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This paper presents Rayleigh mixtures of distributions in which the weight functions are assumed
to be chi-square, t and F sampling distributions. The exact probability density functions of the mix-
ture of two correlated Rayleigh random variables have been derived. Different moments, charac-
teristic functions, shape characteristics, and the estimates of the parameters of the proposed mix-
ture distributions using method of moments have also been provided.

1. Introduction

In statistics, a mixture distribution is expressed as a convex combination of other probability
distributions. It can be used to model a statistical population with subpopulations, where
components of mixture probability densities are the densities of the subpopulations, and the
weights are the proportion of each subpopulation in the overall population. Mixture distri-
bution may suitably be used for certain data set where different subsets of the whole data
set possess different properties that can best be modeled separately. They can be more mathe-
matically manageable, because the individual mixture components are dealt withmore nicely
than the overall mixture density. The families of mixture distributions have a wider range of
applications in different fields such as fisheries, agriculture, botany, economics, medicine,
genetics, psychology, paleontoogy, electrophoresis, finance, communication theory, sedimen-
tology/geology, and zoology.

Pearson [1] is considered as the torch bearer in the field of mixtures distributions.
He studied the estimation of the parameters of the mixture of two normal distributions.
After a long period of time, some basic properties of mixture distributions were studied
by Robins (1948). Some of other researchers [2–5] have studied in greater detail the finite
mixture of distributions. Roy et al. [6–12] defined and studied poisson, binomial, negative
binomial, gamma, chi-square and Erlang mixtures of some standard distributions. In the
light of the above-mentioned distributions, here we have studied Rayleigh mixtures of
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distributions in which the weight functions are assumed to be chi-square, t- and F-distri-
bution, and the moments, characteristic function, and shape characteristics of these mixtures
distributions have also been studied.

2. Preliminaries

Suppose the random variable X has a probability density function (pdf) f(x | θ) and if the
parameter space Θ is a discrete random variable containing parameter values θ1, θ2, . . . , θk
such that the distribution of Θ is P(Θ = θi) = pi, then the unconditional distribution of X is

m(x) =
k∑

i=1

pif(x | θi). (2.1)

This is called a mixture of the distributions f(x | θi) with weight pi, i = 1, 2, . . . , k. The above
definition may be extended to the case for large k.

It can be generalized to the case when the parameter space Θ is absolutely continuous
random variable having pdf τ(θ). We will have, then, a continuous mixture of densities f(x |
θ)with weight function τ(θ). In this case, the unconditional distribution of X is

m(x) =
∫

Θ
f(x | θ)τ(θ)dθ. (2.2)

3. Main Results

In this paper we first define the general form of Rayleigh mixture distribution. Then we fur-
nished the Rayleigh mixture of some well-known sampling distributions such as chi-square,
t- and F-distributions. The exact distribution of the mixture of two correlated Rayleigh dis-
tributions has been studied.

The main results of this study have been presented in the form of some definitions and
theorems.

Definition 1. A random variable X is said to have Rayleigh mixture distribution if its
probability density function is defined by

f
(
x;σ2, n

)
=
∫∞

0

re−r
2/2σ2

σ2
τ(x, r;n)dr, (3.1)

where τ(x, r; τ, n) is a probability density function or any sampling distribution such as chi-
square, t- and F-distribution.

The name Rayleigh mixture distributions is given due to the fact that the derived dis-
tribution (3.1) is the weighted sum of τ(x, r; τ, n)with weight factor equal to the probabilities
of Rayleigh distribution.

3.1. Formulation of Rayleigh Mixture Distribution

The Rayleigh mixtures of distributions in which the weight functions are assumed to be chi-
square, t- and F-distribution. In a statistical theory, we will use chi-square distribution as a
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weight function if sampling statistic follows chi-square distribution. For example, sampling
variance is followed by chi-square distribution and we can use chi-square distribution as a
weight function. Similarly, we will use t-distribution and F-distribution if and only if sam-
pling statistic follows t-distribution and F-distribution, respectively. For example, if popu-
lation variance is unknown and sample size is very small, then the sampling mean follows
t-distribution and the ratio of sampling variances follows F-distribution. Nowwe define Ray-
leigh mixtures of distributions for different weight functions as follows.

3.1.1. Rayleigh Mixtures of Chi-Square Distribution

Definition 2. A random variable χ2 is said to have a Rayleigh mixture of chi-square dis-
tribution with parameter σ2 with degrees of freedom n if its probability density function
is defined by

f
(
χ2;σ2, n

)
=
∫∞

0

re−r
2/2σ2

σ2

e−χ
2/2(χ2)(n/2)+r−1

2(n/2)+r )n/2 + r
dr; 0 < χ2 <∞, (3.2)

where the weight function τ(x, r; τ, n) in (3.1) is the chi-square sampling distribution. Here
the notation “) ” in (3.2) is a gamma function such that )a = (a − 1)! = (a − 1)(a − 2) · · · 3 · 2 · 1.

3.1.2. Rayleigh Mixtures of t-Distribution

Definition 3. A random variable t is defined to have a Rayleigh mixture of t-distributions with
parameter σ2 and degrees of freedom n if its probability density function is defined as

f
(
t;σ2, n

)
=
∫∞

0

re−r
2/2σ2

σ2

t2r

n(1/2)+rB(1/2 + r, n/2)(1 + t2/n)(n+1)/2+r
dr,

−∞ < t <∞,

(3.3)

where the weight function τ(x, r; τ, n) in (3.1) is the student t-distribution.

3.1.3. Rayleigh Mixtures of F-Distribution

Definition 4. A random variable F is defined to have a Rayleigh mixture of F-distributions
with parameter σ2 and degrees of freedom n1 and n2, if its probability density function is
defined as

f
(
F;σ2, n1, n2

)
=
∫∞

0

re−r
2/2σ2

σ2

(n1/n2)
(n1/2)+rFn1/2+r−1

B(n1/2 + r, n2/2)(1 + (n1/n2)F)
(n1+n2)/2+r

dr,

0 < F <∞,

(3.4)

where the weight function τ(x, r; τ, n) in (3.1) is the F-distribution.
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3.1.4. Mixture of Two Correlated Rayleigh Distributions

Let X and Y be two independent Rayleigh variables with probability density function (pdf).
The joint distribution ofX and Y with correlation coefficient ρ(−1 ≤ ρ ≤ 1) can be constructed
by the following formula:

f
(
x, y
)
= f(x)g

(
y
)[
1 + ρ(1 − 2F(x)) × (1 − 2G

(
y
))]

(3.5)

which was developed by Farlie-Gumbl-Morgenstern (1979).
Using the formula, the mixture of two correlated distributions is as follows:

f
(
x, y;σ1, σ1; ρ

)
=

xy

(σ1σ2)2

×
{
e−(1/2)((x

2/σ2
1 )+(y

2/σ2
2 )) + ρe−(1/2)((x

2/σ2
1 )+(y

2/σ2
2 )) − 2ρe−(1/2)((2x

2/σ2
1 )+(y

2/σ2
2 ))

−2ρe−(1/2)((x2/σ2
1 )+(2y

2/σ2
2 )) + 4ρe−((x

2/σ2
1 )+(y

2/σ2
2 ))
}
,

(3.6)

where x > 0,y > 0;σ1, σ2 > 0 and −1 ≤ ρ ≤ 1.

3.2. Derivation of Characteristics of Rayleigh Mixture Distribution

Moments and different characteristics of the Rayleigh mixture of distributions are presented
by the following theorems.

Theorem 3.1. If χ2 follows a Rayleigh mixture of chi-square distribution with parameter σ2 with deg-
rees of freedom n, then the sth raw moment of this mixture distribution about origin is given by

μ′
s =
∫∞

0

re−r
2/2σ2

σ2

2s)n/2 + r + s

)n/2 + r
dr. (3.7)

Hence, the mean and the variance of this mixture distribution are as follows:

Mean = n + σ
√
2π,

Variance = 2n + 2σ
√
2π + 2σ2(4 − π).

(3.8)
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Proof. We know the sth raw moment defined by

μ′
s = E

[(
χ2
)s]

=
∫∫∞

0

re−r
2/2σ2

σ2

e−χ
2/2(χ2)n/2+r+s−1

2n/2+r)n/2 + r
drdχ2

=
∫∞

0

re−r
2/2σ2

σ2

2s)n/2 + r + s

)n/2 + r
dr.

(3.9)

If we put s = 1 in (3.9), we get

μ′
1 =
∫∞

0

re−r
2/2σ2

σ2

2)n/2 + r + 1

)n/2 + r
dr

= n + σ
√
2π.

(3.10)

If we put s = 2 in (3.9), we have

μ′
2 =
∫∞

0

re−r
2/2σ2

σ2

22)n/2 + r + 2

)n/2 + r
dr

= 4
∫∞

0

re−r
2/2σ2

σ2 (n/2 + r + 1)(n/2 + r)dr

= n2 + 4σ(n + 1)
√
2 )

3
2
+ 2n + 8σ2 (

On simplification
)

= n2 + σ(n + 1)2
√
2π + 2n + 8σ2.

(3.11)

Hence, the variance is defined by

μ2 = μ′
2 −
(
μ′
1

)2

= 2n + 2σ
√
2π + 2σ2(4 − π).

(3.12)

This completes the proof.

Theorem 3.2. If χ2 follows a Rayleigh mixture of chi-square distributions with parameter σ2 and deg-
rees of freedom n, then its characteristic function is given by

Φχ2(t) = (1 − 2it)−n/2
∫∞

0

re−r
2/2σ2

σ2 (1 − 2it)−rdr. (3.13)
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Proof. The characteristic function is defined as

Φχ2(t) = E
[
eitχ

2
]

=
∫∫∞

0

re−r
2/2σ2

σ2

e−(χ
2/2)(1−2it)(χ2)n/2+r−1

2n/2+r)n/2 + r
drdχ2

=
∫∞

0

re−r
2/2σ2

σ2

1

(1 − 2it)n/2+r
dr

= (1 − 2it)−n/2
∫∞

0

re−r
2/2σ2

σ2 (1 − 2it)−rdr

(3.14)

and hence proved

Theorem 3.3. If t follows a Rayleigh mixture of t-distributions with parameter σ2 and degrees of free-
dom n, then the sth raw moment about origin is

μ′
2s+1 = μ2s+1 = 0,

μ′
2s = μ2s = ns

∫∞

0

re−r
2/2σ2

σ2

)r + s + 1/2 )n/2 − s
)r + 1/2 )n/2

dr.
(3.15)

And hence

Mean = 0, Variance =
n

(n − 2)

[
1 + σ

√
2π
]

for n > 2. (3.16)

Therefore,

Skewness: β1 = 0, Kurtosis: β2 =
(n − 2)

[
2σ2 + 2σ

√
2π + 3

]

(n − 4)
[
1 + σ

√
2π
]2 , n > 4. (3.17)

Proof. The (2s + 1)th raw moment (odd order moments) about origin is given by

μ′
2s+1 = E

[
t2s+1
]

=
∫∞

−∞

∫∞

0

re−r
2/2σ2

σ2

t2r+2s+1

n1/2+rB(1/2 + r, n/2)(1 + t2/n)(n+1)/2+r
dr dt

=
∫∞

0

re−r
2/2σ2

σ2n1/2+rB(1/2 + r, n/2)

∫∞

−∞

t2r+2s+1

(1 + t2/n)(n+1)/2+r
dt dr
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=
∫∞

0

re−r
2/2σ2

σ2n1/2+rB(1/2 + r, n/2)

∫∞

−∞
ψ(t)dt dr

= 0

[
Since, ψ(t) =

t2r+2s+1

(1 + t2/n)(n+1)/2+r
is an odd function of t

]
.

(3.18)

If s = 0, then μ′
1 = Mean = 0. If s = 1 then μ′

3 = μ3 = 0. So, μ′
2s+1 = μ2s+1 = 0.

Now, the (2s)th raw moment about origin is given by

μ2s = μ′
2s = E

[
t2s
]

=
∫∞

−∞

∫∞

0

re−r
2/2σ2

σ2

t2r+2s

n1/2+rB(1/2 + r, n/2)(1 + t2/n)(n+1)/2+r
drdt

=
∫∞

0

re−r
2/2σ2

ns+r+1/2

σ2n1/2+rB(1/2 + r, n/2)

∫∞

0

(
t2/n

)s+r+1/2−1

(1 + t2/n)(n+1)/2+r
d

(
t2

n

)
dr

=
∫∞

0

re−r
2/2σ2

ns+r+1/2

σ2n1/2+rB(1/2 + r, n/2)

∫∞

0

us+r+1/2−1

(1 + u)(n+1)/2+r
dudr;

[
Putting u =

t2

n

]

= ns
∫∞

0

re−r
2/2σ2

σ2

)r + s + 1/2 )n/2 − s
)r + 1/2 )n/2

dr.

(3.19)

If s = 1 then,

μ′
2 = μ2

= n
∫∞

0

re−r
2/2σ2

σ2

)r + 3/2 )n/2 − 1

)r + 1/2 )n/2
dr

=
n

n − 2
+
(

2n
n − 2

)√
2σ )

3
2
; n > 2

=
n

n − 2

[
1 + σ

√
2π
]
;

[
∵ )

3
2
=

√
π

2

]
.

(3.20)

If s = 2, then,

μ′
4 = μ4 = n2

∫∞

0

re−r
2/2σ2

σ2

)r + 5/2 )n/2 − 2

)r + (1/2) )n/2
dr

=
n2

(n − 2)(n − 4)

∫∞

0

re−r
2/2σ2

σ2

(
r2 + 4r + 3

)
dr

[
Since,

)r + 5/2 )n/2 − 2

)r + 1/2 )n/2
=

(r + 3/2)(r + 1/2)
(n/2 − 1)(n/2 − 2)

=
r2 + 4r + 3

(n − 2)(n − 4)

]
.

(3.21)
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Hence,

μ′
4 = μ4

=
n2

(n − 2)(n − 4)

[
2σ2)2 + 4σ

√
2 )

3
2
+ 3

]

=
n2

(n − 2)(n − 4)

[
2σ2 + 2σ

√
2π + 3

]
, n > 4.

(3.22)

To find the Skewness and Kurtosis of this mixture distribution

Skewness: β1 =
μ2
3

μ3
2

= 0,

Kurtosis: β2 =
μ4

μ2
2

=
(n − 2)

[
2σ2 + 2σ

√
2π + 3

]

(n − 4)
[
1 + σ

√
2π
]2 .

(3.23)

This completes the proof.

Theorem 3.4. If F follows a Rayleigh mixture of F-distributions having parameter σ2 with degrees of
freedom n1 and n2, respectively, then the sth raw moment about origin is given by

μ′
s =
(
n2
n1

)s ∫∞

0

re−r
2/2σ2

σ2

)n1/2 + r + s )n2/2 − s
)n1/2 + r )n2/2

dr. (3.24)

Hence, the mean and variance of this distribution are

Mean =
n2

n1(n2 − 2)

[
n1 + σ

√
2π
]
,

Variance =
(
n2
n1

)2

⎡
⎢⎣
n21 + 2n1 + 2(n1 + 1) σ

√
2π + 8σ2

(n2 − 2) (n2 − 4)
−

(
n1 + σ

√
2π
)2

(n2 − 2)2

⎤
⎥⎦,

(3.25)

respectively.

Proof. The sth raw moment about origin is given by

μ′
s = E(F

s) =
∫∫∞

0

re−r
2/2σ2

σ2

(n1/n2)
n1/2+rFn1/2+r+s−1

B(n1/2 + r, n2/2)(1 + (n1/n2)F)
(n1+n2)/2+r

drdF

=
∫∞

0

re−r
2/2σ2

σ2

(n1/n2)
n1/2+r

B(n1/2 + r, n2/2)

∫∞

0

Fn1/2+r+s−1

(1 + (n1/n2)F)
(n1+n2)/2 +r

dFdr

=
(
n2
n1

)s ∫∞

0

re−r
2/2σ2

σ2

)n1/2 + r + s )n2/2 − s
)n1/2 + r )n2/2

dr.

(3.26)
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If we put s = 1, we get

Mean = μ′
1

=
(
n2
n1

)∫∞

0

re−r
2/2σ2

σ2

)n1/2 + r + 1 )n2/2 − 1

)n1/2 + r )n2/2
dr

=
n2

n1(n2 − 2)

[
n1 + σ

√
2π
]
.

(3.27)

Putting s = 2, we get

μ′
2 =
(
n2
n1

)2 ∫∞

0

re−r
2/2σ2

σ2

)n1/2 + r + 2 )n2/2 − 2

)n1/2 + r )n2/2
dr

=
(
n2
n1

)2 1
(n2 − 2)(n2 − 4)

[
n21 + 2n1 + 2(n1 + 1) σ

√
2π + 8σ2

]
.

(3.28)

Then the variance,

μ2 = μ′
2 −
(
μ′
1

)2

=
(
n2
n1

)2

⎡
⎢⎣
n21 + 2n1 + 2(n1 + 1) σ

√
2π + 8σ2

(n2 − 2)(n2 − 4)
−

(
n1 + σ

√
2π
)2

(n2 − 2)2

⎤
⎥⎦,

(3.29)

hence proved.

Theorem 3.5. If F follows a Rayleigh mixture of F-distributions having parameter σ2 with degrees of
freedom n1 and n2, respectively, then its characteristic function is given by

ΦF(t) =
∫∞

0

re−r
2/2σ2

σ2

∞∑

x=0

1
x!

·
(
n2it

n1

)x )n1/2 + r + x )n2/2 − x
)n1/2 + r )n2/2

dr. (3.30)

From here we may get the mean and variance of this distribution.

Proof. The characteristic function of the random variable F is given by

ΦF(t) = E
[
eitF
]

=
∫∞

0
eitF
∫∞

0

re−r
2/2σ2

σ2

(n1/n2)
n1/2+rFn1/2+r−1

B(n1/2 + r, n2/2)(1 + (n1/n2)F)
(n1+n2)/2+r

drdF

=
∫∞

0

re−r
2/2σ2

σ2

∞∑

x=0

1
x!

·
(
n2it

n1

)x )n1/2 + r + x )n2/2 − x
)n1/2 + r )n2/2

dr.

(3.31)
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Hence the sth raw moment about origin is

μ′
s = coefficient of

(it)s

s!
in ΦF(t)

=
(
n2
n1

)s ∫∞

0

re−r
2/2σ2

σ2

)n1/2 + r + s )n2/2 − s
)n1/2 + r )n2/2

dr.

(3.32)

If s = 1, then

μ′
1 =
(
n2
n1

)∫∞

0

re−r
2/2σ2

σ2

)n1/2 + r + 1 )n2/2 − 1

)n1/2 + r )n2/2
dr

=
n2

n1(n2 − 2)

[
n1 + σ

√
2π
]
.

(3.33)

If we put s = 2, we get

μ′
2 =
(
n2
n1

)2 ∫∞

0

re−r
2/2σ2

σ2

)n1/2 + r + 2 )n2/2 − 2

)n1/2 + r )n2/2
dr

=
(
n2
n1

)2 1
(n2 − 2)(n2 − 4)

[
n21 + 2n1 + 2(n1 + 1) σ

√
2π + 8σ2

]
.

(3.34)

Therefore,

Variance: μ2 = μ′
2 −
(
μ′
1

)2

=
(
n2
n1

)2

⎡
⎢⎣
n21 + 2n1 + 2(n1 + 1) σ

√
2π + 8σ2

(n2 − 2)(n2 − 4)
−

(
n1 + σ

√
2π
)2

(n2 − 2)2

⎤
⎥⎦.

(3.35)

Driving coefficient of Skewness = β1 and coefficient of Kurtosis = β2 is a tedious job; we have
avoided the task here.

The different moments of the random variable which is the resultant of the product of
two correlated Rayleigh random variables are obtained by following theorem.

Theorem 3.6. For −1 ≤ ρ ≤ 1, the (a, b)th product moment of the mixture of two correlated Rayleigh
random variables is denoted by μ′(a, b; ρ) and given by

μ′(a, b; ρ
)
= σa1σ

b
2 × Γ

(a
2
+ 1
)
Γ
(
b

2
+ 1
)
×
[
2a+b/2 + ρ

(
2a/2 − 1

)(
2b/2 − 1

)]
. (3.36)
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Proof. We know that

μ′(a, b; ρ
)
= E
(
XaYb

)

=
∫∫∞

0
xayb × xy

(σ1σ2)2

×
{
e−(1/2)(x

2/σ2
1+y

2/σ2
2 ) + ρe−(1/2)(x

2/σ2
1+y

2/σ2
2 ) − 2ρe−(1/2)(2x

2/σ2
1+y

2/σ2
2 )

−2ρe−(1/2)(x2/σ2
1+2y

2/σ2
2 ) + 4ρe−(x

2/σ2
1+y

2/σ2
2 )
}
dxdy

=
∫∫∞

0

xa+1yb+1

(σ1σ2)2
× e−(1/2)(x2/σ2

1+y
2/σ2

2 )dxdy

+ ρ
∫∫∞

0

xa+1yb+1

(σ1σ2)2
× e−(1/2)(x2/σ2

1+y
2/σ2

2 )dxdy

− 2ρ
∫∫∞

0

xa+1yb+1

(σ1σ2)2
× e−(1/2)(2x2/σ2

1+y
2/σ2

2 )dxdy

− 2ρ
∫∫∞

0

xa+1yb+1

(σ1σ2)2
× e−(1/2)(x2/σ2

1+2y
2/σ2

2 )dxdy

+ 4ρ
∫∫∞

0

xa+1yb+1

(σ1σ2)2
× e−(x2/σ2

1+y
2/σ2

2 )dxdy.

(3.37)

Now taking the first integral from (3.37)

∫∫∞

0

xa+1yb+1

(σ1σ2)2
× e−(1/2)(x2/σ2

1+y
2/σ2

2 )dxdy (3.38)

andmaking a transformation p = (1/2)(x2/σ2
1) and q = (1/2)(y2/σ2

2)we obtain the following
result:

(
σ1
√
2
)a ∫∞

0
pa/2e−pdp ×

(
σ2
√
2
)b ∫∞

0
qb/2e−qdq = 2(a+b)/2σa1σ

b
2 × Γ

(a
2
+ 1
)
Γ
(
b

2
+ 1
)
. (3.39)

Using the similar mathematical simplificationwe get the following results for the 2nd integral

2(a+b)/2ρσa1σ
b
2 × Γ

(a
2
+ 1
)
Γ
(
b

2
+ 1
)
, (3.40)

for the 3rd integral

2b/2ρσa1σ
b
2 × Γ

(a
2
+ 1
)
Γ
(
b

2
+ 1
)
, (3.41)
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for the 4th integral

2a/2ρσa1σ
b
2 × Γ

(a
2
+ 1
)
Γ
(
b

2
+ 1
)
, (3.42)

for the 5th integral

ρσa1σ
b
2 × Γ

(a
2
+ 1
)
Γ
(
b

2
+ 1
)
. (3.43)

Now putting all of these values in (3.37) and simplifying the result we get our desired result
stated in the theorem.

Special findings of the above theorem if ρ = 0 then the product moment of the two cor-
related Rayleigh variables is nothing but the product of ath and bth moments of two inde-
pendent Rayleigh variables. In such case the product moment is as follows:

E
(
XaYb

)
= 2(a+b)/2 × σa1σb2 × Γ

(a
2
+ 1
)
Γ
(
b

2
+ 1
)

= 2a/2σa1Γ
(a
2
+ 1
)
× 2b/2σb2Γ

(
b

2
+ 1
)

= E(Xa) · E
(
Yb
)
.

(3.44)

Theorem 3.7. If X and Y are two correlated Rayleigh variates having joint density given in (3.6),
then probability density function ofW = X/Y is given by

f
(
w;σ1, σ2; ρ

)
=
√
π

2
×w2σ1σ2

×
[{

1 + ρ
(
1 +

√
2
)}(

w2σ2
2 + σ

2
1

)−(3/2)

−2ρ
{(

2w2σ2
2 + σ

2
1

)−(3/2)
+
(
w2σ2

2 + 2σ2
1

)−(3/2)}]
,

(3.45)

where, w > 0; σ1 > 0, σ2 > 0 and −1 ≤ ρ < 1.

Proof. Under the transformation x = z, y = z/w in (3.6) with the Jacobean

J
((
x, y
) −→ (w, z)

)
=
w2

z
, (3.46)

the pdf of w and z is given by

f(w, z) =
z2

w(σ1σ2)2
{(

1 + ρ
)
e−z

2/2(1/σ2
1+1/w

2σ2
2 ) − 2ρe−z

2/2(2/σ2
1+1/w

2σ2
2 )

−2ρe−z2/2(1/σ2
1+2/w

2σ2
2 ) + 4ρe−z

2(1/σ2
1+1/w

2σ2
2 )
}
.

(3.47)
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Now integrating over zwe get the marginal distribution of w as

f(w) =

(
1 + ρ

)

w(σ1σ2)2

∫∞

0
z2e−z

2/2(1/σ2
1+1/w

2σ2
2 )dz

− 2ρ

w(σ1σ2)2

∫∞

0
z2e−z

2/2(2/σ2
1+1/w

2σ2
2 )dz

− 2ρ

w(σ1σ2)2

∫∞

0
z2e−z

2/2(1/σ2
1+2/w

2σ2
2 )dz

+
4ρ

w(σ1σ2)2

∫∞

0
z2e−z

2(1/σ2
1+1/w

2σ2
2 )dz.

(3.48)

Taking each of the integral separately and making transformation

z =
√
2p

(
1
σ2
1

+
1

w2σ2
2

)−1/2
for the first integral,

z =
√
2p

(
2
σ2
1

+
1

w2σ2
2

)−1/2
for the second integral,

z =
√
2p

(
1
σ2
1

+
2

w2σ2
2

)−1/2
for the third integral,

z =
√
p

(
1
σ2
1

+
1

w2σ2
2

)−1/2
for the fourth integral.

(3.49)

We have got the following results:

√
π

2

(
1
σ2
1

+
1

w2σ2
2

)−3/2
,

√
π

2

(
2
σ2
1

+
1

w2σ2
2

)−3/2
,

√
π

2

(
1
σ2
1

+
2

w2σ2
2

)−3/2
,

√
π

4

(
1
σ2
1

+
1

w2σ2
2

)−3/2
(3.50)

for the first, second, third, and fourth integration, respectively.

Combining all of the obtained results for the integrals in (3.48) we achieve the result
stat-
ed as in the theorem.

Theorem 3.8. For nonnegative integer a and −1 < ρ < 1 the ath moment forW = X/Y is

E(Wa) =
1

σ2
√
2

(
σ1
σ2

)a+1
× Γ
(
a + 3
2

)
Γ
(
−a
2

)
×
[
1 + ρ

{
1 − 2

√
2
(
1 + 2a+2

)}]
. (3.51)
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Proof. According to definition of expectation we can obtain the following result for the ath
moment:

E(Wa) =
∫∞

0
wa+2 ×

√
π

2

[{
1 + ρ

(
1 +

√
2
)}(

w2σ2
2 + σ

2
1

)−3/2

−2ρ
{(

2w2σ2
2 + σ

2
1

)−3/2
+
(
w2σ2

2 + 2σ2
1

)−3/2}]
dw.

(3.52)

By making transformation w = (σ1/σ2)
√
m, w = (σ1/σ2)

√
m/2 and w = (σ1/σ2)

√
2m for the

first, second, and third parts of the component containing the integral we have

E(Wa) =
√
π

23/2
× σa+11

σa+22

{
1 + ρ

(
1 +

√
2
)}

× B
(
a + 3
2

,−a
2

)

− ρ
√
π

2(a+4)/2
× σa+11

σa+22

{
1 + ρ

(
1 +

√
2
)}

× B
(
a + 3
2

,−a
2

)

− ρ
√
π

2−(a+2)/2
× σa+11

σa+22

{
1 + ρ

(
1 +

√
2
)}

× B
(
a + 3
2

,−a
2

)
.

(3.53)

Simplifying this we have the stated result of the theorem.

Theorem 3.9. The moment generating function ofW is

MW(t) =
∞∑

a=o

ta

a!
× 1

σ2
√
2

(
σ1
σ2

)a+1

× Γ
(
a + 3
2

)
Γ
(
−a
2

)
×
[
1 + ρ

{
1 − 2

√
2
(
1 + 2a+2

)}]
.

(3.54)

Proof. The moment generating function of V at t is given by

MW(t) = E
(
etw
)

=
∞∑

a=0

ta

a!
E(Wa)

=
∞∑

a=o

ta

a!
× 1

σ2
√
2

(
σ1
σ2

)a+1
× Γ
(
a + 3
2

)
Γ
(
−a
2

)
×
[
1 + ρ

{
1 − 2

√
2
(
1 + 2a+2

)}]
.

(3.55)

3.3. Parameter Estimation of Rayleigh Mixture Distribution

We know the well-knownmethod of the maximum likelihood estimation is very complicated
for the parameter estimation of mixture distribution and method of moment is very suitable
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in these cases. Hence, we used method of moments (MoMs) estimation of technique for es-
timation of the parameter of the Rayleigh mixture distribution.

3.3.1. Parameter Estimation of Rayleigh Mixture of Chi-Square Distribution

LetX1, X2, . . . , Xn be a random sample from the distribution defined in (3.2)where the para-
meter σ2 is unknown.

The first sample raw moment is

m′
1 =

1
n

n∑

i=1

Xi = X
(
say
)
. (3.56)

And as we already got

μ′
1 = n + σ

√
2π. (3.57)

Hence

n + σ
√
2π = X. (3.58)

Therefore,

σ̂2 =

(
X − n

)2

2π
. (3.59)

3.3.2. Parameter Estimation of Rayleigh Mixture of t-Distribution

Let X1, X2, . . . , Xn be a random sample from the distribution defined in (3.3) where the
para-
meter σ2 is unknown. We want to estimate this parameter by method of moment.

The second sample raw moment is obtained as

m′
2 =

1
n

n∑

i=1

X2
i = S

2 (say
)
. (3.60)

We have already found

μ′
2 = μ2 =

n

n − 2

[
1 + σ

√
2π
]
, n > 2. (3.61)

Hence, by the method of moments, we get

n

n − 2

[
1 + σ

√
2π
]
= S2, n > 2. (3.62)
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Therefore,

σ̂2 =
1
2π

[
S2 (n − 2)

n
− 1
]2
. (3.63)

3.3.3. Parameter Estimation of Mixture of F-Distribution

Let X1, X2, . . . , Xn be a random sample from the distribution as specified in (3.4)where the
parameter σ2 is unknown. We want to estimate this parameter by method of moments.

The first sample raw moment is

m′
1 =

1
n

n∑

i=1

Xi = X
(
say
)
. (3.64)

And we already get

μ′
1 =

n2
n1(n2 − 2)

[
n1 + σ

√
2π
]
. (3.65)

Hence, from the method of moments estimator is

n2
n1(n2 − 2)

[
n1 + σ

√
2π
]
= X. (3.66)

Therefore,

σ̂2 =
(

1
2π

)(
n1
n2

)2[
X(n2 − 2) − n1

]2
. (3.67)

4. Concluding Remarks

In this paper, we have presented the Rayleigh mixtures of distributions in which the weight
functions are assumed to be chi-square, t- and F-distributions, and the mixture of two cor-
related Rayleigh distributions has been presented. The moments, characteristic function and
shape characteristics of these mixtures distributions have also been studied. The Rayleigh
distribution is frequently used to model wave heights in oceanography and in communica-
tion theory to describe hourly median and instantaneous peak power of received radio sig-
nals. It could also be used to model the frequency of different wind speeds over a year at
wind turbine sites. The Rayleigh mixture of sampling distribution may be used in the similar
nature but with some additional informative environment. Suppose wewant to know the dis-
tribution of the average fish caught by fisherman in the Bay of Bengal of a particular day.
Fishing depends on height of the wave and wind speed in that zone. As we know the average
amount fish catch by the fisherman depends on the weather of the Sea. If the wave heights are
very high the fishermen are prohibited to go to the sea for fishing if it is not so much danger-
ous but still the sea is unstable they are asked to be very careful during fishing. This means
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that average amount of fishing and standard deviation of the amount fish catch by the fisher-
men varies based on heights of the wave. The distribution of wave heights follows Rayleigh
distribution and distribution of average catch fish at a normal situation follows t-distri-
bution but at the Bay of Bangle it is seriously affected by height of wave; hence the average
number of fish catch at the Bay of Bangle will follow Rayleigh mixture of t-distribution.
Similarly, the distribution of the variability of the number of fishes catch by the fishermen at
the Bay of Bangle follows Rayleighmixture of chi-square distribution.We hope the findings of
the paper will be useful for the practitioners that have been mentioned above.
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