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We investigate some interesting properties of the q-Euler polynomials. The purpose of this paper
is to give some relationships between Bernstein and q-Euler polynomials, which are derived by the
p-adic integral representation of the Bernstein polynomials associated with q-Euler polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper �p, �p , and � p denote the ring of
p-adic integers, the field of p-adic numbers, and the field of p-adic completion of the algebraic
closure of �p , respectively (see [1–15]). Let � be the set of natural numbers and �+ = � ∪ {0}.
The normalized p-adic absolute value is defined by |p|p = 1/p. As an indeterminate, we
assume that q ∈ � p with |1 − q|p < 1. Let UD(�p) be the space of uniformly differentiable
function on �p. For f ∈ UD(�p), the p-adic invariant integral on �p is defined by

I−1
(
f
)
=
∫

�p

f(x)dµ−1(x) = lim
N→∞

pN−1∑

x=0

f(x)µ−1
(
x + pN�p

)

= lim
N→∞

pN−1∑

x=0

f(x)(−1)x,

(1.1)
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(see [7–10]). For n ∈ �, we can derive the following integral equation from (1.1):

I−1
(
fn
)
= (−1)n

∫

�p

f(x)dµ−1(x) + 2
n−1∑

l=0

(−1)n−1−lf(l), (1.2)

where fn(x) = f(x + n) (see [7–11]). As well-known definition, the Euler polynomials are
given by the generating function as follows:

2
et + 1

ext = eE(x)t =
∞∑

n=0

En(x)
t

n!
, (1.3)

(see [3, 5, 7–15]), with usual convention about replacing En(x) by En(x). In the special case
x = 0, En(0) = En are called the nth Euler numbers. From (1.3), we can derive the following
recurrence formula for Euler numbers:

E0 = 1, (E + 1)n + En =

⎧
⎨

⎩

2 if n = 0,

0 if n > 0,
(1.4)

(see [12]), with usual convention about replacing En by En. By the definitions of Euler
numbers and polynomials, we get

En(x) = (E + x)n =
n∑

l=0

(
n

l

)

xn−lEl, (1.5)

(see [3, 5, 7–15]). Let C[0, 1] denote the set of continuous functions on [0, 1]. For f ∈ C[0, 1],
Bernstein introduced the following well-known linear positive operator in the field of real
numbers �:

� n

(
f | x) =

n∑

k=0

f

(
k

n

)(n

k

)

xk(1 − x)n−k =
n∑

k=0

f

(
k

n

)
Bk,n(x), (1.6)

where ( n
k ) = n(n − 1) · · · (n − k + 1)/k! = n!/k!(n − k)! (see [1, 2, 7, 11, 12, 14]). Here, � n (f | x)

is called the Bernstein operator of order n for f . For k, n ∈ �+, the Bernstein polynomials of
degree n are defined by

Bk,n(x) =

(
n

k

)

xk(1 − x)n−k, for x ∈ [0, 1]. (1.7)

In this paper, we study the properties of q-Euler numbers and polynomials. From these
properties, we investigate some identities on the q-Euler numbers and polynomials. Finally,
we give some relationships between Bernstein and q-Euler polynomials, which are derived
by the p-adic integral representation of the Bernstein polynomials associated with q-Euler
polynomials.
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2. q-Euler Numbers and Polynomials

In this section, we assume that q ∈ � p with |1 − q|p < 1. Let f(x) = qxext. From (1.1) and (1.2),
we have

∫

�p

f(x)dµ−1(x) =
2

qet + 1
. (2.1)

Now, we define the q-Euler numbers as follows:

2
qet + 1

= eEqt =
∞∑

n=0

En,q
tn

n!
, (2.2)

with the usual convention about replacing En
q by En,q.

By (2.2), we easily get

E0,q =
2

q + 1
, q

(
Eq + 1

)n + En,q =

⎧
⎨

⎩

2 if n = 0,

0 if n > 0,
(2.3)

with usual convention about replacing En
q by En,q.

We note that

2
qet + 1

=
2

et + q−1
· 2
1 + q

=
2

1 + q

∞∑

n=0
Hn

(
−q−1

) tn

n!
, (2.4)

where Hn(−q−1) is the nth Frobenius-Euler numbers.
From (2.1), (2.2), and (2.4), we have

∫

�p

qxextdµ−1(x) = En,q =
2

1 + q
Hn

(
−q−1

)
, for n ∈ �+. (2.5)

Now, we consider the q-Euler polynomials as follows:

2
qet + 1

ext = eEq(x)t =
∞∑

n=0

En,q(x)
tn

n!
, (2.6)

with the usual convention En
q (x) by En,q(x).

From (1.2), (2.1), and (2.6), we get

∫

�p

qxe(x+y)tdµ−1
(
y
)
=

2
qet + 1

ext =
∞∑

n=0

En,q(x)
tn

n!
. (2.7)
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By comparing the coefficients on the both sides of (2.6) and (2.7), we get the following Witt’s
formula for the q-Euler polynomials as follows:

∫

�p

qy
(
x + y

)n
dµ−1

(
y
)
= En,q(x) =

n∑

l=0

(
n

l

)

xn−lEl,q. (2.8)

From (2.6) and (2.8), we can derive the following equation:

2q
qet + 1

e(1−x)t =
2

1 + q−1e−t
e−xt =

∞∑

n=0
En,q−1(x)(−1)n

t

n!
. (2.9)

By (2.6) and (2.9), we obtain the following reflection symmetric property for the q-Euler
polynomials.

Theorem 2.1. For n ∈ �+, one has

(−1)nEn,q−1(x) = qEn,q(1 − x). (2.10)

From (2.5), (2.6), (2.7), and (2.8), we can derive the following equation: for n ∈ �,

En,q(2) =
(
Eq + 1 + 1

)n =
n∑

l=0

(
n

l

)

El,q(1)

= E0,q +
1
q

n∑

l=1

(
n

l

)

qEl,q(1) =
2

1 + q
− 1
q

n∑

l=1

(
n

l

)

El,q

=
2

1 + q
+

2
q
(
1 + q

) − 1
q

n∑

l=0

(
n

l

)

El,q

=
2
q
− 1
q2

qEn,q(1) =
2
q
+

1
q2

En,q,

(2.11)

by using recurrence formula (2.3). Therefore, we obtain the following theorem.

Theorem 2.2. For n ∈ �, one has

qEn,q(2) = 2 +
1
q
En,q. (2.12)
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By using (2.5) and (2.8), we get

∫

�p

q−x(1 − x)ndµ−1(x) = (−1)n
∫

�p

q−x(x − 1)ndµ−1(x)

= (−1)nEn,q−1(−1) = q

∫

�p

(x + 2)ndµ−1(x) = q

(
2
q
+

1
q2

En,q

)

= 2 +
1
q
En,q = 2 +

1
q

∫

�p

xnqxdµ−1(x), for n > 0.

(2.13)

Therefore, we obtain the following theorem.

Theorem 2.3. For n ∈ �, one has

∫

�p

q−x(1 − x)ndµ−1(x) = 2 +
1
q

∫

�p

xnqxdµ−1(x). (2.14)

By using Theorem 2.3, we will study for the p-adic integral representation on �p of the
Bernstein polynomials associated with q-Euler polynomials in Section 3.

3. Bernstein Polynomials Associated with
q-Euler Numbers and Polynomials

Now, we take the p-adic integral on �p for the Bernstein polynomials in (1.7) as follows:

∫

�p

Bk,n(x)qxdµ−1(x) =
∫

�p

(
n

k

)

xk(1 − x)n−kqxdµ−1(x)

=

(
n

k

)
n−k∑

j=0

(
n − k

j

)

(−1)n−k−j
∫

�p

xn−jqxdµ−1(x)

=

(
n

k

)
n−k∑

j=0

(
n − k

j

)

(−1)n−k−jEn−j,q

=

(
n

k

)
n−k∑

j=0

(
n − k

j

)

(−1)jEk+j,q, where n, k ∈ �+.

(3.1)

By the definition of Bernstein polynomials, we see that

Bk,n(x) = Bn−k,n(1 − x), where n, k ∈ �+. (3.2)
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Let n, k ∈ �+ with n > k. Then, by (3.2), we get

∫

�p

qxBk,n(x)dµ−1(x) =
∫

�p

qxBn−k,n(1 − x)dµ−1(x)

=

(
n

n − k

)
k∑

j=0

(
k

j

)

(−1)k−j
∫

�p

(1 − x)n−jqxdµ−1(x)

=

(
n

k

)
k∑

j=0

(
k

j

)

(−1)k−j
(

2 + q

∫

�p

xn−jqxdµ−1(x)

)

=

(
n

k

)
k∑

j=0

(
k

j

)

(−1)k−j(2 + qEn−j,q−1
)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 + qEn,q−1 if k = 0,
⎛

⎝
n

k

⎞

⎠q
k∑

j=0

⎛

⎝
k

j

⎞

⎠(−1)k−jEn−j,q−1 if k > 0.

(3.3)

Thus, we obtain the following theorem.

Theorem 3.1. For n, k ∈ �+ with n > k, one has

∫

�p

q1−xBk,n(x)dµ−1(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2q + En,q if k = 0,
⎛

⎝
n

k

⎞

⎠
k∑

j=0

⎛

⎝
k

j

⎞

⎠(−1)k−jEn−j,q if k > 0.
(3.4)

By (3.1) and Theorem 3.1, we get the following corollary.

Corollary 3.2. For n, k ∈ �+ with n > k, one has

n−k∑

j=0

(
n − k

j

)

(−1)jEk+j,q−1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 +
1
q
En,q if k = 0,

k∑

j=0

⎛

⎝
k

j

⎞

⎠(−1)k−j 1
q
En−j,q if k > 0.

(3.5)
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For m,n, k ∈ �+ withm + n > 2k. Then, we get

∫

�p

Bk,n(x)Bk,m(x)q−xdµ−1(x)

=

(
n

k

)(
m

k

)
2k∑

j=0

(
2k

j

)

(−1)j+2k
∫

�p

q−x(1 − x)n+m−jdµ−1(x)

=

(
n

k

)(
m

k

)
2k∑

j=0

(
2k

j

)

(−1)j+2kq
∫

�p

(x + 2)n+m−jqxdµ−1(x)

=

(
n

k

)(
m

k

)
2k∑

j=0

(
2k

j

)

(−1)j+2kq
(
2
q
+

1
q2

En+m−j,q

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 +
1
q
En+m,q if k = 0,

⎛

⎝
n

k

⎞

⎠

⎛

⎝
m

k

⎞

⎠
2k∑

j=0

⎛

⎝
2k

j

⎞

⎠(−1)j+2k 1
q
En+m−j,q if k > 0.

(3.6)

Therefore, we obtain the following theorem.

Theorem 3.3. Form,n, k ∈ �+ withm + n > 2k, one has

∫

�p

Bk,n(x)Bk,m(x)q1−xdµ−1(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2q + En+m,q if k = 0,

⎛

⎝
n

k

⎞

⎠

⎛

⎝
m

k

⎞

⎠
2k∑

j=0

⎛

⎝
2k

j

⎞

⎠(−1)j+2kEn+m−j,q if k > 0.

(3.7)

By using binomial theorem, form,n, k ∈ �+, we get

∫

�p

Bk,n(x)Bk,m(x)q1−xd µ−1(x) (3.8)

=

(
n

k

)(
m

k

)
n+m−2k∑

j=0

(
n +m − 2k

j

)

(−1)j
∫

�p

xj+2kq1−xdµ−1(x)

= q

(
n

k

)(
m

k

)
n+m−2k∑

j=0

(
n +m − 2k

j

)

(−1)jEj+2k,q−1 .

(3.9)

By comparing the coefficients on the both sides of (3.8) and Theorem 3.3, we obtain the
following corollary.
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Corollary 3.4. Let m,n, k ∈ �+ withm + n > 2k. Then, we get

n+m−2k∑

j=0

(
n +m − 2k

j

)

(−1)jEj+2k,q−1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 +
1
q
En+m,q if k = 0,

1
q

2k∑

j=0

⎛

⎝
2k

j

⎞

⎠(−1)j+2kEn+m−j,q if k > 0.
(3.10)

For s ∈ �, let n1, n2, . . . , ns, k ∈ �+ with n1 + n2 + · · · + ns > sk. By induction, we get

∫

�p

Bk,n1(x) · · ·Bk,ns(x)q
−xdµ−1(x)

=

(
s∏

i=1

(
ni

k

))∫

�p

xsk(1 − x)n1+···+ns−skq−xdµ−1(x)

=

(
s∏

i=1

(
ni

k

))
sk∑

j=0

(
sk

j

)

(−1)sk+j
∫

�p

(1 − x)n1+···+ns−jq−xdµ−1(x)

=

(
s∏

i=1

(
ni

k

))
sk∑

j=0

(
sk

j

)

(−1)sk+jq
∫

�p

(x + 2)n1+···+ns−jqxdµ−1(x)

=

(
s∏

i=1

(
ni

k

))
sk∑

j=0

(
sk

j

)

(−1)sk+jq
(
2
q
+

1
q2

En1+···+ns−j,q

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 +
1
q
En1+···+ns,q if k = 0,

⎛

⎝
s∏

i=1

⎛

⎝
ni

k

⎞

⎠

⎞

⎠1
q

sk∑

j=0

⎛

⎝
sk

j

⎞

⎠(−1)sk+jEn1+···+ns−j,q if k > 0.

(3.11)

Therefore, we obtain the following theorem.

Theorem 3.5. Let s ∈ �. For n1, n2, . . . , ns, k ∈ �+ with n1 + n2 + · · · + ns > sk, one has

∫

�p

(
s∏

i=1

Bk,ni(x)

)

q1−xdµ−1(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2q + En1+n2+···+ns,q if k = 0,

⎛

⎝
s∏

i=1

⎛

⎝
ni

k

⎞

⎠

⎞

⎠
sk∑

j=0

⎛

⎝
sk

j

⎞

⎠(−1)sk+jEn1+n2+···+ns−j,q if k > 0.

(3.12)
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For n1, n2, . . . , ns, k ∈ �+ by binomial theorem, we get

∫

�p

(
s∏

i=1

Bk,ni(x)

)

q−xdµ−1(x)

=

(
n1

k

)

· · ·
(
ns

k

)
n1+···+ns−sk∑

j=0

(
n1 + · · · + ns − sk

j

)

(−1)j
∫

�p

xj+skq−xdµ−1(x)

=

(
n1

k

)

· · ·
(
ns

k

)
n1+···+ns−sk∑

j=0

(
n1 + · · · + ns − sk

j

)

(−1)jEj+sk,q−1 .

(3.13)

By using (3.13) and Theorem 3.5, we obtain the following corollary.

Corollary 3.6. Let s ∈ �. For n1, n2, . . . , ns, k ∈ �+ with n1 + n2 + · · · + ns > sk, one has

n1+···+ns−sk∑

j=0

(
n1 + · · · + ns − sk

j

)

(−1)jEj+sk,q−1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 +
1
q
En1+n2+···+ns,q if k = 0,

1
q

sk∑

j=0

⎛

⎝
sk

j

⎞

⎠(−1)sk+jEn1+n2+···+ns−j,q if k > 0.

(3.14)
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