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We prove the global existence of cylinder symmetric solutions to the compressible Navier-Stokes

equations with external forces and heat source in R® for any large initial data. Some new ideas and
more delicate estimates are used to prove this result.

1. Introduction

In this paper, we study the global existence of cylinder symmetric solutions to the nonlinear
compressible Navier-Stokes equations with external forces and heat source in a bounded
domain G = {r € R, 0 < a <r < b < +oo} of R}, where r is the radial variable. In the
Eulerian coordinates, the system under consideration are expressed as

u
pe+ (pu), + pT =0, (1.1)
v? u
p<ut+uur_7>+l)r_v<ur+;> =f1(1",t), (12)

p(vt+uvr+ur—v> —‘u<vr+$>r = fa(r, 1), (1.3)
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p(w; + uw,) — #<wrr + %) = f3(r,1), (1.4)

Cvp(0; +ub,) - x<9r, + %) + P<ur + ;) ~Q=g(r1), (1.5)

where

u 2 (% 2 u 2
P = yp6, Q:A(ur+;> +;4|:<v,—;> +w$+2u§+2<;> ] (1.6)

and p is the mass density, 0 is the absolute temperature, u, v, w are the radial velocity, angular
velocity, and axial velocity, respectively, and A, y, v, y, Cy, x, A are the constants satisfying
Y,Cv,x, 1> 0,30 +2u >0 (v =X +2pu). f1, fo, f3, and g represent external forces and heat
source, respectively. For system (1.1)—(1.5), we consider the following initial boundary value
problem:

P(r/ O) = PO(r)/ (ur 0, w)(rl 0) = (uO/ Do, wO)(r)/ 6(7‘, 0) = 60(7’), re G/ (17)
(u,v,w)(a,t) = (u,v,w)(b,t) =0, 0,(a,t)=06,(b,t) =0, t>0. (1.8)
To show the global existence, it is convenient to transform the system (1.1)—(1.5) to that

in the Lagrangian coordinates. The Eulerian coordinates (7, t) are connected to the Lagrangian
coordinates (¢, t) by the relation

t

rEt) = (@) + f (2, 7)dr, (1.9)

0

where u(¢,t) = u(r(¢,t),t) and

r

0@ = 17@), n<r>=j spo(s)ds, re€G. (1.10)

a

It should be noted that if inf{py(s) : s € (a,b)} > 0, then 7 is invertible. It follows from (1.1),
(1.8), and (1.10) that

fr sp(s,t)ds = fro spo(s)ds =¢, (1.11)

a a

and G is transformed into Q = (0, L) with

b b
L= f sp(s,t)ds = I spo(s), Vt>0. (1.12)

a a
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Differentiating (1.11) with respect to ¢ yields

Opr(&,t) = (&, ) p N (r(é, 1), 1). (1.13)
In general, for a function ¢(r, ) = $(2,t) = (r(,1),t), we easily get

BP(E,t) = Bup(r,t) + ud,P(r,t), (1.14)

0sp(& 1) = 0, (r, )T (&,t) = Mp‘l(n t). (1.15)

Without danger of confusion, we denote (p, i, 0, W, é) still by (p, u, v, w,0) and (¢,t) by (x, ).
We set T := 1/p to denote the specific volume. Therefore, by virtue of (1.13)-(1.15), system
(1.1)—(1.8) in the new variables (x, t) read

7 = (ru),, (1.16)

U =r [M o ”72 + fi(r(x,0),8), (1.17)
o = ﬂr[(”’) ] - B, b, (1.18)
wi = pr [(r% ) +yTr—7f + f3(r(x, ), 1), (1.19)

2

£ op(u+ 02)x + g(r(x,1),1),
(1.20)

26x
rT ] + % [v(ru), —y0] (ru), +

((ro),* | rw

CVGt = K[

together with

T(x,O) = T()(.X'), (u/ o, ZU)(X,O) = (uOIUO/ wO)(x)/ e(x/ O) = 90(.7('), X € [0/ L]/

(1.21)
(u,v,w)(0,t) = (u,v,w)(L,t) =0, 0,(0,f) =0,(L,t) =0, t>0. (1.22)
By (1.9) and (1.13), we have
1/2
r(x,t) = ry(x) +j u(x,s)ds, ro(x)=|a®+ ZJ I (y)dy] 123)

ri(x, t) = u(x,t), r(x, )re(x,t) = T(x,t).

Now let us first recall the related results in the literature. When there were no external
forces and heat source, in two or three dimensions, the global existence and large time
behavior of smooth solutions to the equations of a viscous polytropic ideal gas have been
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investigated for general domains only in the case of sufficiently small initial data, see, for
example, [1-3]. For any large initial data, the global existence of generalized solutions was
shown in [4-7]. Recently, Qin [8] proved the exponential stability in H! and H?, and Qin and
Jiang [9] studied the global existence and exponential stability in H* with smallness of initial
total energy.

When there exist external forces and heat forces, for one-dimensional case, the system
is isentropic compressible Navier-Stokes equations. Mucha [10] obtained the exponential
stability under various boundary conditions, Yanagi [11] established the existence of classical
solutions, and Qin and Zhao [12] proved the global existence and asymptotic behavior of
solutions for pressure P = p¥ with y = 1. Later on, Zhang and Fang [13] studied the global
existence and uniqueness for y > 1. For nonisentropic compressible Navier-Stokes equations,
Qin and Yu [14] proved the global existence and asymptotic behavior for perfect gas. In two-
or three-dimensional case and the external force and heat source f #0, g #0, Qin and Wen [15]
proved the global existence of spherically symmetric solutions. In this paper, we will prove
the global existence of cylinder symmetric solutions with external forces and heat source in a
bounded domain in R®.

The notation in this paper will be as follows: L7, 1 <p < +co, WP, m € N, H! = W'2,
Hj = WS’Z denote the usual (Sobolev) spaces on (0, L). In addition, || - ||z denotes the norm
in the space B; we also put | - || = || - ||;- We denote by C*(I, B),k € Ny, the space of k-
times continuously differentiable functions from I C R into a Banach space B, and likewise
by LP(I,B), 1 < p < +oo the corresponding Lebesgue spaces. Subscripts t and x denote the
(partial) derivatives with respect to t and x, respectively. We use C; to denote the generic
positive constant depending on the H!-norm of the initial data and time T.

We suppose that f;(r(x,t),t)(i=1,2,3), g(r,t) satisfy, forany T > 0,

fi € LN([0,T], L[0, L]) n 12([0,T], L*[0,L]), (1.24)

g(r,)>0,  geLY([0,T],L®[0,L])N L2<[O,T],L2[O,L]>. (1.25)

We are now in a position to state our main theorems.

Theorem 1.1. Assume that (1.24)-(1.25) hold; if (7o, uo, vo, wo,60) € H'[0,L] x H[0,L] x
H;[0,L]1xH} [0, L]xH'[0,L], To(x) > 0,60(x) > 00n [0, L] and the initial data are compatible with
the boundary conditions (1.22), then for problem (1.16)—(1.22) there exists a unique global solution
(t,u,v,w,0) € C([0,T], H'[0,L] x HJ[0,L] x Hy [0, L] x H} [0, L] x H'[0, L]) such that, for any
T>0,

O<a<r(x,t)<b, (x,t)€][0,L]x][0,T],
0<Ci'<7(x,t) <Ci, (x,8) €[0,L] x [0,T],

IOl + @l + @ + @l + 10O + I (©)1175 (126)

t
2 2 2 2 2 2
+I <||T||H1 + el + 10152 + il + 1615 + [l
0

ol + [l + ||9t||2>(T)dT <Ci, Vte[0,T].
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2. Proof of Theorem 1.1

In this section we will complete the proof of Theorem 1.1. To this end, we assume that in this
section all assumptions in Theorem 1.1 hold. The proof of Theorem can be divided into the
following several lemmas.

Lemma 2.1. One has
a=r0,t) <r(x,t)<r(L,t)=b, V(x,t)€[0,L]x][0,+00). (2.1)

Proof. The proof of (2.1) is borrowed from [6, 8]; please refer to (2.1) in [6] or Lemma 2.1 in
[8] for detail. O

Lemma 2.2. The global solution (T(t),u(t), v(t),w(t),0(t)) to problems (1.16)—(1.22) satisfies the
following estimates:

L
f [1 <u2 + 0%+ w2> + cve] (x,t)dx < C1, (2.2)
0 2

L/ xr202 Ml (ru) (rrlo - TUx)

2.3)
where
U(x,t) = 1<u +0% +w ) +y(r—logT-1)+Cy (6 -log6-1). (2.4)

Proof. Multiplying (1.17)—(1.19) by u, v, and w, respectively, adding up the results, and using
(1.16), we have

% [% <u2 +0% + w2> + CVG]

) 3 2
_ [KT 0, . ru(v(ru), —y6) . uro(rv), N U= Wy —2y<u2 N vz>] (2.5)

T T T T
x

+ fiu+ fro+ faw + g.
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Integrating (2.5) with respect to x and t over Qr = [0,L] x [0,¢] (t € [0,T], YT > 0), using
boundary condition (1.22), we obtain

L L
1 1
Jl) [E <u2 +02 4+ w2> +CyO|dx = ,[0 [E (ug + US + w%) + Cveo] dx

AL
+f f (fiu+ fro+ fsw+ g)(x,s)dxds
0Jo

boAL
<C +C1j f <u2+v2+w2>(x,s)dxds
0Jo

+Cy ﬂ ﬂ(ff + 3+ f2)(x,5)dxds + Cy ﬂ llgll . ds
(2.6)

which, by using Gronwall’s inequality and (1.24)-(1.25), gives (2.2).
By (1.16)—(1.20), we can easily obtain

Kkr262 . v(ru): + p(ro)s + prrw?  2u(u +v?)

762 O 0

U, + +

v DI0Q

- 2 —
_ [K(G 1)726, . ru(v(ru), —y0) N uro(ro), | Hriwwy —2y<u2 . vz> +yru]

TO T T T
X

+ fiu+ Lo+ faw+ g
(2.7)

Note that constants v = A + 2y and

v(ru)l + pu(ro)s  2u(u® +0%), ~ 2u(T?r?u? + r’ud) + A(ru)? u(rr-to - rvx)2
0 0 - 0 N 70

>t <T_u2 . w2 + \(ru)? . u(rr-to - rvx)2>.

(2.8)

0 O O

Integrating (2.7) with respect to x and t over Qr, using (1.22), (1.24)-(1.25), and (2.8), we
conclude

L PL k02 T ud+ (ru)? + w? + (rrlo - rvx)2 g
IO U(x,t)dx+f0j0 <T—92+T+ 70 +5 dxds

t oL
<Ci+ L fo (fiu+ fro+ faw+ g)(x,s)dxds (2.9)

t oL t
<[ [ (@eotewte o fro ) rodrds i [ |lgllods
070 0

<C.

The proof is complete. O
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Next we adapt and modify an idea of Qin and Wen [15] for one-dimensional case to
give a representation for 7.

Let
—v0 _ )t
o, ) ="(’”)—xY+J <” 2” fl(r(y ). )> (2.10)
T 0 r
X T’ t
h(x,t) = f —dy +J o(x,s)dx. (2.11)
o "o 0
Then, we infer from (1.16) and (1.17) that
hy = % h =o. (2.12)
By (1.16) and (2.12), we have
x /.2 _ .02
(ht), = (ruh), — u* + v(ru), —y0 + Tj <U 2” + é)dx. (2.13)
0 r
Integrating (2.13) with respect to x and t over Qr, we obtain
L v? —u?
f thx:f hotodx — f f u” +y0 dxds+f f f dydxds
0
J‘ hotodx — f J‘ u? +y6 dxds+f f (rrx)f < >dydxds
L t oL R fi
= thx—ff u* + 9dxds+—ff +— )dxds
fo o0 0Jo ( ' > 2 JoJo r2 r
t oL/ 2
—f f ¢ rf L )dxds,
0Jo
(2.14)

where hy(x) := h(x,0). It follows from integration of (1.16) over Qr and use of (1.22) that

L L
J‘ T(x,t)dx = f To(x)dx = T (2.15)

0 0

If we apply the mean value theorem to (2.14) and use (2.15), we conclude there is an x((t) €
[0, L] such that

L
h(xo(t),t) = % Io h(x,t)T(x,t)dx. (2.16)
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Therefore, we derive from (2.11), (2.14), and (2.16) that

xo(t)

fto(xo(t) s)ds = h(xy(t),t) — f d

ff < 9+i>dxds+2T*ff <U s f)dxds

L xo(t)
+ l f ho (x)70 () dx — j ™0 .
T Jo 0

o
(2.17)
Using (2.17), we will show the representation of specific volume 7.
Lemma 2.3. One has the following representation:
_ D@t v (0 5)B(x,s)
T(x,t) = B(x, ) [1 v], " Dixs) ds|, xe€]0,L], (2.18)
where
1 1 L X X
D(x,t) = o(x) exp — Tohodx —dy + —dy
T 0 TO X()(t) r
f f 14 ds——J f e ds + f f fldxds]}
27*
t (L /o2, 2 -
B(x,t) = exP{l[l*I f <u o +y9>dxds— —f f v dxds
vt Jo)o
toex 2 2
+f f g 2” dxds]}.
oJo T
(2.19)

Proof. By (1.16) and (1.17), we have

<E>t=Gx=v(logr)tx—y<§>x+w. (2.20)

T r2
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Integrating (2.20) over [xo(t), x] x [0,t] and using (2.17), we derive

Lo(x, s)
o T(x, s)

v log 7y (x) +J a(xo(t), s)ds—f J w Ixo(t)<z Z—g)dy

—vlogTo(x)——ff < f1>dxds+2T*fJ <U —u {1>dxds

+—f ho(x) 7 (x)dx — f ¥ ax JI —u +rf1dyds+fx gdy

xo(t)

vilogT(x,t) —y

(2.21)
which, when the exponentials are taken, turns into
B(x,t) 1 Y J' 0(x, s)
= - | —= . 2.22
D(x,t) 7(x,t) exp< 0 T(x,8) ds ( )
Multiplying (2.22) by y0/v and integrating the resulting equation with respect to t, we arrive
at
0(x,s) 6(x,s)B(x,s)
— " 7 ds. 2.2
exP(vf 7(x,5) ) f Dixs) (2:29)
Substituting this into (2.22), we obtain (2.18). The proof is complete. O
Lemma 2.4. There are positive constants T and T, such that, for any T > 0,
T<7(x,t)<T, (x,t)€][0,L]x[0,T]. (2.24)

Proof. Recalling the definition D(x,t), we have by (1.24), Cauchy-Schwarz’s inequality, and
Lemma 2.1 that

T*J‘j rf1

which, along with Lemma 2.2, gives

2 t t ax t
b fld ds - fo fo %dyds <G fo Ifill-<Ci (2.25)

0<C;'<D(x,t)<Ci, (x,t)€[0,L]x[0,T]. (2.26)

By Lemmas 2.1 and 2.2, we easily obtain, forany 0 < s <t,

B(x,s)
B(x,t)

B(x,t) < Cq, <exp{-Ci(t-s)}. (2.27)
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Therefore, we derive from (2.2), (2.18), and (2.26)-(2.27) that

Db . . (2.28)

T(x,t) > Bxp 2T

t
T(x,t) < C [1 + f Qe—cl(t-S)ds]
0

¢ L 1/2 L 2p2 2,0 1272
5C1+f f Odx + f r Qde f ﬁdx e Ct=94s  (2.29)
0 0 0 TQZ 0 Tz

t L7‘292
< 1 . Xdxds )d
_C1+C1< +f01£%<7(,s)fo vy x s> S

which, by using Gronwall’s inequality and (2.28), gives (2.24). The proof is complete. O

Remark 1. If the initial data or initial energy are small enough, we can obtain the uniform
estimate independent of time t about specific volume 7 under assumptions of external forces.
Moreover, we can prove the large-time behavior of solutions.

Lemma 2.5. Under the assumptions of Theorem 1.1, one has, for any T > 0 and for all t € [0,T],

L t AL
f <92 +ut+ vt + w4>dx + J J <9,2C + Ut + 00 + wzwa) (x,s)dxds < Cy. (2.30)
0 0Jo

Proof. Multiplying (2.5) by (1/2)(1? + v* + w?) + Cy 0 and then integrating the result over Qr,
we have

L/l , o, 2 ?
5 E(u +v +w’)+Cy0 ) dx
0

t AL 272
Scl__CVKII rexdxds
2 JoJo T

(2.31)
2.,2.,2 2,,2,.2 20027192

t AL

ruTuL + reocoL + rewcw

+lef{ X x x+u4+v4+92+92u2}dxds
0/0 T

t AL
+I f (f1u+fzv+f3w+g)<%<u2+vz+w2> +CV9>dxds,
070
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where

ff ( W+ +w>+Cv9>dxds

<[l [ (32 v+ w?) rcve)aras<c,
t
f f (f1u+fzv+f3w)<%<u2 +0? +w2> +CV6>dxds (2.32)
0Jo
t L
<C [ Wil +flle # Il [ (1 o0+ 0 0 s
0 0

t AL
+If 0%dx ds.
0J0

Multiplying (1.17) by u® and then integrating the result over Qr, we get
1 (L —_ t L
- I utdx < Cy - = f f rzuzuidx ds +C; j J‘ <u4 + 62u2> (x,8)dx ds
4 Jo TJoJo 0o

t L /2
+f J‘ <—+f1>u3dxds
0Jo\ 7"

t t oL
<C —zf f rzuzuidxds+Clj J‘ <u4+62u2>(x,s)dxds
T JoJo 0Jo

(2.33)

+C1 f;<||f1||m + ||u||§m) J()L(v‘* +ul tu )dxds

Similarly, multiplying (1.18) and (1.19) by v* and w?, respectively, and then integrating over
Qr, we have

L
411_[ v4dx§C1—gJ‘ f r’v vzdxds+C1J‘ f vt +ulv +f2<v +v >>dxds
u t L
<Ci-= ’[ j r’v vzdxds+C1f <||f2||Lw+||u||iw+1>f <v +v >dxds
1 L ‘I/l t t AL
ZL,[ w4dx§C1—¥f f rzwzwidxds+C1J‘ f <w4+f3<w2+w4>>dxds
0

<C1——ffrwwzdxds+C1j(||f3||Lm+1)f w+w>dxds -
2.34
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Multiplying (2.31) and (2.33) by u/(27C1) and u/v, respectively, adding up the resulting
inequalities, and using (2.34) to obtain, with the help of (2.32), the following result:

L t L
I <u4+v4+w4+92>dx+f f 62 + uu? + v’V + wrw )(x s)dxds
0 0Jo

t L
<Crt [ (WAl Mol # el +1) [ (62400t s ot)axas 239)
0 0

t L
+ f ]2 f (92 ut ot w4>dx ds.
0 0

On the other hand, by (2.3) and (2.20),

¢ ¢
ul|?..ds < u,[2dx ds < —xdx Tde ds < Cy. (2.36)
L
0 0 0

In view of (1.24)-(1.25) and (2.36), we apply Gronwall’s inequality to (2.35) to obtain (2.30).
The proof is complete. O

Lemma 2.6. Under the assumptions of Theorem 1.1, one has, for any T > 0,

L t oL
f T,%(x,t)dx+J‘J‘ GTg(x,s)dxdsgCl, Vte [0,T]. (2.37)
0 0Jo

Proof. By means of (1.16), we rewrite (1.17) as

<u v7x> a y(GTx—TG) v —u? +rf1 (2.38)
t

r T T2 r2

Multiplying (2.38) by (u/r) — (vr,/7) in L?[0, L] and using Lemmas 2.1-2.5, we arrive at

ld|lu_vm|® IL_i
2dt||lr T Y 0 T2r
L 2_ .2
B Y(OTy —TOx)u  yvT0, v -ut+rfi/u vy
‘fo[ A S A (2.39)

L g2 L 2 2
0 0 x
S%vyfo TTT:fdx+C1J‘O <0u2+9§+u2+?x+u4+v4+fi2+<$—%) )dx.
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Integrating it with respect to t, using Lemmas 2.1-2.5, (1.24), and (2.36), we get

2 t AL
+IJ Or2dx ds
0/0
t 2 t AL 2
scl+f A ds+c1ff<9u2+ff+9§+%>dxds
ollr T 0Jo 0

t
sc1+f e ds+f IIuIIwa 6dxds+ff 92<1+—>dxds
0

t
u VT.
<Ci+| [|E- s,
0 r T

U  VTy

r T

We exploit the Gronwall inequality to (2.40) to obtain (2.37). The proof is complete.

Lemma 2.7. Under the assumptions of Theorem 1.1, one has, for any T > 0,

L t AL

J‘ ui(x, t)dx +f f <ut2 + uix>(x, s)dxds <C;, Vte][0,T],
0 0Jo
L t AL

j vi(x, Bdx +f J (vtz + v§x>(x, s)dxds<Cy, Vte][0,T],
0 0Jo

L t AL
f w? (x, ) dx + f f <wf + wix)(x,s)dx ds<Cy, Vtel[0,T].
0 070

13

(2.40)

(2.41)

(2.42)

(2.43)

Proof. Multiplying (1.17) by u;, integrating the result over Qr, using Lemmas 2.1-2.6, and
taking into account that (ru), (rus), /7 = (1/2) ((ru)i/T)t — ((ru) ,(u?),/T) + ((ru)i/ZTZ), we

obtain

f;f:ufdxds
I () e o

B EL (TO;)O)xd - zf sy f J T Ty dx ds
() e

(ru) (g s
<C1——J ff dxds+C1ff (97x+6x+f1+v>dxds
2 0Jo

> dx ds+ff <—+f1>utdxds
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t oL
—vff uz[ﬂ+l<ﬁ> i +flr]d ds
0o r r\T/, r?
” W70 [ 1(@) v +f1r]d ds
r\ T/, r?

(ru) N R R S SR
SCl_EJ J"[ dXd5+C1II<9Tx+9x+f1+U +u>dxds
0Jo

t oL 2
+Cp J‘u2@(x,s)dxds.

070

(2.44)

We derive from (2.30) that
L L L L
10]2.. < I 0%dx + 2f 100x]dx < Cy f (62+6%)dx < Ci+Cy f 02dx. (2.45)
0 0 0 0

Therefore, using (1.24), (2.30), (2.36), (2.37), and (2.44)-(2.45), we conclude

L 2 t AL t L t L 2
f U F f f ufdxds§C1+le||9||%wj Tidxds+c1j||u||%mf T 5y ds
o T 0Jo 0 0 0 o 7

(2.46)
which, by applying the Gronwall inequality, implies
L t oL
J 1% (x, t)dx + f f u?(x,s)dx ds < Cy. (2.47)
0 0J0
By (1.17), we have
t oL t
f J 1% (x,s)dxds < le f W+l + 1+ T2l + 022+ 02 + v +f1>(x s)dxds
0Jo 0
t L
<CioC [ (18I + ) [ widxds
’ ’ (2.48)

t
<Cr Gy [ (141017 + sl + ) 51

1t (L
<Ci+ —j J‘ u> (x,s)dx ds.
2JoJo
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Therefore,

t
f i (5)Pds < C (2.49)
0

which, along with (2.47), gives (2.41).
Analogously, multiplying (1.18) by v;, integrating the result over Qr, and using
assumptions (1.24) and Lemmas 2.1-2.6, we deduce

L 2 t
E (T'U)x 2
5 fo — dx + J‘o lloe(s)]|°ds

#J‘ (Tovo)xd u” [ ]d s
[0 oanas- [
<o [ a1 [ [ W
ol
<cio 3 [ s [ it |
<Cies fo Jor(s)|2ds + fo . LL <v2 + @)mzs.

In view of (2.36), we apply Gronwall’s inequality to (2.50) to obtain

t AL
uvvtdxds+ff fovrdx ds
r 0/0

(rv), [ uv fz] dx ds (2.50)

2 t oL
(r:)xdx ds+Cq -[0 4[0 <u202 + f22>dx ds

L 2 t oL
f ﬂdx + f f v?(x,s)dx ds < Cy. (2.51)
o T 0/o
By (1.18) and (2.51), we easily deduce
t oL
f f 02 .(x,s)dxds < C; (2.52)
0Jo
which, along with (2.51) and Lemmas 2.1-2.4, implies (2.42). The proof of (2.43) iS similar to
that of (2.41) and (2.42). The proof is now complete. O

Lemma 2.8. Under the assumptions of Theorem 1.1, one has, for any T > 0,

I 62 (x,t)dx+ff 92+92 (x,s)dxdsgcl, vt e [0,T]. (2.53)
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Proof. Multiplying (1.20) by 0; over Qr, we have

K L 292 t AL
—f Txdx+CVf f Qtz(x,s)dxds
0

:gj' Oxd IJ< >92dxds

f f [ [v(ru), - y6] (ru), +#[(rv)x]2 +‘ur2w§ —2,u<u2 + 02>

T T

(2.54)

+8(r(x,t), t)] 6 (x, s)dx ds.

Using Lemmas 2.1-2.7, the Cauchy-Schwarz inequality, and the interpolation inequality, we

have
< > 62dx ds

t L
<c jo(uunm )l fo 62dx ds

t L
< [ (Il + N 202 [ G3dieas
t L
< Co [ (Il + Nrw P+ e, ) [ 62dxats (255)
0 0
t oL t L
Slef 9,%dxds+le <f (uT + 1+t +ud, dx>f 02dx ds
070 0 0
t L
<Ci+C fo(nuniwnrxnz #ul + usl) | s

t L
<CoCr [ (ulf + ) | 62dxas,
0 0

2
[ [v(ru), —y0] (ru), + p [(”;)x] n ‘ur:z-u,% - 2y<u2 + vz>x + g(r,t)] 0:dx ds

l t t AL
<7 f 162 ds + C: f f [(ru)i + (ro)t + 02(ru)2 + w' + 1Pl + v*0% + gz]dx ds
0 0/0
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<1 te 245+ C ' 2 2 10112 2 2
<1 | nedras v e | [ (o P + 161) + o)l o).
0 0

AL
+||’wx||ioo||wx||2] (s)ds + C4 ’[ f (uzui + 0702 + g2> (x,s)dx ds.
0Jo

(2.56)
Similarly to (2.55), by virtue of (1.25), (2.30), and (2.41)—(2.43), we arrive at
t AL 2 2,52
1 [(rv),] rwy 2, .2
fo fo |:; [v(ru), —y0] (ru), + u P 2,u<u +v )x +g(r,t)|6dxds
1t ' 2 2 2
<Cieg [ 100Rds+ [ (ol + 1000 + ol
1o ' 2 2 2 2
<Ci+g f 6P ds + Cy f (el + Nl + Wl + eoall )
4 Jo 0
1 t
<Ci+y [ ledras
4 Jo
(2.57)
Combining (2.54)—(2.57), we conclude
t t
(AR f 16:(s)*ds < C1 + Cy f (Hllc + lael ) 16|l (2.58)
0 0
In view of (2.36) and (2.41), we apply Gronwall’s inequality to (2.58) to obtain
t
le-)1F + [ les)Pds <1, vee 011 (2.59)
0
Similarly to proof of (2.41), by Lemmas 2.1-2.7, (1.20), (1.25), and (2.59), we obtain
t
[ leworras <c. 2.60)
0
which, together with (2.59), implies (2.53). The proof is complete. O
Proof of Theorem 1.1. By Lemmas 2.1-2.8, we complete the proof of Theorem 1.1. O
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