

(−1)kcνkL−1
{
s−μ−νk

}

=N0Γ
(
μ
)
tμ−1

∞∑

k=0

(−1)kcνk tνk

Γ
(
μ + νk

)

=N0Γ
(
μ
)
tμ−1Eν,μ(−cνtν).

(13.17)

This completes the proof of Theorem 13.4.

Alternate Procedure

We now give an alternate method similar to that followed by Al-Saqabi and Tuan [85] for
solving the differintegral equations. Applying the operator (−cν)m 0D

−mν
t to both sides of

(13.14), we find that

(−cν)m 0D
−mν
t N(t) − (−cν)m+1

0D
−ν(m+1)
t N(t) =N0(−cν)m 0D

−mν
t tμ−1 (13.18)



26 Journal of Applied Mathematics

form = 0, 1, 2, . . .. Summing up the above expression with respect tom from 0 to ∞, it gives

∞∑

m=0
(−cν)m 0D

−mν
t N(t) −

∞∑

m=0
(−cν)m+1

0D
−ν(m+1)
t N(t) =N0

∞∑

m=0
(−cν)m 0D

−mν
t tμ−1 (13.19)

which can be written as

∞∑

m=0
(−cν)m 0D

−mν
t N(t) −

∞∑

m=1

(−cν)m 0D
−mν
t N(t) =N0

∞∑

m=0
(−cν)m 0D

−mν
t tμ−1. (13.20)

Simplifying by using result (13.12) we obtain

N(t) =N0Γ
(
μ
) ∞∑

m=0
(−cν)m tμ+mν−1

Γ
(
mν + μ

) ; m = 0, 1, 2, . . . . (13.21)

Rewriting the series on the right of (13.21) in terms of the generalizedMittag-Leffler function,
it yields the desired result (13.5). Next we present a general theorem given by Saxena et al.
[40].

Theorem 13.5. If c > 0, R(ν) > 0, then for the solution of the integral equation

N(t) −N0f(t) = −cν 0D
−ν
t N(t) (13.22)

where f(t) is any integrable function on the finite interval [0, b], there exists the formula

N(t) = cN0

∫ t

0
H1,1

1,2

[
cν(t − τ)ν∣∣(−1/ν,1)(−1/ν,1),(−1,ν)

]
f(τ)dτ, (13.23)

whereH1,1
1,2(·) is theH-function defined by (8.1).

The proof can be developed by identifying the Laplace transform ofN()+cν 0D
−ν
t N(t)

as anH-function and then using the convolution property for the Laplace transform. In what
follows, Eδ

β,γ
(·) will be employed to denote the generalized Mittag-Leffler function, defined

by (11.1).

Note 4. For an alternate derivation of this theorem see Saxena and Kalla [44].

Next we will discuss time-fractional diffusion.

14. Application to Time-Fractional Diffusion

Theorem 14.1. Consider the following time-fractional diffusion equation:

∂α

∂tα
N(x, t) = D

∂2

∂x2
N(x, t), 0 < α < 1, (14.1)
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where D is the diffusion constant and N(x, t = 0) = δ(x) is the Dirac delta function and
limx→±∞N(x, t) = 0. Then its fundamental solution is given by

N(x, t) =
1
|x|H

1,0
1,1

⎡

⎣ |x|2
Dtα

∣∣∣∣∣

(1,α)

(1,2)

⎤

⎦. (14.2)

Proof. In order to find a closed form representation of the solution in terms of theH-function,
we use the method of joint Laplace-Fourier transform, defined by

Ñ∗(k, s) =
∫∞

0

∫∞

−∞
e−st+ikxN(x, t)dxdt, (14.3)

where, according to the convention followed, ∼ will denote the Laplace transform and ∗ the
Fourier transform. Applying the Laplace transform with respect to time variable t, Fourier
transform with respect to space variable x, and using the given condition, we find that

sαÑ∗(k, s) − sα−1 = −Dk2Ñ∗(k, s), (14.4)

and then

Ñ∗(k, s) =
sα−1

sα +Dk2
. (14.5)

Inverting the Laplace transform, it yields

N∗(k, t) = L−1
{

sα−1

sα +Dk2

}
= Eα

(
−Dk2tα

)
, (14.6)

where Eα(·) is the Mittag-Leffler function defined by (1.1). In order to invert the Fourier
transform, we will make use of the integral

∫∞

0
cos(kt)Eα,β

(
−at2

)
dt =

π

k
H1,0

1,1

⎡

⎣ k2

a

∣∣∣∣∣

(β,α)

(1,2)

⎤

⎦, (14.7)

where R(α) > 0, R(β) > 0, k > 0, a > 0, and the formula

1
2π

∫∞

−∞
e−ikxf(k)dk =

1
π

∫∞

0
f(k) cos(kx)dk. (14.8)

Then it yields the required solution as

N(x, t) =
1
|x|H

2,1
3,3

⎡

⎣ |x|2
Dtα

∣∣∣∣∣

(1,1),(1,α),(1,1)

(1,2),(1,1),(1,1)

⎤

⎦ =
1
|x|H

1,0
1,1

⎡

⎣ |x|2
Dtα

∣∣∣∣∣

(1,α)

(1,2)

⎤

⎦. (14.9)
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Note 5. For α = 1, (14.9) reduces to the Gaussian density

N(x, t) =
1

2(πDt)1/2
exp

(
− |x|2
4Dt

)
. (14.10)

Fractional-space-diffusion will be discussed in the next section.

15. Application to Fractional-Space Diffusion

Theorem 15.1. Consider the following fractional-space-diffusion equation:

∂

∂t
N(x, t) = D

∂α

∂xα
N(x, t), 0 < α < 1, (15.1)

whereD is the diffusion constant, ∂α/∂xα is the operator defined by (12.19), andN(x, t = 0) = δ(x)
is the Dirac delta function and limx→±∞N(x, t) = 0. Then its fundamental solution is given by

N(x, t) =
1
a|x|H

1,1
2,2

⎡

⎣ |x|
(Dt)1/α

∣∣∣∣∣

(1,1/α),(1,1/2)

(1,1),(1,1/2)

⎤

⎦. (15.2)

The proof can be developed on similar lines to that of the theorem of the preceding
section.

16. Application to Fractional Reaction-Diffusion Model

In the same way, we can establish the following theorem, which gives the fundamental
solution of the reaction-diffusion model given below.

Theorem 16.1. Consider the following reaction-diffusion model:

∂β

∂tβ
N(x, t) = η −∞Dα

xN(x, t), 0 < β ≤ 1 (16.1)

with the initial conditionN(x, t = 0) = δ(x), limx→±∞N(x, t) = 0, where η is a diffusion constant
and δ(x) is the Dirac delta function. Then for the solution of (16.1) there holds the formula

N(x, t) =
1
a|x|H

2,1
3,3

⎡

⎣ |x|
(
ηtβ
)1/α

∣∣∣∣∣

(1,1/α),(1,β/α),(1,1/2)

(1,1),(1,1/α),(1,1/2)

⎤

⎦. (16.2)

For details of the proof, the reader is referred to the original paper by Saxena et al. [43].

Corollary 16.2. For the solution of the fraction reaction-diffusion equation

∂

∂t
N(x, t) = η −∞Dα

xN(x, t), (16.3)
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with initial conditionN(x, t = 0) = δ(x) there holds the formula

N(x, t) =
1
α|x|H

1,1
2,2

⎡

⎣ |x|
(
ηt
)1/α

∣∣∣∣∣

(1,1/α),(1,1/2)

(1,1),(1,1/2)

⎤

⎦, (16.4)

where α > 0.

Note 6. It may be noted that (16.4) is a closed form representation of a Lévy stable law. It is
interesting to note that as α → 2 the classical Gaussian solution is recovered since

N(x, t) =
1

2|x|H
1,1
2,2

⎡

⎣ |x|
(
ηt
)1/α

∣∣∣∣∣

(1,1/2),(1,1/2)

(1,1),(1,1/2)

⎤

⎦

=
1

2π1/2|x|
∞∑

k=0

(−1)k
k!

[
|x|

2
(
ηt
)1/α

]2k+1

=
(
4π
(
ηt
)2/α)−1/2 exp

[
− |x|2

4
(
ηt
)2/α

]
.

(16.5)

17. Application to Nonlinear Waves

It will be shown in this section that by the application of the inverse Laplace transforms
of certain algebraic functions derived in Saxena et al. [43], we can establish the following
theorem for nonlinear waves.

Theorem 17.1. Consider the fractional reaction-diffusion equation:

0D
α
t N(x, t) + a0D

β
t N(x, t) = ν2−∞D

γ
xN(x, t) + ζ2N(x, t) + φ(x, t) (17.1)

for x ∈ R, t > 0, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 with initial conditionsN(x, 0) = f(x), limx→±∞N(x, t) = 0
for x ∈ R, where ν2 is a diffusion constant, ζ is a constant which describes the nonlinearity in the
system, and φ(x, t) is nonlinear function which belongs to the area of reaction-diffusion, then there
holds the following formula for the solution of (17.1)

N(x, t) =
∞∑

r=0

(−a)r
2π

∫∞

−∞
t(α−β)rf∗(k) exp(−kx)

×
[
Er+1
α,(α−β)r+1(−bt

α) + tα−βEr+1α,(α−β)(r+1)+1(−btα)
]
dk

+
∞∑

r=0

(−a)r
2π

∫ t

0
ζα+(α−β)r−1

∫∞

−∞
φ(k, t − ζ) exp(−ikx)

× Er+1
α,α+(α−β)r(−bζ

α)dkdζ,

(17.2)

where α > β and Eδ
β,γ
(·) is the generalized Mittag-Leffler function, defined by (11.1), and b = ν2|k|γ −

ζ2.
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Proof. Applying the Laplace transform with respect to the time variable t and using the
boundary conditions, we find that

sαÑ(x, s) − sα−1f(x) + asβÑ(x, s) − asβ−1f(x) = ν2 −∞D
γ
xÑ(x, s) + ζ2Ñ(x, s) + f̃(x, s).

(17.3)

If we apply the Fourier transform with respect to the space variable x to (17.3) it yields

sαÑ∗(k, s) − sα−1f∗(k) + asβÑ∗(k, s) − asβ−1f∗(k) = −ν2|k|γ Ñ∗(k, s) + ζ2Ñ∗(k, s) + f̃∗(k, s).
(17.4)

Solving for Ñ∗ it gives

Ñ∗(k, s) =

(
sα−1 + asβ−1

)
f∗(k) + f̃∗(k, s)

sα + asβ + b
, (17.5)

where b = ν2|k|γ − ζ2. For inverting (17.5) it is convenient to first invert the Laplace transform
and then the Fourier transform. Inverting the Laplace transform with the help of the result
Saxena et al. [41, equation (28)]

L−1
{

sρ−1

sα + asβ + b
; t

}
= tα−ρ

∞∑

r=0
(−a)r t(α−β)rEr+1α,α+(α−β)r−ρ+1(−btα), (17.6)

where R(α) > 0,R(β) > 0,R(ρ) > 0, |asβ/(sα + b)| < 1 and provided that the series in (17.6) is
convergent, it yields

N∗(k, t) =
∞∑

r=0
(−a)r t(α−β)rf∗(k)

×
[
Er+1
α,(α−β)r+1(−bt

α) + tα−βEr+1
α,(α−β)(r+1)+1(−bt

α)
]

+
∞∑

r=0
(−a)r

∫ t

0
φ∗(k, t − ζ)ζα+(α−β)r−1Er+1α,(α−β)r+α(−bζα)dζ.

(17.7)

Finally, the inverse Fourier transform gives the desired solution (17.3).

18. Generalized Mittag-Leffler Type Functions

The multi-index (m-tuple) Mittag-Leffler function is defined in Kiryakova [86] by means of
the power series

E(1/ρi),(μi)(z) =
∞∑

k=0

φkz
k =

∞∑

k=0

zk
∏m

j=1Γ
(
μj + k/ρj

) . (18.1)

Herem > 1 is an integer, ρ1, . . . , ρm and μ1, . . . , μm are arbitrary real parameters.
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The following theorem is proved by Kiryakova [86, page 244] which shows that the
multiindexMittag-Leffler function is an entire function and also gives its asymptotic estimate,
order, and type.

Theorem 18.1. For arbitrary sets of indices ρi > 0, −∞ < μi < ∞, i = 1, . . . , m the multiindex
Mittag-Leffler function defined by (18.1) is an entire function of order

ρ =

[
m∑

i=1

1
ρi

]−1
, that is,

1
ρ
=

1
ρ1

+ · · · + 1
ρm

(18.2)

and type

σ =
(
ρ1
ρ

)ρ/ρ1

· · ·
(
ρm
ρ

)ρ/ρm

. (18.3)

Furthermore, for every positive ε, the asymptotic estimate

∣∣E(1/ρi),(μi)(z)
∣∣ < exp

(
(σ + ε)|z|ρ), (18.4)

holds for |z| ≥ r0(ε), r0(ε) sufficiently large.
It is interesting to note that for m = 2, (18.2) reduces to the generalized Mittag-Leffler

function considered by Dzherbashyan [87] denoted by φρ1,ρ2(z;μ1, μ2) and defined in the
following form [62, Appendix]:

E(1/ρ1,1/ρ2);(μ1,μ2)(z) = φρ1,ρ2
(
z;μ1, μ2

)
=

∞∑

k=0

zk

Γ
(
μ1 + k/ρ1

)
Γ
(
μ2 + k/ρ2

) , (18.5)

and shown to be an entire function of order

ρ =
ρ1ρ2
ρ1 + ρ2

and type σ =
(
ρ1
ρ2

)ρ2/ρ1(ρ2
ρ1

)ρ1/ρ2

. (18.6)

Relations between multiindex Mittag-Leffler function with H-function, generalized Wright
function and other special functions are given by Kiryakova; for details, see the original
papers Kiryakova [86, 88]. Saxena et al. [38] investigated the relations between themultiindex
Mittag-Leffler function and the Riemann-Liouville fractional integrals and derivatives. The
results derived are of general nature and give rise to a number of known as well as unknown
results in the theory of generalizedMittag-Leffler functions, which serve as a backbone for the
fractional calculus. Two interesting theorems established by Saxena et al. [38] are described
below.

Theorem 18.2. Let α > 0, ρi > 0, μi > 0, i = 1, . . . , m, and further, let Iα0+ be the left-sided Riemann-
Liouville fractional integral. Then there holds the relation

(
Iα0+

[
tρi−1E(1/ρi),(μi)

(
at1/ρi

)])
(x) = xα+ρi−1E(1/ρi),(μ1+α,μ2,...,μm)

(
at1/ρi

)
. (18.7)
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Theorem 18.3. Let α > 0, ρi > 0, μi > 0, i = 1, . . . , m, and further, let Iα− be the right-sided Riemann-
Liouville fractional integral. Then there holds the relation

(
Iα−
[
t−ρi−αE(1/ρi),(μi)

(
at−1/ρi

)])
(x) = x−μiE(1/ρi),(μ1+α,μ2,...,μm)

(
at−1/ρi

)
. (18.8)

Another generalization of the Mittag-Leffler function is recently given by Sharma [89]
in terms of theM-series defined by

p M
α
q = p M

α
q

(
a1, . . . , ap; b1, . . . , bq;α; z

)

=
∞∑

r=0

(a1)r · · ·
(
ap
)
r

(b1)r · · ·
(
bq
)
r
Γ(αr + 1)

zr, p ≤ q + 1.
(18.9)

Remark 18.4. According to Saxena [90], the M-series discussed by Sharma [89] is not a new
special function. It is, in disguise, a special case of the generalized Wright function pψq(z),
which was introduced by Wright [57], as shown below

κ p+1 ψq+1

[
(a1, 1), . . . ,

(
ap, 1

)
, (1, 1)

(b1, 1), . . . ,
(
bq, 1

)
, (1, α)

; z

]
=

∞∑

r=0

(a1)r · · ·
(
ap
)
r
(1)r

(b1)r · · ·
(
bq
)
r
Γ(αr + 1)

zr

r!

=
∞∑

r=0

(a1)r · · ·
(
ap
)
r

(b1)r · · ·
(
bq
)
r
Γ(αr + 1)

zr

= p M
α
q

(
a1, . . . , ap; b1, . . . , bq;α; z

)
,

(18.10)

where

κ =

∏q

j=1Γ
(
bj
)

∏p

j=1Γ
(
aj
) . (18.11)

Fractional integration and fractional differentiation of theM-series are discussed by Sharma
[89]. The two results proved in Sharma [89] for the function defined by (18.9) are reproduced
below. For R(ν) > 0

(
Iν0+

[
p M

α
q

(
a1, . . . , ap; b1, . . . , bq;α; z

)])
(x)

=
zν

Γ(1 + ν) p+1M
α
q+1

(
a1, . . . , ap, 1; b1, . . . , bq, 1 + ν;α; z

)
,

(18.12)

and for R(ν) < 0

(
Dν

0+

[
p M

α
q

(
a1, . . . , ap; b1, . . . , bq;α; z

)])
(x)

=
zν

Γ(1 − ν) p+1M
α
q+1

(
a1, . . . , ap, 1; b1, . . . , bq, 1 − ν;α; z

)
.

(18.13)
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19. Mittag-Leffler Distributions and Processes

19.1. Mittag-Leffler Statistical Distribution and Its Properties

A statistical distribution in terms of the Mittag-Leffler function Eα(y) was defined by Pillai
[91] in terms of the distribution function or cumulative density function as follows:

Gy

(
y
)
= 1 − Eα

(−yα) =
∞∑

k=1

(−1)k+1yαk
Γ(1 + αk)

, 0 < α ≤ 1, y > 0 (19.1)

and Gy(y) = 0 for y ≤ 0. Differentiating on both sides with respect to y we obtain the density
function f(y) as follows:

f
(
y
)
=

d
dy

Gy

(
y
)

=
d
dy

[ ∞∑

k=1

(−1)k+1yαk
Γ(1 + αk)

]
=

∞∑

k=1

(−1)k+1αkyαk−1
Γ(1 + αk)

=
∞∑

k=1

(−1)k+1yαk
Γ(1 + αk)

=
∞∑

k=0

(−1)kyα+αk−1
Γ(α + αk)

(19.2)

by replacing k by k + 1

= yα−1Eα,α
(−yα), 0 < α ≤ 1, y > 0, (19.3)

where Eα,β(x) is the generalized Mittag-Leffler function.
It is straightforward to observe that for the density in (19.3) the distribution function

is that in (19.1). The Laplace transform of the density in (19.3) is the following:

Lf(t) =
∫∞

0
e−txf(x)dx =

∫∞

0
e−txxα−1Eα,α(−xα)dx = (1 + tα)−1, |tα| < 1. (19.4)

Note that (19.4) is a special case of the general class of Laplace transforms discussed in [92,
Section 2.3.7]. From (19.4) one can also note that there is a structural representation in terms
of positive Lévy distribution. A positive Lévy random variable u > 0, with parameter α is
such that the Laplace transform of the density of u > 0 is given by e−t

α
. That is,

E
[
e−tu

]
= e−t

α

, (19.5)

where E(·) denotes the expected value of (·) or the statistical expectation of (·). When α = 1
the random variable is degenerate with the density function

f1(x) =

⎧
⎨

⎩
1, for x = 1,

0, elsewhere.
(19.6)
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Consider an exponential random variable with density function

f1(x) =

⎧
⎨

⎩
e−x, for 0 ≤ x <∞
0, elsewhere

Lf1(t) = (1 + t)−1 (19.7)

and with the Laplace transform Lf1(t).

Theorem 19.1. Let y > 0 be a Lévy random variable with Laplace transform as in (19.5) and let x
and y be independently distributed. Then u = yx1/α is distributed as a Mittag-Leffler random variable
with Laplace transform as in (19.4).

Proof. For establishing this result we will make use of a basic result on conditional ex-
pectations, which will be stated as a lemma.

Lemma 19.2. For two random variables x and y having a joint distribution,

E(x) = E
[
E
(
x | y)] (19.8)

whenever all the expected values exist, where the inside expectation is taken in the conditional space of
x given y and the outside expectation is taken in the marginal space of y.

Now by applying (19.8)we have the following: let the density of u be denoted by g(u).
Then the Laplace transform of g is given by

E
[
e−(tx

1/α)y | x
]
= e−t

αx. (19.9)

But the right side of (19.9) is in the form of a Laplace transform of the density of x with
parameter tα. Hence the expected value of the right side is

Lg(t) = (1 + tα)−1 (19.10)

which establishes the result. From (19.9) one property is obvious. Suppose that we consider
an arbitrary random variable y with the Laplace transform of the form

Lg(t) = e−[φ(t)] (19.11)

whenever the expected value exists, where φ(t) be such that

φ
(
tx1/α

)
= xφ(t), lim

t→ 0
φ(t) = 0. (19.12)

Then from (19.9) we have

E
[
e−(tx

1/α)y | x
]
= e−x[φ(t)]. (19.13)
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Now, let x be an arbitrary positive random variable having Laplace transform, denoted by
Lx(t) where Lx(t) = ψ(t). Then from (19.10) we have

Lg(t) = ψ
[
φ(t)

]
. (19.14)

For example, if y is a random variable whose density has the Laplace transform, denoted by
Ly(t) = φ(t), with φ(tx1/α) = xφ(t), and if x is a real random variable having the gamma
density,

fx(x) =
xβ−1e−x/δ

δβΓ
(
β
) , x ≥ 0, β > 0, δ > 0 (19.15)

and fx(x) = 0 elsewhere, and if x and y are statistically independently distributed and if
u = yx1/α then the Laplace transform of the density of u, denoted by Lu(t) is given by

Lu(t) =
[
1 + δ

{
φ(t)

}]−β
. (19.16)

Note 7. Since we did not put any restriction on the nature of the random variables, except that
the expected values exist, the result in (19.14) holds whether the variables are continuous,
discrete or mixed.

Note 8. Observe that for the result in (19.14) to hold we need only the conditional Laplace
transform of y given x be of the form in (19.13) and the marginal Laplace transform of x be
ψ(t). Then the result in (19.14) will hold. Thus statistical independence of x and y is not a
basic requirement for the result in (19.14) to hold.

Thus from (19.15)we may write a particular case as

z = yx1/α, (19.17)

where x is distributed as in (19.7), and y as in (19.5) then z will be distributed as in (19.4) or
(19.10) when x and y are assumed to be independently distributed.

Note 9. The representation of the Mittag-Leffler variable as well as the properties described
in Jayakumar [93, page 1432] and in Jayakumar and Suresh [94, page 53] are to be rewritten
and corrected because the exponential variable and Lévy variable seem to be interchanged
there.

By taking the natural logarithms on both sides of (19.17)we have

1
α
lnx + lny = ln z. (19.18)

Then the first moment of ln z is available from (19.18) by computing E[lnx] and E[lny]. But
E[lnx] is available from the following procedure:

E
[
e−t lnx

]
= E

[
elnx

−t]
= E

[
x−t] =

∫∞

0
x−te−xdx = Γ(1 − t) for R(1 − t) > 0 (19.19)
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which will be Γ(β − t)/Γ(β) for the density in (19.15). Hence

E[lnx] = − d
dt
E
[
e−t lnx

]∣∣∣
t=0

= − d
dt

Γ(1 − t)|t=0. (19.20)

But

d
dt

Γ(1 − t) = −Γ(1 − t) d
dt

ln Γ(1 − t) = −Γ(1 − t)ψ(1 − t), (19.21)

where ψ(·) is the psi function of (·), see Mathai [95] for details. Hence by taking the limits
t → 0

E[lnx] = −Γ(1 − t)ψ(1 − t)∣∣t=0 = −ψ(1) = γ, (19.22)

where γ is Euler’s constant, see Mathai [95] for details.

19.2. Mellin-Barnes Representation of the Mittag-Leffler Density

Consider the density function in (19.3). After writing in series form and then looking at the
corresponding Mellin-Barnes representation we have the following:

g(x) = xα−1Eα,α(−xα) =
∞∑

k=0

Γ(1 + k)
(−1)k
k!

xα−1+αk

Γ(α + αk)
(19.23)

=
1

2πi

∫ c+i∞

c−i∞

1
α

Γ(1/α − s/α)Γ(1 − 1/α + s/α)
Γ(1 − s) x−sds, 1 − α < c < 1 (19.24)

(by expanding as the sum of residues at the poles of Γ(1 − 1/α + s/α))

=
1

2πi

∫ c1+i∞

c1−i∞

Γ(s)Γ(1 − s)
Γ(αs)

xαs−1ds = g(x), 0 < c1 < 1, 0 < α ≤ 1 (19.25)

by putting 1/α− s/α = s1. Here the point s = 0 is removable. By taking the Laplace transform
of g(x) from (19.23)we have

Lg(t) =
∞∑

k=0

(−1)k
Γ(α + αk)

∫∞

0
xα+αk−1e−txdx

=
∞∑

k=0

(−1)kt−α−αk = t−α(1 + t−α)−1 = (1 + tα)−1, |tα| < 1.

(19.26)
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19.2.1. Generalized Mittag-Leffler Density

Consider the generalized Mittag-Leffler function

g1(x) =
1

Γ
(
γ
)

∞∑

k=0

(−1)kΓ(γ + k)

k!Γ
(
αk + αγ

) xαγ−1+αk

= xαγ−1Eγαγ,α(−xα), α > 0, γ > 0.

(19.27)

Laplace transform of g1(x) is the following:

Lg1(t) =
∞∑

k=0

(−1)k
k!

(
γ
)
k

Γ
(
αγ + αk

)
∫∞

0
xαγ+αk−1e−txdx

=
∞∑

k=0

(−1)k
(
γ
)
k

k!
t−αγ−αk = (1 + tα)−γ , |tα| < 1.

(19.28)

In fact, this is a special case of the general class of Laplace transforms connected with Mittag-
Leffler function considered in Mathai et al. [45].

19.3. Mittag-Leffler Density as an H-Function

g1(x) of (19.27) can be written as a Mellin-Barnes integral and then as anH-function

g1(x) =
1

Γ
(
η
)

1
2πi

∫ c+i∞

c−i∞

Γ(s)Γ
(
η − s)

Γ
(
αη − αs) x

αη−1(xα)−sds, R
(
η
)
> 0, 0 < c < R

(
η
)

=
xαη−1

Γ
(
η
)H1,1

1,2

[
xα|(1−η,1)(0,1),(1−αη,α)

]
(19.29)

=
1

αΓ
(
η
)

1
2πi

∫ c1+i∞

c1−i∞

Γ
(
η − 1/α + s/α

)
Γ(1/α − s/α)

Γ(1 − s) x−sds (19.30)

(by taking αη − 1 − αs = −s1)

=
1

αΓ
(
η
)H1,1

1,2

[
x|(1−1/α,1/α)(η−1/α,1/α),(0,1)

]
. (19.31)

Since g and g1 are represented as inverse Mellin transforms, in the Mellin-Barnes representa-
tion, one can obtain the (s − 1)th moments of g and g1 from (19.30). That is,

Mg1(s) = E
(
xs−1

)
in g1

=
1

Γ
(
γ
)
Γ
(
η − 1/α + s/α

)
Γ(1/α − s/α)

αΓ(1 − s) ,

(19.32)
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for 1 − α < N(s) < 1, 0 < α ≤ 1, η > 0

Mg(t) = E
(
xs−1

)
in g

=
Γ(1 − 1/α + s/α)Γ(1/α − s/α)

αΓ(1 − s)
(19.33)

for 1 − α < N(s) < 1, 0 < α ≤ 1, obtained by putting η = 1 in (19.32) also. Since

lim
α→ 1

Γ(1/α − s/α)
Γ(1 − s) = 1 (19.34)

for α → 1, (19.32) reduces to

Mg1(t) =
1

Γ
(
η
)Γ
(
η − 1 + s

)
for α −→ 1. (19.35)

Its inverse Mellin transform is then

g1 =
1

Γ
(
η
)

1
2πi

∫ c+i∞

c−i∞
Γ
(
η − 1 + s

)
x−sds =

1
Γ
(
η
)xη−1e−x, x ≥ 0, η > 0 (19.36)

which is the one-parameter gamma density and for η = 1 it reduces to the exponential density.
Hence the generalized Mittag-Leffler density g1 can be taken as an extension of a gamma
density such as the one in (19.36) and the Mittag-Leffler density g as an extension of the
exponential density for η = 1. Is there a structural representation for the random variable
giving rise to the Laplace transform in (19.26) corresponding to (19.11)? The answer is in the
affirmative and it is illustrated in (19.16).

Note 10. Pillai [91, Theorem 2.2], Lin [96, Lemma 3], and others list the ρth moment of the
Mittag-Leffler density g in (19.3) as follows:

E(xρ) =
Γ
(
1 − ρ/α)Γ(1 + ρ/α)

Γ
(
1 − ρ) , −α < R

(
ρ
)
< α < 1. (19.37)

Therefore,

E
(
xs−1

)
=

Γ(1 + 1/α − s/α)Γ(1 − 1/α + s/α)
Γ(2 − s)

=
(1/α − s/α)Γ(1/α − s/α)Γ(1 − 1/α + s/α)

(1 − s)Γ(1 − s) =
1
α

Γ(1/α − s/α)Γ(1 − 1/α + s/α)
Γ(1 − s)

(19.38)

which is the expression in (19.33). Hence the two expressions are one and the same.
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Note 11. If y = ax, a > 0 and if x has a Mittag-Leffler distribution then the density of y can
also be represented as a Mittag-Leffler function with the Laplace transform

Lx(t) = (1 + tα)−1 =⇒ Ly(t) =
(
1 + (at)α

)−1
, a > 0,

∣∣(at)α
∣∣ < 1. (19.39)

Note 12. From the representation that

E
(
xh
)
=

Γ(1 − h/α)Γ(1 + h/α)
Γ(1 − h) , −α < N(h) < α < 1 (19.40)

we have

E
(
x0
)
=

Γ(1)Γ(1)
Γ(1)

= 1. (19.41)

Further, g(x) in (19.23) is a nonnegative function for all x, with

E
(
xh
)
=
∫∞

0
xhg(x)dx = 1 for h = 0. (19.42)

Hence g(x) is a density function for a positive random variable x. Note that from the series
form for the Mittag-Leffler function it is not possible to show that

∫∞
0 g(x)dx = 1 directly.

19.4. Structural Representation of the Generalized Mittag-Leffler Variable

Let u be the random variable corresponding to the Laplace transform (19.28)with tα replaced
by δtα and γ by η. Let u be a positive Lévy variable with the Laplace transform e−t

α
, 0 < α ≤ 1

and let v be a gamma random variable with parameters η and δ or with he Laplace transform
(1 + δt)−η, η > 0, δ > 0. Let u and v be statistically independently distributed.

Lemma 19.3. Let u, v as defined above. Then

w ∼ uv1/α, (19.43)

where w is a generalized Mittag-Leffler variable with Laplace transform (1 + δtα)−β, |δtα| < 1, where
∼ means “distributed as” or both sides have the same distribution.

Proof. Denoting the Laplace transform of the density of w by Lw(t) and treating it as an
expected value

Lw(t) = E
[
e−tv

1/αu
]
= E

[
E
[
e−(tv

1/αu) | v
]]

= E
[
e−(tv

1/α)α
]
= E

[
e−t

αv
]
= (1 + δtα)−η

(19.44)

from the Laplace transform of a gamma variable. This establishes the result.
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From the structural representation in (19.43), taking theMellin transforms and writing
as expected values, we have

E
(
ws−1

)
= E

(
us−1

)
E
(
v1/α

)s−1
(19.45)

due to statistical independence of u and v. The left side is available from (19.32) as

E
(
ws−1

)
=

Γ
(
η − 1/α + s/α

)
Γ(1/α − s/α)δ(s−1)/α

αΓ
(
η
)
Γ(1 − s) . (19.46)

Let us compute E[v1/α]s−1 from the gamma density. That is,

E
[
v1/α

]s−1
=

1
δηΓ

(
η
)
∫∞

0

(
v1/α

)s−1
vη−1e−v/δdv =

Γ
(
η − 1/α + s/α

)
δ(s−1)/α

Γ
(
η
) (19.47)

for R(s) > 1 − αη, 0 < α ≤ 1, η > 0. Comparing (19.46) and (19.47) we have the (s − 1)th
moment of a Lévy variable

E
[
us−1

]
=

Γ(1/α − s/α)
αΓ(1 − s) =

Γ(1 + 1/α − s/α)
Γ(2 − s) , R(s) < 1, 0 < α ≤ 1. (19.48)

Note 13. Lin [96] gives the ρth moment of a Lévy variable with parameter α as

E[uρ] =
Γ
(
1 − ρ/α)

Γ
(
1 − ρ) . (19.49)

Hence for ρ = s − 1 we have

E
[
us−1

]
=

Γ(1 + 1/α − s/α)
Γ(2 − s) =

(1/α − s/α)Γ(1/α − s/α)
(1 − s)Γ(1 − s)

=
Γ(1/α − s/α)
αΓ(1 − s) for R(s) < 1.

(19.50)

This is (19.48), and hence both the representations are one and the same.

Hence the Lévy density, denoted by g2(u), can be written as

g2(u) =
1

2πi

∫ c+i∞

c−i∞

Γ(1/α − s/α)
αΓ(1 − s) u−sds. (19.51)
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Its Laplace transform is then

Lg2(t) =
1

2πi

∫ c+i∞

c−i∞

Γ(1/α − s/α)
αΓ(1 − s)

[∫∞

0
u1−s−1e−tudu

]
ds

=
1

2πi

∫ c+i∞

c−i∞

1
α
Γ
(
1
α
− s

α

)
t−1+sds

=
1

2πi

∫ c1+i∞

c1−i∞

1
α
Γ
( s
α

)
t−sds

(19.52)

by making the substitution −1 + s = −s1. Then evaluating as the sum of the residues at s/α =
−ν, ν = 0, 1, 2, . . . we have

Lg2(t) =
∞∑

ν=0

(−1)ν
ν!

tαν = e−t
α

. (19.53)

This verifies the result about the Laplace transform of the positive Lévy variable with
parameter α. Note that when α = 1, (19.53) gives the Laplace transform of a degenerate
random variable taking the value 1 with probability 1.

Mellin convolution of certain Lévy variables can be seen to be again a Lévy variable.

Lemma 19.4. Let xj be a positive Lévy variable with parameter αj , 0 < αj ≤ 1 and let x1, . . . , xp be
statistically independently distributed. Then

u = x1x
1/α1
2 · · ·x1/α1α2···αp−1

p (19.54)

is distributed as a Lévy variable with parameter α1α2 · · ·αp.

Proof. From (19.48)

E
[
e−txj

]
= e−t

αj
, 0 < αj ≤ 1, j = 1, . . . , p

E
[
e−tu

]
= E

[
e−tx1x

1/α1
2 ···x1/α1 ···αp−1p

]
= E

[
E

[
e−tx1···x

1/α1 ···αp−1
p

∣∣∣∣
x2,...,xp

]]

= E
[
e−t

α1x2x
1/α2
3 ···x1/α2 ···αp−1p

]
.

(19.55)

Repeated application of the conditional argument gives the final result as

E
[
e−tu

]
= e−t

α

, α = α1α2 · · ·αp, 0 < α1 · · ·αp ≤ 1 (19.56)

which means that u is distributed as a Lévy with parameter α1 · · ·αp.
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From the representation in (19.43) we can compute the moments of the natural
logarithms of Mittag-Leffler, Lévy and gamma variables

w = uv1/α =⇒ lnw = lnu +
1
α
lnv. (19.57)

But from (19.46) and (19.49)we have the hth moments of u and v given by

E
[
uh
]
=

Γ(1 − h/α)
Γ(1 − h) , R(h) < α ≤ 1,

E
[
v1/α

]h
=

Γ
(
η + h/α

)
δh/α

Γ
(
η
) , R

(
η +

h

α

)
> 0.

(19.58)

From (19.46)

E
[
wh
]
=

Γ
(
η + h/α

)
Γ(1 − h/α)δh/α

Γ
(
η
)
Γ(1 − h) . (19.59)

But for a positive random variable z

E
[
zh
]
= E

[
eln z

h
]
. (19.60)

Hence

d
dh

E
[
zh
]∣∣∣
h=0

= E
[
ln zeh ln z

]

h=0
= E[ln z]. (19.61)

Therefore from (19.57) to (19.59)we have the following:

E[lnw] =
d
dh

{
δh/αΓ(η + h/α)Γ(1 − h/α)

Γ(η)Γ(1 − h)

}∣∣∣∣∣
h=0

=
1
α
ψ
(
η
) − 1

α
ψ(1) + ψ(1) +

1
α
ln δ

(19.62)

by taking the logarithmic derivative, where ψ is a psi function, see, for example, Mathai [95]

E
[
lnv1/α

]
=

d
dh

{
δh/αΓ(η + h/α)

Γ(η)

}∣∣∣∣∣
h=0

=
1
α
ψ
(
η
)
+
1
α
ln δ (19.63)

or
E[lnv] = ψ

(
η
)
+ ln δ,

E[lnu] =
d
dh

{
Γ(1 − h/α)
Γ(1 − h)

}∣∣∣∣
h=0

= − 1
α
ψ(1) + ψ(1),

(19.64)

where ψ(1) = −γ where γ is the Euler’s constant.
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Note 14. The relations on the expected values of the logarithms of Mittag-Leffler variable,
positive Lévy variable and exponential variable, given in Jayakumar [93, page 1432], where
η = 1, are not correct.

19.5. A Pathway from Mittag-Leffler Distribution to
Positive Lévy Distribution

Consider the function

f(x) =
∞∑

k=0

(−1)k(η)k
k!Γ
(
αη + αk

)
xαη−1+αk
(
a1/α

)αη+αk , η > 0, a > 0, 0 < α ≤ 1

=
xαη−1

aη
E
η
α,αη

(
−x

α

a

)
.

(19.65)

Thus x = a1/αy where y is a generalized Mittag-Leffler variable. The Laplace transform of f
is given by the following:

Lf(t) =
∞∑

k=0

(−1)k(η)k
k!aη+k

∫∞

0

xαη+αk−1e−tx

Γ
(
αη + αk

) dx

=
∞∑

k=0

(−1)k(η)k
k!aη+k

t−αη−αk = [1 + atα]−η, |atα| < 1.

(19.66)

If η is replaced by η/(q − 1) and a by a(q − 1) with q > 1, then we have a Laplace transform

Lf(t) =
[
1 + a

(
q − 1

)
tα
]−η/(q−1)

, q > 1. (19.67)

If q → 1+ then

Lf(t) −→ e−aηt
α

= Lf1(t) (19.68)

which is the Laplace transform of a constant multiple of a positive Lévy variable with
parameter α. Thus q here creates a pathway of going from the general Mittag-Leffler density f
to a positive Lévy density f1 with parameter α, the multiplying constant being (aη)1/α. For a
discussion of a general rectangular matrix-variate pathway model see Mathai [97]. The result
in (19.68) can be put in a more general setting. Consider an arbitrary real random variable y
with the Laplace transform, denoted by Ly(t), and given by

Ly(t) = e−φ(t), (19.69)

where φ(t) is a function such that φ(txγ) = xφ(t), φ(t) ≥ 0, limt→ 0φ(t) = 0 for some real
positive γ . Let

u = yxγ , (19.70)



44 Journal of Applied Mathematics

where x and y are independently distributed with y having the Laplace transform in (19.69)
and x having a two-parameter gamma density with shape parameter β and scale parameter
δ or with the Laplace transform

Lx(t) = (1 + δt)−β. (19.71)

Now consider the Laplace transform of u in (19.70), denoted by Lu(t). Then,

Lu(t) = E
[
e−tu

]
= E

[
e−tyx

γ
]
= E

[
E
[
etyx

γ | x
]]

= E
[
e−φ(tx

γ )
]
= E

[
e−xφ(t)

] (19.72)

from the assumed property of φ(t)

=
[
1 + δφ(t)

]−β
. (19.73)

If δ is replaced by δ(q − 1) and β by β/(q − 1) with q > 1 then we get a path through q. That
is, when q → 1+,

Lu(t) =
[
1 + δ

(
q − 1

)
φ(t)

]−β/(q−1) −→ e−δβφ(t) = e−φ(δ
γβγ t). (19.74)

If φ(t) = tα, 0 < α ≤ 1, then

Lu(t) = e−(δβ)
γαtα (19.75)

which means that u goes to a constant multiple of a positive Lévy variable with parameter α,
the constant being (δβ)γ .

19.6. Linnik or α-Laplace Distribution

A Linnik random variable is defined as that real scalar random variable whose characteristic
function is given by

φ(t) =
1

1 + |t|α , 0 < α ≤ 2, −∞ < t <∞. (19.76)

For α = 2, (19.76) corresponds to the characteristic function of a Laplace random variable
and hence Pillai and Jayakuma [98] called the distribution corresponding to (19.76) as the
α-Laplace distribution. For positive variable, (19.76) reduces to the characteristic function of
a Mittag-Leffler variable. Infinite divisibility, characterizations, other properties and related
materials may be seen from the review paper Jayakumar and Suresh [94] and the many
references therein, Pakes [99] and Mainardi and Pagnini [100]. Multivariate generalization
of Mittag-Leffler and Linnik distributions may be seen from Lim and Teo [101]. Since the
steps for deriving results on Linnik distribution are parallel to those of the Mittag-Leffler
variable, further discussion of Linnik distribution is omitted.
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19.7. Multivariable Generalization of Mittag-Leffler, Linnik, and
Lévy Distributions

A multivariate Linnik distribution can be defined in terms of a multivariate Lévy vector. Let
T ′ = (t1, . . . , tp), X′ = (x1, . . . , xp), prime denoting the transpose. A vector variable having
positive Lévy distribution is given by the characteristic function

E
[
eiT

′X
]
= e−(T

′ΣT)α/2 , 0 < α ≤ 2, (19.77)

where Σ = Σ′ > 0 is a real positive definite p × pmatrix. Consider the representation

u = y1/αX, (19.78)

where the p × 1 vector X, having a multivariable Lévy distribution with parameter α, and
y a real scalar gamma random variable with the parameters δ and β, are independently
distributed. Then the characteristic function of the random vector variable u is given by the
following:

E
[
eiy

1/αT ′X
]
= E

[
E
[
eiy

1/αT ′X
]∣∣∣
y

]

= E
[
e−y[|T

′ΣT |]α/2
]
=
[
1 + δ

∣∣T ′ΣT
∣∣α/2

]−β
.

(19.79)

Then the distribution of u, with the characteristic function in (19.79) is called a vector-variable
Linnik distribution. Some properties of this distribution are given in Lim and Teo [101].

20. Mittag-Leffler Stochastic Processes

The stochastic process {x(t), t > 0} having stationary independent increment with x(0) = 0
and x(1) having the Laplace transform

Lx(1)(λ) = (1 + λα)−1, 0 < α ≤ 1, λ > 0, (20.1)

which is the Laplace transform of a Mittag-Leffler random variable, is called the Mittag-
Leffler stochastic process. Then the Laplace transform of x(t), denoted by Lx(t)(λ), is given
by

Lx(t)(λ) =
[
(1 + λα)−1

]t
= [1 + λα]−t. (20.2)
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The density corresponding to the Laplace transform (20.2) or the density of x(t) is then
available as the following:

fx(t)(x) =
∞∑

k=0

(−1)k (t)k
k!

xαk+αt−1

Γ(αk + αt)

= xαt−1Etα,αt(−xα), 0 < α ≤ 1, x ≥ 0, t > 0.

(20.3)

The distribution function of x(t) is given by

Fx(t)(x) =
∫x

0
fx(t)

(
y
)
dy =

∞∑

k=0

(−1)k (t)k
k!

xαk+αt

(αk + αt)Γ(αk + αt)

=
∞∑

k=0

(−1)k
k!

Γ(t + k)
Γ(t)

xαk+αt

Γ(1 + αk + αt)
, 0 < α ≤ 1, t > 0.

(20.4)

This form is given by Pillai [91] and by his students.

20.1. Linear First-Order Autoregressive Processes

Consider the stochastic process

xn =

⎧
⎨

⎩
en, with probability p, 0 ≤ p ≤ 1,

en + axn−1 with probability 1 − p, 0 < a ≤ 1.
(20.5)

Let the sequence {en} be independently and identically distributed with Laplace transform
Le(λ), and let {xn} be identically distributed with Laplace transform Lx(λ). From the
representation in (20.5)

Lxn(λ) = pLe(λ) +
(
1 − p)Le(λ)Lxn−1(aλ). (20.6)

Therefore,

Le(λ) =
Lxn(λ)

p +
(
1 − p)Lxn−1(aλ)

=
Lx(λ)

p +
(
1 − p)Lx(aλ)

(20.7)

assuming stationarity. When p = 0,

Le(λ) =
Lx(λ)
Lx(aλ)

, 0 < a ≤ 1 (20.8)

which defines class L distributions, for all a, 0 < a < 1. When p = 0, (20.8) implies that
the innovation sequence {en} belongs to class L distributions. Then (20.8) can lead to two
autoregressive situations, the first-order exponential autoregressive process EAR(1) and the
first-order Mittag-Leffler autoregressive process MLAR(1).
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Concluding Remarks

The various Mittag-Leffler functions discussed in this paper will be useful for investigators
in various disciplines of applied sciences and engineering. The importance of Mittag-Leffler
function in physics is steadily increasing. It is simply said that deviations of physical
phenomena from exponential behavior could be governed by physical laws through Mittag-
Leffler functions (power-law). Currently more andmore such phenomena are discovered and
studied.

It is particularly important for the disciplines of stochastic systems, dynamical systems
theory, and disordered systems. Eventually, it is believed that all these new research results
will lead to the discovery of truly nonequilibrium statistical mechanics. This is statistical
mechanics beyond Boltzmann and Gibbs. This nonequilibrium statistical mechanics will
focus on entropy production, reaction, diffusion, reaction-diffusion, and so forth, and may
be governed by fractional calculus.

Right now, fractional calculus and H-function (Mittag-Leffler function) are very
important in research in physics.
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[6] A. Wiman, “Über die Nullstellun der Funktionen Eα(x),” Acta Mathematica, vol. 29, pp. 217–234,
1905.

[7] R. P. Agarwai, “A propos d’une note de M. Pierre Humbert,” Comptes Rendus de l’Académie des
Sciences, vol. 236, pp. 203–2032, 1953.

[8] P. Humbert, “Quelques resultants retifs a la fonction deMittag-Leffler,” Comptes Rendus de l’Académie
des Sciences, vol. 236, pp. 1467–1468, 1953.

[9] P. Humbert and R. P. Agarwal, “Sur la fonction de Mittag-Leffler et quelques unes de ses
generalizations,” Bulletin of Science and Mathematics Series II, vol. 77, pp. 180–185, 1953.

[10] M.M. Dzherbashyan, Integral Transforms and Representations of Functions in the Complex Plane, Nauka,
Moscow, Russia, 1966.

[11] K. R. Lang, “Astrophysical Formulae,” in Gas Processes and High-Energy Astrophysics, vol. 1, Springer,
New York, NY, USA, 3rd edition, 1999.

[12] K. R. Lang, “Astrophysical formulae,” in Space, Time, Matter and Cosmology, vol. 2, Springer, New
York, NY, USA, 1999.

[13] R. Hilfer, “Fractional diffusion based on Riemann-Liouville fractional derivatives,” Journal of Physical
Chemistry B, vol. 104, no. 3, pp. 914–924, 2000.

[14] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.



48 Journal of Applied Mathematics

[15] R. K. Saxena, “Certain properties of generalized Mittag-Leffler function,” in Proceedings of the 3rd
Annual Conference of the Society for Special Functions and Their Applications, pp. 77–81, Chennai, India,
2002.

[16] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and
Applications, Gordon and Breach, New York, NY, USA, 1993.

[17] E. Hille and J. D. Tamarkin, “On the theory of linear integral equations,” Annals of Mathematics, vol.
31, pp. 479–528, 1930.

[18] G. W. S. Blair, “Psychorheology: links between the past and the present,” Journal of Texture Studies,
vol. 5, pp. 3–12, 1974.

[19] P. J. Torvik and R. L. Bagley, “On the appearance of the fractional derivative in the behaviour of real
materials,” Journal of Applied Mechanics, Transactions ASME, vol. 51, no. 2, pp. 294–298, 1984.

[20] M. Caputo and F. Mainardi, “Linear models of dissipation in anelastic solids,” La Rivista del Nuovo
Cimento, vol. 1, no. 2, pp. 161–198, 1971.

[21] R. Gorenflo and S. Vessella, Abel Integral Equations: Analysis and Applications, vol. 1461, Springer,
Berlin, Germany, 1991.

[22] R. Gorenflo and R. Rutman, “On ultraslow and intermediate processes,” in Transform Methods and
Special Functions, Sofia, P. Rusev, I. Dimovski, and V. Kiryakova, Eds., pp. 171–183, Science Culture
Technology, Singapore, 1995.

[23] A. A. Kilbas andM. Saigo, “On solutions of integral equations of Abel-Volterra type,”Differential and
Integral Equations, vol. 8, pp. 933–1011, 1995.

[24] R. Gorenflo and Y. Luchko, “Operational methods for solving generalized Abel equations of second
kind,” Integral Transforms and Specisl Functiond, vol. 5, pp. 47–58, 1997.

[25] R. Gorenflo and F. Mainardi, “ Fractional oscillations and Mittag-Leffler functions,” Tech. Rep. 1-
14/96, Free University of Berlin, Berlin, Germany, 1996.

[26] R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional
order,” in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi,
Eds., pp. 223–276, Springer, Berlin, Germany, 1997.

[27] F. Mainardi and R. Gorenflo, “The Mittag-Leffler function in the Riemann-Liouville fractional
calculus,” in Boundary Value Problems, Special Functions and Fractional Calculus, A. A. Kilbas, Ed., pp.
215–225, Byelorussian State University, Minsk, Belarus, 1996.

[28] F. Mainardi and R. Gorenflo, “On Mittag-Leffler-type functions in fractional evolution processes,”
Journal of Computational and Applied Mathematics, vol. 118, no. 1-2, pp. 283–299, 2000.

[29] R. Gorenflo, Y. Luchko, and S. V. Rogosin, “Mittag-Leffler type functions, notes on growth properties
and distribution of zeros,” Tech. Rep. A04-97, Freie Universität Berlin, Berlin, Germany, 1997.

[30] R. Gorenflo, A. A. Kilbas, and S. V. Rogosin, “On the generalized Mittag-Leffler type function,”
Integral Transform Special Functions, vol. 7, no. 3-4, pp. 215–224, 1998.

[31] Y. U. Luchko, “Operational method in fractional calculus,” Fractional Calculus & Applied Analisys, vol.
2, pp. 463–488, 1999.

[32] Y. U. F. Luchko and H. M. Srivastava, “The exact solution of certain differential equations of
fractional order by using operational calculus,” Computers and Mathematics with Applications, vol.
29, no. 8, pp. 73–85, 1995.

[33] A. A. Kilbas, M. Saigo, and R. K. Saxena, “Solution of Volterra integro-differential equations with
generalized Mittag-Leffler function in the kernels,” Journal of Integral Equations and Applications, vol.
14, no. 4, pp. 377–386, 2002.

[34] A. A. Kilbas, M. Saigo, and R. K. Saxena, “Generalized Mittag-Leffler function and generalized
fractional calculus operators,” Integral Transforms and Special Functions, vol. 15, no. 1, pp. 31–49, 2004.

[35] R. K. Saxena and M. Saigo, “Certain properties of fractional calculus operators associated with
generalized Wright function,” Fractional Calculus & Applied Analisys, vol. 6, pp. 141–154, 2005.

[36] V. Kiryakova, “Some special functions related to fractional calculus and fractional non-integer order
control systems and equations,” Facta Universitatis. Series: Mechanics, Automatic Control and Robotics,
vol. 7, no. 1, pp. 79–98, 2008.

[37] V. S. Kiryakova, “Special functions of fractional calculus: recent list, results, applications,” in
Proceedings of the 3rd IFC Workshop: Fractional Differentiation and Its Applications (FDA ’08), pp. 1–23,
Cankaya University, Ankara, Turkey, November 2008.

[38] R. K. Saxena, S. L. Kalla, and V. S. Kiryakova, “Relations connecting multiindex Mittag-Leffler
functions and Riemann-Liouville fractional calculus,” Algebras, Groups and Geometries, vol. 20, pp.
363–385, 2003.



Journal of Applied Mathematics 49

[39] R. K. Saxena, A. M. Mathai, and H. J. Haubold, “On fractional kinetic equations,” Astrophysics and
Space Science, vol. 282, no. 1, pp. 281–287, 2002.

[40] R. K. Saxena, A. M.Mathai, andH. J. Haubold, “On generalized fractional kinetic equations,” Physica
A, vol. 344, no. 3-4, pp. 657–664, 2004.

[41] R. K. Saxena, A. M. Mathai, and H. J. Haubold, “Unified fractional kinetic equations and a fractional
diffusion equation,” Astrophysics & Space Science, vol. 290, pp. 241–245, 2004.

[42] R. K. Saxena, A. M. Mathai, and H. J. Haubold, “Astrophysical thermonuclear functions for
Boltzmann-Gibbs statistics and Tsallis statistics,” Physica A, vol. 344, no. 3-4, pp. 649–656, 2004.

[43] R. K. Saxena, A. M. Mathai, and H. J. Haubold, “Fractional reaction-diffusion equations,”
Astrophysics and Space Science, vol. 305, no. 3, pp. 289–296, 2006.

[44] R. K. Saxena and S. L. Kalla, “On the solutions of certain fractional kinetic equations,” Applied
Mathematics and Computation, vol. 199, no. 2, pp. 504–511, 2008.

[45] A. M. Mathai, R. K. Saxena, and H. J. Haubold, “A certain class of Laplace transforms with
application in reaction and reaction-diffusion equations,” Astrophysics & Space Science, vol. 305, pp.
283–288, 2006.

[46] H. J. Haubold and A. M. Mathai, “The fractional kinetic equation and thermonuclear functions,”
Astrophysics and Space Science, vol. 273, no. 1–4, pp. 53–63, 2000.

[47] H. J. Haubold, A. M. Mathai, and R. K Saxena, “Solution of fractional reaction-diffusion equations
in terms of the H-function,” Bulletin of the Astronomical Society of India, vol. 35, pp. 381–689, 2007.

[48] H. M. Srivastava and R. K. Saxena, “Operators of fractional integration and their applications,”
Applied Mathematics and Computation, vol. 118, no. 1, pp. 1–52, 2001.

[49] M. N. Berberan-Santos, “Relation between the inverse Laplace transforms of I(tβ) and I(t):
application to the Mittag-Leffler and asymptotic inverse power law relaxation functions,” Journal
of Mathematical Chemistry, vol. 38, no. 2, pp. 265–270, 2005.

[50] H. Pollard, “The completely monotonic character of the Mittag-Leffler function Eα(−x),” Bulletin of
the American Mathematical Society, vol. 54, pp. 1115–116, 1948.

[51] R. Gorenflo, Y. Luchko, and H. M. Srivastava, “Operational method for solving Gauss’ hypergeo-
metric function as a kernel,” International Journal of Mathematics and Mathematical Sciences, vol. 6, pp.
179–200, 1997.

[52] R. Gorenflo, J. Loutschko, and Y. Luchko, “Computation of the Mittag-Leffler function and its
derivatives,” Fractional Calculus & Applied Analisys, vol. 5, no. 4, pp. 491–518, 2002.

[53] I. S. Gupta and L. Debnath, “Some properties of the Mittag-Leffler functions,” Integral Transforms and
Special Functions, vol. 18, no. 5, pp. 329–336, 2007.

[54] A. M. Mathai and R. K. Saxena, The H-Function with Applications in Statistics and Other Disciplines,
John Wiley & Sons, New York, NY, USA, 1978.

[55] A. P. Prudnikov, Y. U. Brychkov, and O. I. Mariche, Integrals and Series, vol. 3 ofMore Special Functions,
Gordon and Breach, New York, NY, USA, 1990.

[56] A. A. Kilbas and M. Saigo, H-Transforms: Theory and Applications, Analytic Methods and Special
Functions, Chapman & Hall, CRC Press, Boca Raton, Fla, USA, 2004.

[57] E. M. Wright, “The asymptotic expansion of the generalized hypergeometric function,” Journal
London Mathematical Society, vol. 10, pp. 286–293, 1935.

[58] E. M. Wright, “The asymptotic expansion of the integral functions defined by Taylor series,”
Philosophical Transactions of the Royal Society A, vol. 238, pp. 423–451, 1940.
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