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We investigate the asymptotic behavior of the solutions of a neutral type difference equation of the
form Δ[x(n) + cx(τ(n))] + p(n)x(σ(n)) = 0, where τ(n) is a general retarded argument, σ(n) is a
general deviated argument (retarded or advanced), c ∈ R, (p(n))n≥0 is a sequence of positive real
numbers such that p(n) ≥ p, p ∈ R+, and Δ denotes the forward difference operator Δx(n) = x(n +
1) − x(n). Also, we examine the asymptotic behavior of the solutions in case they are continuous
and differentiable with respect to c.

1. Introduction

Neutral type differential equations are differential equations in which the highest-order
derivative of the unknown function appears in the equation both with and without delays
(or delays advanced). See Driver [1], Bellman and Cooke [2], and Hale [3] for questions of
existence, uniqueness, and continuous dependence.

It is to be noted that, in general, the theory of neutral differential equations presents
extra complications, and basic results which are true for delay differential equations may
not be true for neutral equations. For example, Snow [4] has shown that, even though the
characteristic roots of a neutral differential equation may all have negative real parts, it is still
possible for some solutions to be unbounded.

The discrete counterparts of neutral differential equations are called neutral difference
equations, and it is a well-known fact that there is a similarity between the qualitative theories
of neutral differential equations and neutral difference equations.

Besides its theoretical interest, strong interest in the study of the asymptotic and
oscillatory behavior of solutions of neutral type equations (difference or differential) is
motivated by the fact that they arise in many areas of applied mathematics, such as circuit
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theory [5, 6], bifurcation analysis [7], population dynamics [8, 9], stability theory [10], and
dynamical behavior of delayed network systems [11]. See, also, Driver [12], Hale [3], Brayton
and Willoughby [13], and the references cited therein. This is the reason that during the last
few decades these equations are in the main interest of the literature.

In the present paper, we are interested in the first-order neutral type difference
equation of the form

Δ[x(n) + cx(τ(n))] + p(n)x(σ(n)) = 0, n ≥ 0 (E)

where (p(n))n≥0 is a sequence of positive real numbers such that p(n) ≥ p, p ∈ R+, c ∈ R,
(τ(n))n≥0 is an increasing sequence of integers which satisfies

τ(n) ≤ n − 1 ∀n ≥ 0, lim
n→∞

τ(n) = +∞, (1.1)

and (σ(n))n≥0 is an increasing sequence of integers such that

σ(n) ≤ n − 1 ∀n ≥ 0, lim
n→∞

σ(n) = +∞, (1.2)

or

σ(n) ≥ n + 1 ∀n ≥ 0. (1.3)

Define

k1 = −min
n≥0

τ(n), k2 = −min
n≥0

σ(n),

k = max{k1, k2}.
(1.4)

(Clearly, k is a positive integer.)
By a solution of the neutral type difference equation (E), we mean a sequence of real

numbers (x(n))n≥−k which satisfies (E) for all n ≥ 0. It is clear that, for each choice of real
numbers c−k, c−k+1, . . . , c−1,c0, there exists a unique solution (x(n))n≥−k of (E) which satisfies
the initial conditions x(−k) = c−k, x(−k + 1) = c−k+1, . . . , x(−1) = c−1, x(0) = c0.

A solution (x(n))n≥−k of the neutral type difference equation (E) is called oscillatory if
for every positive integer n there exist n1, n2 ≥ n such that x(n1)x(n2) ≤ 0. In other words,
a solution (x(n))n≥−k is oscillatory if it is neither eventually positive nor eventually negative.
Otherwise, the solution is said to be nonoscillatory.

In the special case where τ(n) = n − a and σ(n) = n − b, a, b ∈ N, (E) takes the form

Δ[x(n) + cx(n − a)] + p(n)x(n − b) = 0, n ≥ 0. (E1)

Equation (E) represents a discrete analogue of the neutral type differential equations

d

dt
[x(t) + cx(τ(t))] + p(t)x(σ(t)) = 0, t ≥ 0, (E2)
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which, in the special case where τ(t) = t − τ0 and σ(t) = t − σ0, τ0, σ0 ∈ R+, takes the form (see
e.g., [14, 15])

d

dt
[x(t) + cx(t − τ0)] + p(t)x(t − σ0) = 0, t ≥ 0. (E3)

The search for the asymptotic behavior and, especially, for oscillation criteria and
stability of neutral type (difference or differential) equations has received a great attention
in the last few years. Hence, a large number of related papers have been published. See
[4, 9, 10, 14–52] and the references cited therein. Most of these papers are concerning the
special case of the delay difference equations (E1) and (E3)where the algebraic characteristic
equation gives useful information about oscillation and stability.

The purpose of this paper is to investigate the convergence and divergence of the
solutions of (E) in the case of a general delay argument τ(n) and of a general deviated
(retarded or advanced) argument σ(n).

2. Some Preliminaries

Assume that (x(n))n≥−k is a nonoscillatory solution of (E). Then it is either eventually positive
or eventually negative. As (−x(n))n≥−k is also a solution of (E), we may (and do) restrict
ourselves only to the case where x(n) > 0 for all large n. Let n1 ≥ −k be an integer such that
x(n) > 0 for all n ≥ n1. Then, there exists n0 ≥ n1 such that

x(τ(n)), x(σ(n)) > 0 for every n ≥ n0. (2.1)

Set

z(n) = x(n) + cx(τ(n)). (2.2)

Then, in view of (E) and taking into account the fact that p(n) ≥ p > 0, we have

Δz(n) + p(n)x(σ(n)) = 0 (2.3)

or

Δz(n) = −p(n)x(σ(n)) ≤ −px(σ(n)) < 0 ∀n ≥ n0, (2.4)

which means that the sequence (z(n))n≥n0
is strictly decreasing, regardless of the value of the

real constant c.
Throughout this paper, we are going to use the following notation:

τ ◦ τ = τ2, τ ◦ τ ◦ τ = τ3, and so on. (2.5)
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Let the domain of τ be the set D(τ) = Nn∗ = {n∗, n∗ + 1, n∗ + 2, . . .}, where n∗ is the smallest
natural number that τ is defined with. Then for every n > n∗ it is clear that there exists a
natural number m(n) such that

x
(
τm(n)(n)

)
= x(τ(n∗)), lim

n→∞
m(n) = +∞ (2.6)

since (m(n)) is increasing and unbounded function of n.
The following lemma provides some tools which are useful for the main results.

Lemma 2.1. Assume that (x(n))n≥−k is a positive solution of (E). Then, one has the following.

(i) If c /= 0 and

∞∑
i=n0

p(i)x(σ(i)) = S0 < +∞, (2.7)

then

lim
n→∞

z(n) = cL = c lim
n→∞

x(τ(σ(n))). (2.8)

(ii) If

∞∑
i=n0

p(i)x(σ(i)) = +∞, (2.9)

then

z(n) < 0 eventually. (2.10)

(iii) If c ≥ −1, then

∞∑
i=n0

p(i)x(σ(i)) = S0 < +∞. (2.11)

(iv) If c < −1, then

∞∑
i=n0

p(i)x(σ(i)) = +∞. (2.12)

Proof. Summing up (2.3) from n0 to n, we obtain

z(n + 1) − z(n0) +
n∑

i=n0

p(i)x(σ(i)) = 0 (2.13)
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or

z(n + 1) = z(n0) −
n∑

i=n0

p(i)x(σ(i)). (2.14)

For the above relation, there are only two possible cases:

∞∑
i=n0

p(i)x(σ(i)) = S0 < +∞ (2.15a)

or

∞∑
i=n0

p(i)x(σ(i)) = +∞. (2.15b)

Assume that (2.15a) holds. Since p(n) ≥ p > 0, we have

+∞ > S0 =
∞∑
i=n0

p(i)x(σ(i)) ≥ p
∞∑
i=n0

x(σ(i)). (2.16)

The last inequality guarantees that

∞∑
i=n0

x(σ(i)) < +∞ (2.17)

and, consequently,

lim
n→∞

x(σ(n)) = 0. (2.18)

Also, (2.15a) guarantess that limn→∞z(n) exists as a real number. Now, assume that

lim
n→∞

z(n) = � ∈ R, c /= 0. (2.19)

Since (z(σ(n))) is a subsequence of (z(n)), it is obvious that

lim
n→∞

z(σ(n)) = � (2.20)

or

lim
n→∞

[x(σ(n)) + cx(τ(σ(n)))] = �, (2.21)
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and, in view of (2.18), we obtain

lim
n→∞

x(τ(σ(n))) =
�

c
:= L. (2.22)

Hence,

lim
n→∞

z(n) = � = cL = c lim
n→∞

x(τ(σ(n))). (2.23)

The proof of part (i) of the lemma is complete.
Assume that (2.15b) holds. Then, by taking limits on both sides of (2.14) we obtain

lim
n→∞

z(n) = −∞, (2.24)

which, in view of the fact that the sequence (z(n)) is strictly decreasing, means that

z(n) < 0 eventually. (2.25)

The proof of part (ii) of the lemma is complete.
Assume that −1 ≤ c < 0, and suppose, for the sake of contradiction, that∑∞

i=n0
p(i)x(σ(i)) = +∞. Then, in view of part (ii), we have z(n) < 0 eventually. Thus,

x(n) < −cx(τ(n)) (2.26)

or

x(n) < −c
[
−cx

(
τ2(n)

)]
. (2.27)

Repeating the above procedure we obtain

x(n) < (−c)m(n)x
(
τm(n)(n)

)
= (−c)m(n)x(τ(n∗)). (2.28)

If −1 < c < 0, clearly, (−c)m(n) → 0 since m(n) → ∞ as n → ∞. Since x(n) > 0 for all large n,
(2.28) guarantees that

lim
n→∞

x(n) = 0. (2.29)

This implies that

lim
n→∞

z(n) = 0, (2.30)

and consequently
∑∞

i=n0
p(i)x(σ(i)) < ∞, which contradicts our assumption.
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If c = −1, by (2.28) we obtain

x(n) < x(τ(n∗)), (2.31)

which means that (x(n)) is bounded and therefore (z(n)) is bounded. Hence,∑∞
i=n0

p(i)x(σ(i)) < ∞, which contradicts our assumption.
Assume that c ≥ 0 and that

∑∞
i=n0

p(i)x(σ(i)) = ∞. In view of part (ii), (2.10)
holds, that is, z(n) < 0 eventually. This contradicts z(n) = x(n) + cx(τ(n)) > 0. Therefore∑∞

i=n0
p(i)x(σ(i)) = S0 < +∞. The proof of part (iii) of the lemma is complete.
In the remainder of this proof, it will be assumed that c < −1.
If (2.15a) holds, that is,

∑∞
i=n0

p(i)x(σ(i)) = S0 < +∞, then, in view of part (i), (2.8) is
satisfied, that is,

lim
n→∞

z(n) = cL, where L = lim
n→∞

x(τ(σ(n))). (2.32)

If L > 0, then

lim
n→∞

z(n) = lim
n→∞

(x(n) + cx(τ(n))) = cL < 0. (2.33)

Since (z(n)) is strictly decreasing, we have

z(n) > cL, (2.34)

x(n) > −cx(τ(n)) + cL, (2.35)

or

x(n) > −c
[
−cx

(
τ2(n)

)
+ cL

]
+ cL. (2.36)

Repeating this procedure m(n�) times we have

x(n) > −c
[
−cx

(
τ2(n)

)
+ cL

]
+ cL

= (−c)2x
(
τ2(n)

)
− c2L + cL

> · · · > (−c)m(n�)x
(
τm(n�)(n)

)
+ cL − c2L + · · · ± cm(n�)L

= (−c)m(n�)x(τ(nλ)) + cL
(−c)m(n�) − 1

−1 − c

= (−c)m(n�)x(τ(nλ)) − cL

1 + c

[
(−c)m(n�) − 1

]

= (−c)m(n�)
[
x(τ(nλ)) − cL

1 + c

]
+

cL

1 + c
.

(2.37)
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Now, if for this index λ we have x(τ(nλ)) − (cL/(1 + c)) > 0, then, as n → ∞, x(n) → ∞,
which contradicts (2.18). Therefore, there exists an index s such that

x(τ(ns)) = x
(
τm(nμ)(n)

)
(2.38)

with

x(τ(ns)) − cL

1 + c
< 0. (2.39)

Then since limn→∞z(n) = cL, for every ε > 0 there exists n2(ε) such that

z(n) < cL + ε for every n ≥ max{τ(ns), n2} = n3, (2.40)

where τ(ns) is satisfying the previous inequality.
Hence,

x(n) < −cx(τ(n)) + cL + ε for every n ≥ n3, (2.41)

or

x(n) < −c
[
−cx

(
τ2(n)

)
+ cL + ε

]
+ cL + ε for every n ≥ n3. (2.42)

Repeating this procedure m(nμ) times we have

x(n) < −c
[
−cx

(
τ2(n)

)
+ cL + ε

]
+ cL + ε

= (−c)2x
(
τ2(n)

)
− c2L − cε + cL + ε

< · · · < (−c)m(nμ)x(τ(ns)) − cL

1 + c

[
(−c)m(nμ) − 1

]
+
(−c)m(nμ) − 1

−1 − c
ε

= (−c)m(nμ)
[
x(τ(ns)) − cL

1 + c
− ε

1 + c

]
+

cL

1 + c
+

ε

1 + c

(2.43)

or

x(n) < (−c)m(nμ)
[
x(τ(ns)) − cL

1 + c
− ε

1 + c

]
+

cL

1 + c
+

ε

1 + c
. (2.44)

Then, for sufficiently large n the above inequality gives

x(n) < 0, (2.45)

which condradicts x(n) > 0.
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If L = 0, then

lim
n→∞

z(n) = 0 (2.46)

or

lim
n→∞

(x(n) + cx(τ(n))) = 0, (2.47)

and since (z(n)) is stricly decreasing, it is obvious that z(n) > 0 eventually or

x(n) > −cx(τ(n)). (2.48)

In view of (2.6), the last inequality becomes

x(n) > (−c)m(n)x(τ(n∗)), (2.49)

and consequently

lim
n→∞

x(n) ≥ lim
n→∞

[
(−c)m(n)x(τ(n∗))

]
= +∞, (2.50)

which contradicts (2.18). Hence, it is clear that
∑∞

i=n0
p(i)x(σ(i)) = +∞. The proof of part (iv)

of the lemma is complete.
The proof of the lemma is complete.

3. Main Results

The asymptotic behavior of the solutions of the neutral type difference equation (E) is
described by the following theorem.

Theorem 3.1. For (E) one has the following.

(I) Every nonoscillatory solution is unbounded if c < −1.
(II) Every solution oscillates if c = −1.
(III) Every nonoscillatory solution tends to zero if −1 < c < 1.

(IV) Every nonoscillatory solution is bounded if c ≥ 1.

Furthermore, if any solution of (E) is continuous with respect to c, one has the following.

(V) Every solution is zero if c ≤ −1.
(VI) Every solution tends to zero if −1 < c ≤ 1.

(VII) If, additionally, any solution of (E) has continuous derivatives of any order and convergent
Taylor series for every c ∈ R, then the solution is zero.
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Proof. Assume that (x(n))n≥−k is a nonoscillatory solution of (E). Then it is either eventually
positive or eventually negative. As (−x(n))n≥−k is also a solution of (E), we may (and do)
restrict ourselves only to the case where x(n) > 0 for all large n. Let n1 ≥ −k be an integer
such that x(n) > 0 for all n ≥ n1. Then, there exists n0 ≥ n1 such that

x(τ(n)), x(σ(n)) > 0 ∀n ≥ n0, (3.1)

which, in view of the previous section, means that the sequence (z(n))n≥n0
is strictly

decreasing, regardless of the value of the real constant c.
Assume that c < −1. Then, in view of part (iv) of Lemma 2.1, we have

∑∞
i=n0

p(i)
x(σ(i)) = +∞, and, consequently, in view of part (ii) of Lemma 2.1, z(n) < 0 eventually.
Therefore,

lim
n→∞

z(n) = −∞ (3.2)

or

lim
n→∞

(x(n) + cx(τ(n))) = −∞. (3.3)

Since c < −1, the last relation guarantees that

lim
n→∞

x(τ(n)) = +∞, (3.4)

which means that (x(n)) is unbounded. The proof of part (I) of the theorem is complete.
Assume that c = −1. Then, in view of part (iii) of Lemma 2.1, we have

∑∞
i=n0

p(i)
x(σ(i)) < ∞, and, therefore, in view of part (i) of Lemma 2.1, we obtain

lim
n→∞

[x(n) − x(τ(n))] = −L. (3.5)

Assume that L > 0. Then there exists a natural number nλ such that z(n) < 0 for every n ≥ nλ,
and therefore

x(n) < x(τ(n)) < · · · < x
(
τm(n�)(nλ)

)
, (3.6)

which means that (x(n)) is bounded. Since (x(n)) is bounded, let

M = lim supx(n), where M ≥ L. (3.7)

Then there exists a subsequence (x(θ(n))) of (x(n)) such that

lim
n→∞

x(θ(n)) = M. (3.8)
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Thus,

lim
n→∞

z(θ(n)) = −L, (3.9)

lim
n→∞

[x(θ(n)) − x(τ(θ(n)))] = −L, (3.10)

or

lim
n→∞

x(τ(θ(n))) = M + L > M, (3.11)

which contradicts (3.7). Therefore, L > 0 is not valid. Hence, L = 0 and consequently
limn→∞z(n) = 0. Furthermore, taking into account the fact that the sequence (z(n)) is strictly
decreasing we conclude that z(n) > 0 or equivalently

x(n) > x(τ(n)) > · · · > x(τ(n∗)). (3.12)

Since (x(n)) has a lower bound greater than zero, it cannot have any subsequence that tends
to zero. Thus, limn→∞x(σ(n)) = 0 is not valid, and therefore

∑∞
i=n0

p(i)x(σ(i)) = ∞ which
contradicts our previous conclusions. Hence, if c = −1, (x(n)) oscillates. The proof of part (II)
of the theorem is complete.

Assume that −1 < c < 0.
Assume that L > 0. Then there exists a natural number nλ such that z(n) < 0 for every

n ≥ nλ, and therefore

x(n) < (−c)x(τ(n)) < · · · < (−c)m(n�)x
(
τm(n�)(nλ)

)
, (3.13)

which means that (x(n)) tends to zero as n → ∞. Therefore, (z(n)) tends to zero as n → ∞,
that is, L = 0, which contradicts L > 0. Hence L = 0. Taking into account the fact that the
sequence (z(n)) is strictly decreasing, it is obvious that z(n) > 0. Hence, for every ε > 0 there
exists a natural number n4 such that for every n ≥ n4

x(n) + cx(τ(n)) < ε (3.14)

or

x(n) < −cx(τ(n)) + ε < −c
[
−cx

(
τ2(n)

)
+ ε

]
+ ε = c2x

(
τ2(n)

)
− cε + ε. (3.15)

For sufficiently large n, after m-steps we obtain

x(n) < cm+1x
(
τm+1(n)

)
+ ε − cε + · · · + (−c)mε. (3.16)

As n → ∞, clearly m → ∞, and therefore

lim
n→∞

x(n) ≤ lim
m→∞

[
ε − cε + · · · + (−c)mε] = ε

1 + c
. (3.17)
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Since ε is an arbitrary real positive number and, taking into account the fact that (x(n)) > 0,
it is clear that

lim
n→∞

x(n) = 0. (3.18)

Let c = 0. In view of part (iii) of Lemma 2.1, we have

∞∑
i=n0

p(i)x(σ(i)) < +∞. (3.19)

This guarantees that (z(n)) is bounded, and therefore, since z(n) = x(n), (x(n)) is bounded.
Also, since (z(n)) is stricly decreasing, limn→∞z(n) exists, that is, limn→∞x(n) exists. In view
of (2.18), we conclude that

lim
n→∞

x(n) = 0. (3.20)

Assume that 0 < c < 1, then

lim
n→∞

z(n) = cL, where lim
n→∞

x(τ(σ(n))) = L (3.21)

or

lim
n→∞

[x(n) + cx(τ(n))] = cL. (3.22)

Therefore,

lim
n→∞

z(τ(σ(n))) = cL, (3.23)

lim
n→∞

[
x(τ(σ(n))) + cx

(
τ2(σ(n))

)]
= cL, (3.24)

or

lim
n→∞

x
(
τ2(σ(n))

)
= L − L

c
≤ 0, (3.25)

which means that L = 0. Hence,

lim
n→∞

z(n) = 0, (3.26)

and since

z(n) ≥ x(n) > 0, (3.27)
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we have

lim
n→∞

x(n) = 0. (3.28)

The proof of part (III) of the theorem is complete.
Assume that c ≥ 1. In view of Part (iii) of Lemma 2.1, it is clear that

∑∞
i=n0

p(i)x(σ(i)) =
S0 < +∞ which combined with (2.14) implies that (z(n)) is bounded and, therefore (x(n)) is
bounded. The proof of part (IV) of the theorem is complete.

In the remainder of this proof, it will be assumed that x(n) is a continuous function
with respect to c, and, therefore, instead of x(n)we will write x(c, n).

Let c = −1. Then, in view of part (II), (x(−1, n)) oscillates. On the other hand, since
x(c, n) is continuous, we have

lim
c→−1−

x(c, n) = x(−1, n). (3.29)

But x(c, n) > 0 for all large n, and therefore its limit is always nonnegative. Thus, x(−1, n) > 0
for all large nwhich contradicts that (x(−1, n)) oscillates. Therefore, x(−1, n) = 0 eventually.

Let c < −1. In view of part (I) we have (x(c, n)) is unbounded, and therefore
x(c, τ(n)) → ∞. Let M > 0, then there exists an index n5 such that, for every n ≥ n5,
x(c, τ(n)) > M. Since the function x(c, n) is continuous, x(c, τ(n)) is continuous, and
therefore

lim
c→−1−

x(c, τ(n)) = x(−1, τ(n)) = 0 for every n ≥ n5. (3.30)

Hence, there exists h > 0 so that, if c > −1 − h then x(c, τ(n)) < M for every n ≥ n5, which
contradicts x(c, τ(n)) > M. This implies that, there exists an interval (a,−1) such that

x(c, n) = 0 for every c ∈ (a,−1) eventually. (3.31)

Let

A = inf{c | x(c, n) = 0}. (3.32)

Then, with the same argument as above, we conclude that

x(A,n) = 0 eventually. (3.33)

So, by a similar procedure we obtain an interval (B,A] such that

x(c, n) = 0 for every c ∈ (B,A] eventually. (3.34)

This contradicts our assumption for A. Thus, if c < −1, we have x(c, n) = 0 eventually. The
proof of part (V) of the theorem is complete.
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Assume that −1 < c ≤ 1. Taking into account part (III), it is enough to show part (VI)
only for c = 1. In view of parts (iii) and (i) of Lemma 2.1, we have

lim
n→∞

x(c, τ(σ(n))) = L. (3.35)

Assume, for the sake of contradiction, that L > 0. Taking into account the fact that
limn→∞x(c, n) = 0 when 0 < c < 1, there exists n6 ∈ N such that, for every n ≥ n6, we
have

x(c, τ(σ(n))) <
L

2
, (3.36)

and, since x(c, τ(σ(n))) is continuous,

lim
c→ 1−

x(c, τ(σ(n))) = x(1, τ(σ(n))). (3.37)

Hence,

x(1, τ(σ(n))) ≤ L

2
, ∀n ≥ n6 (3.38)

which contradicts limn→∞x(c, τ(σ(n))) = L. Therefore, L > 0 is impossible. Thus, L = 0, and,
in view of (2.8), we conclude that

lim
n→∞

z(1, n) = 0, (3.39)

which means that

lim
n→∞

x(1, n) = 0. (3.40)

The proof of part (VI) of the theorem is complete.
Finally, since x(c, n) has convergent Taylor series, we have

x(c, n) =
∞∑

m=0

x(m)(a, n)
m!

cm for every a ∈ R. (3.41)

Choose a < −1. Then x(m)(a, n) = 0 and, therefore, x(c, n) = 0. The proof of part (VII) of the
theorem is complete.

The proof of the theorem is complete.

By way of illustration and for purely pedagogical purposes, the asymptotic behavior
of nonoscillatory solutions of (E) is presented in Figure 1.
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Corollary 3.2. For (E1) one hs the following.

(i) Every nonoscillatory solution tends to ±∞ if c < −1.
(ii) Every solution oscillates if c = −1.
(iii) Every nonoscillatory solution tends to zero if c > −1.

Furthermore, if any solution of (E1) is continuous with respect to c, one has the following.

(iv) Every solution is zero if c ≤ −1.
(v) If, additionally, any solution of (E1) has continuous derivatives of any order and convergent

Taylor series for every c ∈ R, then the solution is zero.

Proof. In part (I) of Theorem 3.1 we have proved that

lim
n→∞

x(τ(n)) = +∞ (3.42)

and consequently

lim
n→∞

x(n − a) = +∞, (3.43)

which means that

lim
n→∞

x(n) = +∞. (3.44)

The proof of part (i) of the corollary is complete.
Part (ii) is direct from part (II) of Theorem 3.1.
As we have proved in parts (III) and (IV) of Theorem 3.1, if c > −1, then

lim
n→∞

x(σ(n)) = 0 (3.45)

and consequently

lim
n→∞

x(n − b) = 0, (3.46)
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which means that

lim
n→∞

x(n) = 0. (3.47)

The proof of part (iii) of the corollary is complete.
Parts (iv) and (v) are direct from parts (V) and (VII) of Theorem 3.1.
The proof of the corollary is complete.
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[17] J. Baštinec, J. Diblı́k, and Z. Šmarda, “Existence of positive solutions of discrete linear equations with
a single delay,” Journal of Difference Equations and Applications, vol. 16, no. 9, pp. 1047–1056, 2010.
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[25] J. Diblı́k, M. Ružičková, and Z. Šutá, “Asymptotical convergence of the solutions of a linear

differential equation with delays,” Advances in Difference Equations, vol. 2010, Article ID 749852, 12
pages, 2010.

[26] J.-G. Dong, “Oscillation of solutions for first order neutral differential equations with distributed
deviating arguments,” Computers & Mathematics with Applications, vol. 58, no. 4, pp. 784–790, 2009.

[27] Y. Domshlak, N. Partsvania, and I. P. Stavroulakis, “Oscillation properties of first order neutral
differential equations near the critical states,” Nonlinear Functional Analysis and Applications, vol. 9,
no. 2, pp. 173–184, 2004.

[28] Y. Gao and G. Zhang, “Oscillation of nonlinear first order neutral difference equations,” Applied
Mathematics E-Notes, vol. 1, pp. 5–10, 2001.

[29] D. A. Georgiou, E. A. Grove, and G. Ladas, “Oscillations of neutral difference equations,” Applicable
Analysis, vol. 33, no. 3-4, pp. 243–253, 1989.
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