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This paper is devoted to the study of the stochastic stability of a class of Cohen-Grossberg neural
networks, in which the interconnections and delays are time-varying. With the help of Lyapunov
function, Burkholder-Davids-Gundy inequality, and Borel-Cantell’s theory, a set of novel sufficient
conditions on pth moment exponential stability and almost sure exponential stability for the trivial
solution of the system is derived. Compared with the previous published results, our method
does not resort to the Razumikhin-type theorem and the semimartingale convergence theorem.
Results of the development as presented in this paper are more general than those reported in
some previously published papers. An illustrative example is also given to show the effectiveness
of the obtained results.

1. Introduction

For decades, the studies of neural networks have attracted considerable multidisciplinary
research interest. Ranging from signal processing, pattern recognition, programming prob-
lems, and static image processing, neural networks have witnessed a large amount of
successful applications in many fields [1-7]. These applications rely crucially on the analysis
of the dynamical behavior of the models [8-16]. Most existing literature on theoretical studies
of neural networks is predominantly concerned with deterministic differential equations.

Recently, studies have been intensively focused on stochastic models [17-24]; it has
been realized that the synaptic transmission is a noisy process brought on by random
fluctuations from the release of neurotransmitters and other probabilistic causes, and it is of
great significance to consider stochastic effects on the stability of neural networks described
by stochastic functional differential equations, see [25-34].
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In [17], Liao and Mao studied mean square exponential stability and instability of
cellular neural networks (CNNs). In [18, 26], the authors continued their research to discuss
almost sure exponential stability for a class of stochastic neural networks with discrete
delays by using the nonnegative semimartingale convergence theorem. In [25], exponential
stability of stochastic Cohen-Grossberg neural networks (CGNNs) with time-varying delays
via Razumikihin-type technique were investigated. In [19], Wan and Sun investigated mean
square exponential stability of stochastic delayed Hopfield neural networks (HNNs) by
using the method of variation of constants. Also with the help of the method of variation
of constants, Sun and Cao in [29] investigated pth moment exponential stability of stochastic
recurrent neural networks with time-varying delays.

However, to the best of our knowledge, few authors have considered the problem of
pth moment exponential stability and almost sure exponential stability of stochastic nonau-
tonomous Cohen-Grossberg neural networks. In fact, in the process of the electronic circuits’
applications, assuring constant connection matrix and delays are unrealistic. Therefore, in
this sense, time-varying connection matrix and delays will be better candidates for modeling
neural information processing.

Motivated by the above discussions, in this paper, we consider the stochastic Cohen-
Grossberg Neural Networks (SCGNN) with time-varying connection matrix and delays
described by the following non-autonomous stochastic functional differential equations:

dxi(t) = —hi(xi (1)) | ci(xi (1) = D aii () fi (xj (1)) = D bij (£)&; (x; (£ = 75(t))) | dt

! - (1.1)
+ iai,-(x,-(t))dwj(t), i=1,...,n,
=1
or
dx(t) = —H (x(£)) [C(x(t)) = A F(x(£)) = B()G(x(t))]dt + o (x(t))dw(t), (1.2)

where x(t) = (x1(t),x2(t),...,xa(t))", H(x(t)) = diag(hi(x1(t)), ha(x2(t)), ..., hu(xa (1)),
AM) = (@ (8))yns BH) = (03 (1) Ger(D) = (g1(x1(E = T1(1), -, guloa(t = Ta(8))),
F(x() = (fitxi(t),..., fa(xa()))", and o(x(t) = (04(x;(1)))un- Here xi(t) denotes the
state variable associated with the ith neuron at time f; h;(-) represent an amplification
function; ¢;(-) is an appropriately behaved function; f;(-) and g;(-) are activation functions;
A(t) = (aij(t)) px, and B(t) = (b;(t)),,., represents the strength of the neuron interconnection
within the network; 7;(t) corresponds to the time delay required in processing, 0 < 7;(t) < 7;
0(-) = (0ij(*))nxn is the diffusion coefficient matrix and w(t) = (w1 ®),...,w, ()T is an
n-dimensional Brownian motion defined on a complete probability space (Q, ¥, P) with a
natural filtration {F:} (i.e., Ft = o{w(s) : 0 < s < t}).

Obviously, model (1.1) or (1.2) is quite general, and it includes several well-known
neural networks models as its special cases such as Hopfield neural networks, cellular neural
networks, and bidirectional association memory neural networks [10, 16, 27, 28]. There are at
least three different types of stochastic stability to describe limiting behaviors of stochastic
differential equations: stability in probability, moment stability and almost sure stability
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(see [35]). When designing an associative memory neural network, we should make con-
vergence speed as high as possible to ensure the quick convergence of the network operation.
Therefore, pth moment (p > 2) exponential stability and almost sure exponential stability
are most useful concepts as they imply that the solutions will tend to the trivial solution
exponentially fast. This motivates us to study pth moment exponential stability, and almost
sure exponential stability for System (1.1) in this paper.

The remainder of this paper is organized as follows. In Section 2, the basic assumptions
and preliminaries are introduced. After establishing the criteria for the pth moment (p >
2) exponential stability and almost sure exponential stability for System (1.1) by using the
Lyapunov function method, Burkholder-Davids-Gundy inequality and Borel-Cantell’s theory
in Section 3, an illustrative example and its simulations are given in Section 4.

2. Preliminaries

Throughout this article, we let (,¥,{¥:}:s0, P) be a complete probability space with
a filtration {¥:}s, satisfying the usual conditions (i.e., it is right continuous and ¥, contains
all P-null sets). Let C = C((-o0,0], R") be the Banach space of continuous functions which
map into R" with the topology of uniform convergence. For any x(t) = (xi(t),..., xn(t))T €
R", we define [|x(t)]| = [lx(t)ll, = (Si; |6 (®)P)!7, (1< p < o0).

The initial conditions for system (1.1) are x(s) = ¢(s),-T <s<0,¢p € L;O((—T,O],R");
here L’;O((—T, 0], R") is R"-valued stochastic process ¢(s), -7 < s < 0, ¢(s) is Fo-measurable,
f?T Elp(s)[Pds < oo. For the sake of convenience, throughout this paper, we assure f;(0) =
gj(0) = 0ij(0) = 0, which implies that system (1.1) admits an equilibrium solution x(t) = 0.

If Ve C*([-1,0) x R%; R,), according to the Ito formula, define an operator £V
associated with (1.2) as

LV (t,x) = Vi + Vo {-H (x(t))[C(x(t)) - A(t)F(x(t)) - B(t)G(xz(t))]}
1 . (2.1)
+ Etrace [a Vxxa],

where V; = 0V(t,x)/0t, Vx = (0V(t,x)/0x1,...,0V(t,x)/0x,), and Vi, = (0*°V(t,x)/
axiaxj)nxn.

To establish the main results of the model given in (1.1), some of the standing
assumptions are formulated as follows:

(H1) there exist positive constants h., hi, such that

0<h <h(x)<hi <+, Vx€R, i=12,...m (2.2)

(H») foreachi=1,2,...,n, there exist positive functions a;(t) > 0, such that

xi()ei(xi(t)) 2 ai(t)xi (t); (2.3)



4 Abstract and Applied Analysis

(H3) there exist positive constants f;,yj,i,j = 1,2,...,n, such that

|fi(w) = fi@)| <Pjlu-ol,  |giw)-gj@)| <yjlu-ol; (2.4)

(Hy) each ojj(x) satisfies the Lipschitz condition, and there exist positive constants y;,i =
1,2,...,n,such that

n

trace{oT(x)O'(x)} < Z‘u,-xiz. (2.5)

i=1

Remark 2.1. The activation functions are typically assumed to be continuous, differentiable,
and monotonically increasing, such as the functions of sigmoid type. These restrictive condi-
tions are no longer needed in this paper. Instead, only the Lipschitz condition is imposed in
Assumption (H3). Note that the type of activation functions in (H3) have already been used
in numerous papers, see [5, 10] and references therein.

Remark 2.2. We remark here that non-autonomous conditions (H>)—(Ha) replace the usual
autonomous conditions which is more useful for practical purpose; please refer to [4, 13] and
references therein.

Remark 2.3. The delay functions 7;(t) considered in this paper only needed to be bounded;
they can be time-varying, nondifferentiable functions. This generalized some recently
published results in [4, 13, 26-29]. Different from the models considered in [4, 13, 29], in
this paper, we have removed the following condition: (Hp) For each j = 1,2,...,n,7;(t) is a
differentiable function, namely, there exists ¢ such that

() <& < 1. (2.6)

Definition 2.4 (see [35]). The trivial solution of (1.1) is said to be pth moment exponential
stability if there is a pair of positive constants A and C such that

E||x(t, to, x0)|[P < Cllxo[|Pe™*™), on t>t;, VxeR", (2.7)

where p > 2 is a constant; when p = 2, it is usually said to be exponential stability in mean
square.

Definition 2.5 (see [35]). The trivial solution of (1.1) is said to be almost sure exponential
stability if for almost all sample paths of the solution x(t), we have

1
limsup¥ log|lx(t)|| < 0. (2.8)
t— oo
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Lemma 2.6 ([35] Burkholder-Davids-Gundy inequality). There exists a universal constant K,

forany 0 < p < oo such that for every continuous local martingale M vanishing at zero and any
stopping time 1],

E<sup|Ms|P> < KPE<(M,M>,Z>W2, (2.9)

0<s<n

where (M, M), is the cross-variation of M. In particular, one may have K, = (32/p)” 2if0<P<2
and K, = 4 if p = 2; although they may not be optimal, for example, one could have K1 = 4+/2.

Lemma 2.7 ([35] Chebyshev’s inequality).

Plw: [X(w)| 2 ¢} < cPEX[ (2.10)

ifc>0,p>0 XelLr

Lemma 2.8 ([36] Borel-Cantell’s lemma). Let {A,,n > 1} be a sequence of events in some
probability space, then

(i) if Xoq P(Ay) < oo, then P(A,,i.0.) =0;
(ii) moreover, if { Ay, n > 1} are independent of each other, then >,7”, P(A,) = oo implies

P(A,,io0) =1, (2.11)

where { Ay, 1.0. } denotes occurring infinitely often within { A,,n > 1}, that is, { A,,i.0.} =

N Y An " is the abbreviation of “infinitely often”.

3. Main Results

Theorem 3.1. Under the assumptions (Hi)—(Hy), if there are a positive diagonal matrix M =
diag(my, ..., m,) and two constants 0 < N, 0 < p < 1, such that

0< Ny SNz(t) S‘uNl(t), fOVtZtQ, (31)

where

Ni(t) = m1n{pha1(t) Zh (p—1)|ai;(t) | - Z% ilaji ()| Bi

j=1 j=1

_Zh(p 1) by () |y; - Zw i%(p 1>#} (3.2)

j=1

n o
Na(t) = @g;;ﬁhﬂbﬁ(f)m
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then the trivial solution of system (1.1) is pth moment exponential stability, where p > 2 denotes a
positive constant. When p = 2, the trivial solution of system (1.1) is exponential stability in mean
square.

Proof. Consider the following Lyapunov function:
V(x,t) = Zm,-|x§’(t)|. (3.3)
i=1

As p > 2 denotes a positive constant, we can get the following inequality: if a and b denote
nonnegative real numbers, then pa?~'b < (p — 1)a? + bP, aP~2b* < (p — 2)aP /p + 2bP /p. Using
this inequality, then the operator associated with system (1.1) has the form as follows:

LV (x,t) = —Pimixf_z(t)xi(t)hi(xi(t))ci(xi(t)) sgn{x;i(t)}

in1
+ szixlp_l (H)h; (xi(t))zaij(t)fj (xj(t)) sgnfxi(t)}
i =1

n

+p > ymix; (b hi(xi(t) D bij () g (x; (= 7)) sgn{xi(t) )
j=1

i=1

+ P(Pz— D) imixf‘z(t)iofj sgn{x;(t)}
=1

i=1

haai(t)x7 (t) (3.4)

< —Pimi|xf_2(t)
i=1
n _n
4 p Dm0 i 3 sy (0| By )]
i=1 j=1

+p om0 X, b ()] %) (£ = 7(9) |
i=1 j=1

i=1 j=1

< =Ni(H)V(x(t),t) + Na(t) sup {V(x(s),s)},

t—7<s<t
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where

Ni(t) = mm{phcx,(t) Shi(p—1)|a (0|6, - > Ly lauop

j=1 j=1

_ézi(r)ﬂ”bii(f)lYFEEW#z‘ Z (P 1)#} (3.5)

J=1

No(t) = maxz h|b]1(t)|yl

The remaining part of the proof is similar to that of Theorem 3.3 in [33]; we omit it. O

In Theorem 3.1, if we let M be the identity matrix, we can easily obtain the following
corollary.

Corollary 3.2. Under the assumptions (Hy)—(Hay), if there are two constants 0 < N»,0 < p < 1, such
that

0 <Ny <No(t) SuNi(t), Vt>to, (3.6)

where

Ni(t) = {g&r}l{l’hi“z’(f) = > hi(p—1)|aij()| B - D hjlai(t)|pi
sis j=1 j=1

—Zh (p - 1)|bs; (5 |y; - §}—<p Dp-2) Z(p 1)#} (3.7)
Na(t) = max 3 hy|bji(t) i,
Sin

then the trivial solution of system (1.1) is pth moment exponentially stability.

Remark 3.3. Compared with [10, 12], our method does not resort to the Razumikhin-type
theorem or Halanay inequality.

Theorem 3.4. Suppose system (1.1) satisfies assumptions (H1)—(Hy) and the inequality (3.1) hold;
if a;j(t), bij(t), and a;(t) are bounded functions for all i, j, then the trivial solution of (1.1) is almost
sure exponential stability.

Proof. Let N be an integer such that N —7 > 1 and I = [N, N + 1]; consider the following
Lyapunov function:

V(x(t)) = lx@®IP. (3.8)
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Using the Ito formula, we have

n

dllx®)|" = Z{ = plx()) P xi (8 b (xi (1))

i=1
x [Ci(xi(f)) - D aii(t) fi(xj (1)) = D b (£)g; (x; (¢ - Tj(t)))] }dt
= = (3.9)

p(p-1)

T

i |x; (£)|Ptrace <0T (x(t))a(x(t)))dt
i=1

+ > > Pl 2xi(t)0ij (x; () deoj (8).

i=1 j=1

Calculating the integral of (3.9) from N to t, we have

t n
()P = [l (NP = f { = plxi(s) P2 xi(s) hi(xi(s))
N i=1

x [Ci(xi(s)) - Zaij(t)fj(xj(s)) - Zbij(t)gj (xj(s— T;‘(t)))]

i=1 =1

+P(P2_ 1) g|xi(s)|lﬂ—2trace<0T(x(s))O'(X(S))> }ds

t n n
+fN S pls (5)1F 21 (5)03 (2 (5) ) dewy ),

i=1 j=1

(3.10)
t n
Esupllx(t)|] = Esup{ [[x(N)|IP + f {Z — plxi(s) P2 xi(s)xi(s)hi(xi(s))
tely tely N Li=1
X |:cl-(xi(s)) - Zaij(s)f,- (Xj(S))
j=1
—]_;bi,-(s)gj(x,- C Tj(S)))] (3.11)

P(PZ— D) i|x,-(s)|”’2trace<GT(x(s))0'(x(s))> }ds
i=1

+

i=1 j=1

t n n
+J.NZZp|xi(s)|P_2xi(s)oij(xj(s))dw]-(s)}

<E|lx(N)|F + My + M3,
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where

t

M; = Esup {i = plxi(s) P xi(s) hi(x(s))
i1

tely Y N

X [Ci(xi(S)) = Daii(s) fi(x;(s)) = D bij ()& (xj (s - Tj(5)>)]
= =

(3.12)
p(p-1) e [p-2 T
+ 5 §|xl(s)| trace(o (x(s))o(x(s))) ds,
t n n )
M, = Esup ZZplxi ()P xi(s)0ij (xj(s))dw;(s).
tely /N =1 j=1
From Theorem 3.1, there exists a pair of positive constants A and &, such that

Ellx(H)|P < 6||xo|Pe® 1, on t> t,. (3.13)

Furthermore, from (H;)-(H4) and inequality (3.13), we have
N i=1

N+1 n n _
M; £ Ef {Z [— plxi(s)Phai(t) + Zp|xi(5)|P_2|aij(S)|hiﬂj |xi(s)x;(s)|
=1

+> plxi(8) P2 by (s) [ iy | xi(s)x; (s — 7(s)) |

j=1

1)
+P(P )Z#i
i1

2

xf(s)|}ds

N i=1

N+1 n n _
< Ef {Z [— phai(8)|xi(s)I” + X aij(s)|[hi [(p = Dlxi(s)P + | (5)|"]
. =

3B () B [(p ~ D) + ;s - 73(5)) ']

=1

—1)
+@Zyi|xi(s)|p}ds
=1
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IN

i=1

N+1 n n _
J, {Z [Phiw - Splay©[Fip,
j=1

j=1

+3 (9 1) by (9) [Ty + 2 (” >Zﬂz]Ellx(s)ll”}

N+1 non _
+f {ZZ|bi1(S)|hiY]‘E||x(S—Tj(S))”P}dS

i=1 j=1

N+1 n n -
J‘ {Z I:Phi“i(f) +p > |aij(s)|hip;
j=1

i=1

n _ -1
3oy (o) iy (p— 1+ €7) + 2L )#1]‘? }6||xon*’ “eds

=1

< Li6|xo[lPe

(3.14)
where
I = sup { > [phiai(t) +p > |aij(t) |hip;
teR i=1 j=1
(3.15)
o i\ T (o AT p(p-1) N PRY:
+j§1|b1](t)|h1y]<p l+e >+—2 pil et .
For any two different norms || - [|2, || - [[,-2, (1 < p < o), forall x € R", as the space R" is a
finite dimensional space, there exist two positive constants ¢;, ¢, such that
x5 < Gallxl7,
(3.16)

p-2 p-2
IxlP - < Gallxlp .

As M = ﬁ\] > Z;’zlp|xi(s)|p_2xi(s)oi,-(xj(s))dw,-(s) is continuous local martingale, then
from Lemma 2.6, (Hy), and (3.16), it follows that

j=1 Li=1

< ME{ sz{ [Sxer=] [ Srreics o] }ds}m

N+1 n n 2 1z
M; < KlE{IN Z[Zr’lxi(S)I”1|0i7(x7(5))|] ds}
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N+1 n n 12
SME{IN pzzmlxja)lz[ |xi<s>|2P-2]ds}
1

j=1 i=

N+1 1/2
2 ) 2 p-2
54\/515{ fN pPmax i} x[ ol ds}

1 N+1 1/2
< zE{ [Esupnx(s)n”] [ 16p2c1gzggg§{ui}||x<s)||”ds}

seln

1 N+1
< EESUPIIx(t)Ilp +16p*G1¢omax{ p; ) f E{llx(s)" }ds.
tely 1sisn N
(3.17)
According to (3.11), (3.13), (3.14), and (3.17), we have the following inequality:
Esupllx(H)[” < Ellx(N)||” + M1 + M>
teln
1
< 6||xo|[Pe™ ™) + L8| 1xo[|Pe™N + 5 E supl|x(8)[|P
teln
Nol (3.18)
+16p*¢1 gomax | p; ) f 51|xo||Pe ) ds
1<i<n N
1 16p*¢162 _
< Z P Ato LMo AN
< 2Ef§5||x(t)|| + {e +I + 1 111;?;{#1}6 be
Therefore,
Esup||x(t)|]P < 0e™N, (3.19)
teln
where
0 l6p*Gi .
0= Z{e“ +1I + 1 ?giﬁ{yi}e*t 6. (3.20)
For each integer N, we set en = e™*N/2_ Then, from Lemma 2.7, we have
Esu x(8)|P
Pl w :sup|lx(t)]|P >en t < M < Qe N/2, (3.21)
tely EN
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Therefore, in view of Lemma 2.8, for almost all w € Q, we have that

sup|lx(t)|[P < e™N/?, (3.22)

teln

holds for all but finitely many N. Hence, there exists an Ny = Ny(w), for all w € Q excluding
a P-null set, for which (3.21) holds whenever N > Nj. Consequently, for almost all w € Q,

1 1 A

-1 Hll=—=1 H|If <-— .

F loglx(0ll = log =P <~ (3.23)
if N<t<N+1, N > Njy. Hence

1 1 A
limsup—log|lx(t)|| = = <-— as 3.24
msup gllx(®) |l T (3.24)

Therefore, the trivial solution of (1.1) is almost sure exponential stability. .

Remark 3.5. Compared with [26, 32], our method does not resort to the semimartingale con-
vergence theorem. Since system (1.1) does not require the delays to be constants, furthermore,
the model is non-autonomous, it is clear that the results obtained in [19, 25-32, 34] cannot be
applicable to system (1.1). This implies that the results of this paper are essentially new and
complement some corresponding ones already known.

Remark 3.6. By Theorems 3.1 and 3.4, the stability of system (1.1) is dependent on the
magnitude of noise, and therefore, stochastic noise fluctuation is one of the very important
aspects in designing a stable network and should to be considered adequately.

It should be noted that the assumptions of the boundedness of a;;(t), b;;(t), and a;(t)
in Theorem 3.4 are not necessary; we use these assumptions just to simplify the process of the
proof. In fact, in view of (3.15), (3.20), (3.21), and (3.22), similar to the proof of Theorem 3.4,
we have the following theorem.

Theorem 3.7. Suppose system (1.1) satisfies assumptions (Hi)—(Hy) and the inequality (3.1) hold,
if there exist positive constants Pijs Pijs 1&,-]- such that for any t, we have

laij ()] \/|bij (0] \] i (t) < pijt?7 + By, (3.25)

then the trivial solution of (1.1) is almost sure exponential stability.

Remark 3.8. Furthermore, the derived conditions for stability of the following stochastic
delayed recurrent neural networks can be viewed as byproducts of our results. The significant
of this paper does offer a wider selection on the networks parameters in order to achieve some
necessary convergence in practice.
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Remark 3.9. For system (1.1), when h;(x;(t)) = 1, ci(xi(t)) = cixi(t)(ci > 0), and a;;(t) =
aij, bij(t) = b;j, then it turns out to be following stochastic delayed recurrent neural networks
with time-varying delays

dx;(t) = —cix;(t)dt + Zaijf,- (x]-(t))dt + Zbijgj (.X']‘ (i’ - Tj(i’)))dt + Z(_Tij (xj(t))dw]-(t).
j=1 j=1 j=1
(3.26)

Using Theorems 3.1 and 3.4, one can easily get a set of similar corollary for checking the pth
moment exponential stability and almost sure exponential stability for the trivial solution of
this system.

4. An Illustrative Example

In this section, an example is presented to demonstrate the correctness and effectiveness of
the main obtained results.

Example 4.1. Consider the following stochastic Cohen-Grossberg neural networks with time-
varying delays:

) 3 —cos(x1(t)) 0
x(t) —< 0 3—sin(xz(f))>

5+0002¢t 0 xi (f) ~2 0.4\ /0.2tanh(x;(t)) »
g [_< 0 5+0.003t> <x2(t)> " <0.6 1 ><0.2 tanh(xz(t))>> 1)

<—0.8 2 > <o.2 tanh (x; (t - Tl(t)))>]
N dt + o(x(t))dw(t), t=>0,
1 -2/ \0.2tanh(xz(t — 72 (t)))

where 7(t) = (71(), 72(t))Tand 7; () is any bounded positive function for i = 1,2. Each o;;(x)
satisfies the Lipschitz condition, and there exist positive constants y; = p» = 2, such that

trace{aT(x)G(x)} < 2<x% + x%) (4.2)
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-0.05

Solution x

-0.1f

-0151

02}

-0.25

Time t
— E(x)®

Figure 1: Numerical solution E(x3 (#)) of system (4.1).

In the example, let p = 3; by simple computation, we obtain

j=1 j=1

Ni(t) = mm{phtxl(t) STi(p—1)|a (016, - > Ihlauolp

—zh<p 1) [by )]y, - Zw S Gp- W‘l} w3

j=1

=11.6 + 0.008t,

Ny(t S T bt 8.8 + 0.0008t
2()—{2?;]_;% j| ji()lYi— .o0+0. .

Choosing p = 8/9, one can easily get that

0 < N, < No(t) < uNi(t), for t>0. (4.4)

Thus, it follows Theorem 3.7 that system (4.1) is the third moment exponentially stable and
also almost sure exponentially stable. These conclusions can be verified by the following
numerical simulations (Figures 1, 2, 3, and 4).

Remark 4.2. Let 71(t) = 7>(t) = 0.5sint + 1; we can find that [29, Theorem 1] is not satisfied;
therefore, they fail to conclude whether system (4.1) is pth moment exponentially stable even
when the delay functions are differential and their derivatives are simultaneously required to
be not greater than 1. It is obvious that the results in [19, 25-32, 34] and the references therein
cannot be applicable to system (4.1).
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Figure 2: Numerical solution E (xg(t)) of system (4.1).
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