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We investigate the extent to which the study of quasimultipliers can be made beyond Banach
algebras. We will focus mainly on the class of F-algebras, in particular on complete k-normed
algebras, 0 < k ≤ 1, not necessarily locally convex. We include a few counterexamples to
demonstrate that some of our results do not carry over to general F-algebras. The bilinearity and
joint continuity of quasimultipliers on an F-algebraA are obtained under the assumption of strong
factorability. Further, we establish several properties of the strict and quasistrict topologies on the
algebra QM(A) of quasimultipliers of a complete k-normed algebra A having a minimal ultra-
approximate identity.

1. Introduction

A quasimultiplier is a generalization of the notion of a left (right, double) multiplier and
was first introduced by Akemann and Pedersen in [1, Section 4]. The first systematic account
of the general theory of quasimultipliers on a Banach algebra with a bounded approximate
identity was given in a paper by McKennon [2] in 1977. Further developments have been
made, among others, by Vasudevan and Goel [3], Kassem and Rowlands [4], Lin [5, 6],
Dearden [7], Argün and Rowlands [8], Grosser [9], Yılmaz and Rowlands [10], and Kaneda
[11, 12].

In this paper, we consider the notion of quasimultipliers on certain topological
algebras and give an account, how far one can get beyond Banach algebras, using
combination of standard methods. In particular, we are able to establish some results of the
above authors in the framework of F-algebras or complete k-normed algebras.
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2. Preliminaries

Definition 2.1. Let E be a vector space over the field � (= � or � ).

(1) A function q : E → � is called an F-seminorm on E if it satisfies

(F1) q(x) ≥ 0 for all x ∈ E,

(F2) q(x) = 0 if x = 0,

(F3) q(αx) ≤ q(x) for all x ∈ E and α ∈ � with |α| ≤ 1,

(F4) q(x + y) ≤ q(x) + q(y) for all x, y ∈ E,

(F5) if αn → 0 in � , then q(αnx) → 0 for all x ∈ E.

(2) An F-seminorm q on E is called an F-norm if, for any x ∈ E, q(x) = 0 implies that
x = 0.

(3) An F-seminorm (or F-norm) q on E is called k-homogeneous ([13, page 160]; [14,
pages 90, 95]), where 0 < k ≤ 1, if it also satisfies

(F′
3) q(αx) = |α|kq(x) for all x ∈ E and α ∈ � .

(4) A k-homogeneous F-seminorm (resp.,F-norm) onE is called, in short, a k-seminorm
(resp., k-norm).

Definition 2.2. (1) A vector space with an F-norm q is called an F-normed space and is denoted
by (E, q); if it is also complete, it is called an F-space. Clearly, any F-normed space (E, q) is a
metrizable TVS with metric given by d(x, y) = q(x − y), x, y ∈ E.

(2) An F-seminorm (or F-norm) q on an algebra A is called submultiplicative if

q
(
xy

) ≤ q(x)q
(
y
)
, ∀x, y ∈ A. (2.1)

An algebra with a submultiplicative F-norm q is called an F-normed algebra; if it is also
complete, it is called an F-algebra. An algebra with a submultiplicative k-norm q is called
an k-normed algebra. A complete k-normed algebra is also called a k-Banach algebra in the
literature.

Theorem 2.3. (a) If (E, τ) is TVS, then its topology τ can be defined by a family of F-seminorms (see
[15, pages 48–51]; [16, pages 2-3]).

(b) If (E, τ) is a metrizable TVS, then τ may be defined by a single F-norm (see [13, 15, 17]).
(c) If (E, τ) is a Hausdorff locally bounded TVS, then τ may be a single k-norm for some k,

0 < k ≤ 1 (see [13, 14]).

Note that if (E, q) is an F-normed space, then, for any ε > 0, the set {x ∈ E : q(x) ≤ ε}
is a neighbourhood of 0 in E, but it need not be a bounded set. In case, if {x ∈ E : q(x) ≤ ε}
is bounded for some ε > 0, then (E, q) becomes a Hausdorff locally bounded TVS and hence,
by Theorem 2.3(c), a k-normed space for some k, 0 < k ≤ 1.

Definition 2.4. Let A be an algebra over � (� or � ) and τ a topology on A such that (A, τ)
is a TVS. Then the pair (A, τ) is called a topological algebra if it has a separately continuous
multiplication. A topological algebra A is said to be locally bounded if it has a bounded
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neighbourhood of 0 (see [18, page 39]). If (A, τ) is a complete Hausdorff locally bounded
topological algebra, then its topology can be defined by a submultiplicative k-norm q,
0 < k ≤ 1 [18, page 41].

By a famous result of Arens (see [18, page 24]), every Baire metrizable topological
algebra has jointly continuous multiplication; in particular, every F-algebra has jointly
continuous multiplication.

For the general theory and undefined terms, the reader is referred to [13, 15–17, 19] for
topological vector spaces, to [13, 14, 20] for F-normed and k-normed spaces, and to [18, 21, 22,
pages 32–35] for various classes of topological algebras.

If E and F are topological vector spaces over the field � (= � or � ), then the set of all
continuous linear mappings T : E → F is denoted by CL(E, F). Clearly, CL(E, F) is a vector
space over � with the usual pointwise operations. Further, if F = E, CL(E) = CL(E, E) is an
algebra under composition (i.e., (ST)(x) = S(T(x)), x ∈ E) and has the identity I : E → E
given by I(x) = x (x ∈ E).

We now state the following three versions of the uniform boundedness principle for
reference purpose.

Theorem 2.5 (see [23, page 142, principle 33.1]). Let X be a complete metric space and H =
{fα : α ∈ J} a family of continuous real-valued functions onX. IfH is pointwise bounded from above,
then on a certain closed ball B ⊆ X it is uniformly bounded above, that is, there exists a constantC > 0
such that

fα(x) ≤ C, ∀α ∈ J, x ∈ B. (2.2)

Theorem 2.6 (see [14, page 39]; [19, page 465]). Let E be an F-space and F any topological
vector space. Let H ⊆ CL(E, F) be a collection such that H is pointwise bounded on E. Then H
is equicontinuous; hence, for any bounded set D in E, ∪{T(D) : T ∈ H} is a bounded set in F.

The following version is for bilinear mappings.

Theorem 2.7. Let E and F be F-spaces and G any TVS.

(a) A collectionH of bilinear mappings from E×F into G is equicontinuous if and only if each
f ∈ H is separately continuous andH is pointwise bounded on E × F. In particular, every
separately continuous bilinear map f : E × F −→ G is jointly continuous (see [13, page
172]; [19, page 489]).

(b) Let fn : E × F −→ G be a sequence of separately continuous bilinear mappings such that
limn→∞fn(x, y) = f(x, y) exists for each (x, y) ∈ E × F. Then {fn} is equicontinuous
and f is bilinear and jointly continuous (see [19, page 490]; [24, page 328]).

Definition 2.8. (1)Anet {eλ : λ ∈ I} in a topological algebraA is called an approximate identity
if

lim
λ

eλa = a = lim
λ

aeλ, ∀a ∈ A. (2.3)

(2) An approximate identity {eλ : λ ∈ I} in an F-normed algebra (A, q) is said to be
minimal if q(eλ) ≤ 1 for all λ ∈ I.
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(3) An algebraA is said to be left (resp., right) faithful if, for any a ∈ A, aA = {0} (resp.,
Aa = {0}) implies that a = 0; A is called faithful if it is both left and right faithful.
One mentions that A is faithful in each of the following cases:

(i) A is a topological algebra with an approximate identity (e.g., A is a locally
C∗-algebra);

(ii) A is a topological algebra with an orthogonal basis [25].

Definition 2.9. A topological algebraA is called

(1) factorable if, for each a ∈ A, there exist b, c ∈ A such that a = bc,

(2) strongly factorable if, for any sequence {an} in A with an → 0, there exist a ∈ A and
a sequence {bn} (resp., {cn}) in A with bn → 0 (resp., cn → 0) such that an = abn
(resp., an = cna) for all n ≥ 1.

Clearly, every strongly factorable algebra is factorable. Factorization in Banach and
topological algebras plays an important role in the study of multipliers and quasimultipliers.
There are several versions of the famous Hewitt-Cohen’s factorization theorem in the
literature (see, e.g., the book [26] and its references). Using the terminology of [27], we state
the following version in the nonlocally convex case.

Theorem 2.10 (see [27]). Let A be a fundamental F-algebra with a uniformly bounded left
approximate identity. Then A is strongly factorable.

Definition 2.11. Let (A, q) be an F-normed space (in particular, an F-normed algebra). For any
T ∈ CL(A), let

‖T‖q = sup
{
q(T(x))
q(x)

: x ∈ A, x /= 0
}
. (∗)

It is easy to see that if q is a k-norm, 0 < k ≤ 1, (resp., a seminorm) onA, then ‖ · ‖q is a k-norm
(resp., a seminorm) on CL(A); further, in these cases, we have alternate formulas for ‖T‖q as

‖T‖q = sup
{
q(T(x)) : x ∈ A, q(x) = 1

}

= sup
{
q(T(x)) : x ∈ A, q(x) ≤ 1

}
,

(2.4)

for each T ∈ CL(A) (see [14, pages 101-102]; [28, pages 3–5]; [19, page 87]).

Remark 2.12. In an earlier version of this paper, the authors had erroneously made the blank
assumption that, for q an F-norm on A, ‖T‖q given by (∗) always exists for each T ∈ CL(A).
We are grateful to referee for pointing out that this assumption cannot be justified in view of
the following counterexamples.

(1) First, ‖T‖q need not be finite for a general F-norm. For example, let A = �2 ,
q(x1, x2) = |x1|+|x2|1/2, T(x1, x2) = (x2, x1). Then q is an F-norm onA, but ‖T‖q = ∞:
for any n ∈ �,

‖T‖q ≥
q
[
T
(
n, n2)]

q(n, n2)
=

q
(
n2, n

)

q(n, n2)
=
n2 + n1/2

2n
−→ ∞. (2.5)
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(2) Even when considering the subspace of those T for which ‖T‖q < ∞, then ‖ · ‖q
need not always be an F-norm, since (F5) need not hold. For example, for a fixed
sequence (pn) with 0 < pn ≤ 1, pn → 0, consider the F-algebra A of sequences
(xn) ⊆ � with |xn|pn → 0 and q((xn)) = supn≥1|xn|pn . Then ‖T‖q < ∞ for all
multipliers of A, but ‖ · ‖q is not an F-norm, that is, it makes the space CL(A) into
an additive topological group but not into a topological vector space (as it would
lack the continuity of scalar multiplication in the absence of (F5) (cf. [14, Example
1.2.3, page 8]).

In view of the above remark, we will need to assume that (A, q) is a k-normed space
(or a k-normed algebra)whenever ‖T‖q is considered for T ∈ CL(A) or CL(A ×A,A).

Some useful properties of (CL(A), ‖ · ‖q) are summarized as follows.

Theorem 2.13 (see [14, pages 101-102]). Let (A, q) be a k-normed space (in particular, a k-normed
algebra) with 0 < k ≤ 1. Then:

(a) a linear mapping T : A → A is continuous ⇔ ‖T‖q < ∞;

(b) ‖ · ‖q is a k-norm on CL(A);

(c) q(T(x)) ≤ ‖T‖q · q(x) for all x ∈ A;

(d) for any S, T ∈ CL(A), ‖ST‖q ≤ ‖S‖q‖T‖q; hence (CL(A), ‖ · ‖q) is a k-normed algebra;

(e) if A is complete, then (CL(A), ‖ · ‖q) is a complete k-normed algebra.

Remark 2.14. The referee has enquired if the present theory can be considered for the class
of locally convex F-algebras. It is well known (e.g., [22, page 33]; [21, page 9]) that, for this
class of topological algebras, the topology can be generated by an increasing countable family
of seminorms {qn}, which need not be submultiplicative but satisfy the weaker condition
qn(xy) ≤ qn+1(x)qn+1(y); however, for locally m-convex F-algebras, the seminorms can be
chosen to be submultiplicative. In view of this, we believe that a study of quasimultipliers
can possibly be made on locally m-convex algebra F-algebras parallel to the one given by
Phillips (see [29, pages 177–180]) for multipliers.

3. Multipliers on F-Normed Algebras

In this section, we recall definitions and results on various notions of multipliers on an algebra
A (as given in [30–33]) which we shall require later in the study of quasimultipliers (see also
[25, 29, 34–40]). In fact, we shall see that the proofs of most of the results on quasimultipliers
are based on the properties of left, right, and double multipliers.

Definition 3.1 (see [31]). LetA be an algebra over the field � (� or � ).

(1) A mapping T : A → A is called a

(i) multiplier on A if aT(b) = T(a)b for all a, b ∈ A,
(ii) left multpilier on A if T(ab) = T(a)b for all a, b ∈ A,
(iii) right multiplier on A if T(ab) = aT(b) for all a, b ∈ A.

(2) A pair (S, T) of mappings S, T : A → A is called a double multiplier on A if aS(b) =
T(a)b for all a, b ∈ A.
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Some authors use the term centralizer instead of multiplier (see, e.g., [30, 31]).
Let M(A) (resp., M�(A),Mr(A)) denote the set of all multipliers (resp., left

multipliers, right multipliers) onA andMd(A) the set of all double multipliers on an algebra
A. For any a ∈ A, let La, Ra : A → A be given by

La(x) = ax, Ra(x) = xa, x ∈ A. (3.1)

Clearly, La ∈ M�(A), Ra ∈ Mr(A), and (La, Ra) ∈ Md(A).
For convenience, we summarize some basic properties of multipliers in the following

theorems for later references.

Theorem 3.2 (see [31]). Let A be an algebra. Then,

(a) M�(A) ∩Mr(A) ⊆ M(A);

(b) if A is faithful, thenM(A) ⊆ M�(A) ∩Mr(A) and henceM(A) = M�(A) ∩Mr(A);

(c) if A is commutative and faithful, thenM�(A) = Mr(A) = M(A);

(d) M�(A) and Mr(A) are algebras with composition as multiplication (i.e., (T1T2)(x) =
T1(T2(x))) and have the identity I : A → A, I(x) = x (x ∈ A);

(e) M(A) is a vector space; if, in addition, A is faithful, then M(A) is a commutative algebra
(without A being commutative) with identity I.

Theorem 3.3 (see [31]). Let A be a faithful algebra. Then,

(a) if (S, T) ∈ Md(A), then (i) S and T are linear and (ii) S ∈ M�(A) and T ∈ Mr(A). In
particular, every T ∈ M(A) is linear;

(b) Md(A) is an algebra with identity (I, I) under the operations

(S1, T1) + (S2, T2) = (S1 + S2, T1 + T2), λ(S1, T1) = (λS1, λT1) (λ ∈ � ),

(S1, T1)(S2, T2) = (S1S2, T2T1);
(3.2)

(c) let (S1, T1), (S2, T2) ∈ Md(A). If S1 = S2, then T1 = T2; if T1 = T2 then S1 = S2;

(d) if A is commutative, then Md(A) is commutative and Md(A) = M(A); in fact, if
(S, T) ∈ Md(A), then S = T .

Definition 3.4. One defines mappings μ� : A → M�(A), μr : A → Mr(A), and μd : A →
Md(A) by

μ�(a) = La, μr(a) = Ra, μd(a) = (La, Ra), a ∈ A. (3.3)
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Theorem 3.5 (see [31]). Let A be an algebra, and let μ� , μr , and μd be the mappings as defined
above. Then,

(a) μ�, μr , and μd are linear;

(b) μ� and μd are algebra homomorphisms, while μr is an algebra antihomomorphism;

(c) μ� (resp., μr) is 1-1⇔ A is left (resp., right) faithful; μd is 1-1⇔ A is faithful;

(d) μ� (resp., μr) is onto⇔ A has left (resp., right) identity; μd is onto ⇔ A has an identity.

Theorem 3.6 (see [31]). Let A be an algebra.

(a) For any a ∈ A and T ∈ M�(A), TLa = LT(a) ∈ μ�(A); hence μ�(A) is a left ideal in
M�(A).

(b) For any a ∈ A and T ∈ Mr(A), TRa = RT(a) ∈ μr(A); hence μr(A) is a left ideal in
Mr(A).

(c) Suppose thatA is faithful. Then, for any a ∈ A and (S, T) ∈ Md(A),

(La, Ra)(S, T) =
(
LT(a), RT(a)

) ∈ μd(A), (S, T)(La, Ra) =
(
LS(a), RS(a)

) ∈ μd(A); (3.4)

hence μd(A) is a two-sided ideal in Md(A).

Regarding the continuity of multipliers, we state the following.

Theorem 3.7. (a) Suppose that A is a strongly factorable F-normed algebra. If T ∈ M�(A) (resp.,
Mr(A)), then T is linear and continuous (see [32, 33]).

(b) Suppose that A is a faithful F-algebra. If (S, T) ∈ Md(A), then S and T are linear and
continuous; in particular each T ∈ M(A) is linear and continuous (see [31, 33]).

Convention 1. In the remaining part of this paper, unless stated otherwise, A is a topological
algebra andM(A) (resp.,M�(A), Mr(A)) denotes the set of all continuous linear multipliers
(resp., left multipliers, right multipliers) on A and Md(A) denotes the set of all double
multipliers (S, T) on Awith both S and T continuous and linear.

Definition 3.8 (see [31, 33]). Let A be a topological algebra. The uniform operator topology u

(resp., the strong operator topology s) on Md(A) is defined as the linear topology which has a
base of neighborhoods of 0 consisting of all the sets of the form

N(D,W) = {(S, T) ∈ Md(A) : S(D) ⊆ W, T(D) ⊆ W}, (3.5)

where D is a bounded (resp., finite) subset of A and W is a neighborhood of 0 in A. Clearly,
s ≤ u. Note that the u and s topologies can also be defined on the multiplier algebras
M(A), M�(A) and Mr(A) in an analogous way. (The topology s is also called the strict
topology in the literature and denoted by β.) There is an extensive literature on the s and u

topologies (see, e.g., [30, 33–35, 37–39, 41–45]).
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Theorem 3.9 (see [33]). Let A be a faithful F-algebra, and letMt(A) denote any one of the algebras
M�(A), Mr(A), M(A), andMd(A). Then,

(a) (Mt(A), u) and (Mt(A), s) are topological algebras with separately continuous multipli-
cation;

(b) (Mt(A), u) and (Mt(A), s) are complete;

(c) s and u have the same bounded sets;

(d) if (Mt(A), s) is metrizable, then s = u on Mt(A);

(e) if A has a two-sided approximate identity, then A is s-dense in Mt(A).

Remark 3.10. Let (A, q) be an F-normed algebra.

(1) If (A, q) is a k-normed algebra, the u-topology on M�(A), Mr(A), and M(A) is
given by the k-norm

‖T‖q = sup
{
q(T(x))
q(x)

: x ∈ A, x /= 0
}
; (3.6)

the u-topology on Md(A) is given by the k-norm

‖(S, T)‖q = max
{
‖S‖q, ‖T‖q

}
, (S, T) ∈ Md(A). (3.7)

(2) The s-topology onM�(A),Mr(A), andM(A) is given by the family of {pa : a ∈ A}
of F-seminorms, where

pa(T) = q(T(a)), T ∈ M�(A), Mr(A) or M(A); (3.8)

the s-topology onMd(A) is given by the family {ra : a ∈ A} of F-seminorms, where

ra(S, T) = max
{
q(S(a)), q(T(a))

}
, (S, T) ∈ Md(A). (3.9)

Theorem 3.11. Let (A, q) be a k-normed algebra having a minimal approximate identity {eλ : λ ∈ I}.
Then,

(a) for any a ∈ A, ‖La‖q = ‖Ra‖q = q(a); so each of the maps μ� : A → (M�(A), u),
μr : A → (Mr(A), u), μd : A → (Md(A), u) is an isometry and hence continuous;

(b) for any (S, T) ∈ Md(A), ‖S‖q = ‖T‖q;
(c) if (A, q) is complete, thenA is a u-closed two-sided ideal inMd(A), under the identifica-

tion μd : a → (La, Ra).

Proof. (a) Let a ∈ A. Then

‖La‖q = sup
b /= 0

q(La(b))
q(b)

= sup
b /= 0

q(ab)
q(b)

≤ sup
b /= 0

q(a) · q(b)
q(b)

= q(a). (3.10)
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On the other hand,

‖La‖q = sup
b /= 0

q(ab)
q(b)

≥ q(aeλ)
q(eλ)

≥ q(aeλ), ∀λ ∈ I; (3.11)

so

‖La‖q ≥ lim
λ

q(aeλ) = q

(
lim
λ

aeλ

)
= q(a). (3.12)

Hence ‖μ�(a)‖q = ‖La‖q = q(a). Similarly, ‖μr(a)‖q = ‖Ra‖q = q(a). Thus

∥
∥μd(a)

∥
∥
q
= max

{
‖La‖q, ‖Ra‖q

}
= q(a). (3.13)

(b) Let (S, T) ∈ Md(A). Using (a), we have

‖S‖q = sup
a/= 0

q(S(a))
q(a)

= sup
a/= 0

∥∥RS(a)
∥∥
q

q(a)
= sup

a/= 0
sup
b /= 0

1
q(a)

· q
[
RS(a)(b)

]

q(b)

= sup
a/= 0

sup
b /= 0

q[bS(a)]
q(a) · q(b) = sup

a/= 0
sup
b /= 0

q[T(b)a]
q(a) · q(b)

≤ sup
a/= 0

sup
b /= 0

q(T(b)) · q(a)
q(a) · q(b) = sup

b /= 0

q(T(b))
q(b)

= ‖T‖q.

(3.14)

Similarly,

‖T‖q = sup
a/= 0

∥∥LT(a)
∥∥
q

q(a)
= sup

a/= 0
sup
b /= 0

q[T(a)b]
q(a) · q(b)

= sup
a/= 0

sup
b /= 0

q[a · S(b)]
q(a) · q(b) ≤ ‖S‖q.

(3.15)

Thus, ‖S‖q = ‖T‖q.
(c) In view of Theorem 3.6(c), we only need to show that μd(A) is u-closed inMd(A).

Let (S, T) ∈ Md(A) with (S, T) ∈ u-cl(μd(A)). Choose {aα : α ∈ J} ⊆ A such that {Laα, Raα}
u−→

(S, T). By part (a), μd is an isometry. Hence {aα : α ∈ J} is a Cauchy net in A. Then

(S, T) = u − lim
α

μd(aα) ∈ μd(A). (3.16)

Thus μd(A) is u-closed inMd(A).
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4. Quasimultipliers on F-Algebras and k-Normed Algebras

In this section, we consider the notion of quasimultipliers on F-algebras and complete k-
normed algebra and extend several basic results of McKennon [2], Kassem and Rowlands
[4], Argün and Rowlands [8], and Yılmaz and Rowlands [10] from Banach algebras to these
classes of topological algebras.

Definition 4.1 (see [2, 4]). Let A be an algebra. A mapping m : A × A → A is said to be a
quasimultiplier on A if

m(ab, c) = am(b, c), m(a, bc) = m(a, b)c, (4.1)

for all a, b, c ∈ A.
The following Lemma shows in particular that every left multiplier, right multiplier,

multiplier, and double multiplier on an algebraA can be viewed as quasimultiplier on A.

Lemma 4.2. Let A be a faithful algebra.

(a) For any c ∈ A, definem = mc : A ×A → A by

mc(a, b) = acb, ∀(a, b) ∈ A ×A. (4.2)

(b) For any T ∈ M�(A), define an associated mapm = mT : A ×A → A by

mT (a, b) = aT(b), ∀(a, b) ∈ A ×A. (4.3)

(c) For any T ∈ Mr(A), define an associated mapm = mT : A ×A → A by

mT (a, b) = T(a)b, ∀(a, b) ∈ A ×A. (4.4)

(d) For any T ∈ M(A), define an associated mapm = mT : A ×A → A by

mT (a, b) = aT(b), ∀(a, b) ∈ A ×A. (4.5)

(e) For any (S, T) ∈ Md(A), define an associated mapm = m(S,T) : A ×A → A by

m(S,T)(a, b) = aS(b), ∀(a, b) ∈ A ×A. (4.6)

Then each of the mapsm : A ×A → A defined above is a quasimultiplier onA.
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Proof. We only prove (e). Let (S, T) ∈ Md(A), for any a, b, c, d ∈ A,

m(ab, c) = m(S,T)(ab, c) = (ab)S(c) = a[bS(c)]

= a
[
m(S,T)(b, c)

]
= am(b, c).

(4.7)

In a similar way,m(a, bc) = m(a, b)c.

Theorem 4.3. Suppose that (A, τ) is a strongly factorable F-algebra. Then,

(a) A mapm : A ×A → A is a quasimultiplier on A if and only if

m(ab, cd) = am(b, c)d, ∀a, b, c, d ∈ A; (4.8)

(b) every quasimultiplier m onA is bilinear;

(c) every quasimultiplier m onA is jointly continuous.

Proof. (a) If m is a quasimultiplier on A, then clearly, for any a, b, c, d ∈ A,

m(ab, cd) = am(a, cd) = am(b, c)d. (4.9)

Conversely, let a, b, c ∈ A. SinceA is a strongly factorable and an = {b, c, 0, 0, . . .} → 0,
there exist y, z,w ∈ A such that b = wy, c = wz. Then, using (4.8),

m(ab, c) = m
(
awy,wz

)
= (aw)

[
m
(
y,w

)]
z = am

(
wy,wz

)
= am(b, c). (4.10)

Similarly, we obtainm(a, bc) = m(a, b)c.
(b) Let a, b, c ∈ A and α ∈ � . Choose, as above, x, y,w ∈ A such that a = wx, b = wy.

Then,

m(a + b, c) = m
(
wx +wy, c

)
=
(
x + y

)
m(w, c) = xm(w, c) + ym(w, c)

= m(wx, c) +m
(
wy, c

)
= m(a, c) +m(b, c).

(4.11)

Similarly, m(c, a + b) = m(c, a) +m(c, b). Next,

m(αa, c) = m(αwx, c) = (αw)m(x, bc) = αm(wx, c) = αm(a, c). (4.12)

First, we show that m is separately continuous. Let a ∈ A and {xn} ⊆ A with limit x. Then
{xn − x} converges to 0. By strong factorability, there exist a sequence {zn} and an element z
of A such that zn → 0, xn − x = zzn. Thus,

m(a, xn) −m(a, x) = m(a, xn − x) = m(a, zzn) = m(a, z)zn −→ 0. (4.13)

Now, the joint continuity of m follows directly from Theorem 2.7(a).
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Theorem 4.4. Let A be a commutative algebra. Then,

(a) am(b, c) = m(b, a)c for any quasimultiplier onA and a, b, c ∈ A;

(b) if A is also faithful, then a bilinear map m : A ×A → A is a quasimultiplier on A if and
only if

m
(
a2, b

)
= am(a, b), m

(
a, b2

)
= m(a, b)b ∀a, b ∈ A. (4.14)

Proof. (a) By hypothesis,

am(b, c) = m(b, c)a = m(b, ca) = m(b, ac) = m(b, a)c. (4.15)

(b) (⇒) This is obvious.

(⇐) For all a, b, c ∈ A, using (4.14),

m
(
(a + b)2, c

)
= (a + b)m(a + b, c)

= am(a, c) + am(b, c) + bm(a, c) + bm(b, c).
(4.16)

On the other hand, we have

m
(
(a + b)2, c

)
= m

(
a2 + b2 + 2ab, c

)

= m
(
a2, c

)
+m

(
b2, c

)
+ 2m(ab, c)

= am(a, c) + bm(b, c) + 2m(ab, c).

(4.17)

Comparing (4.16) and (4.17), we obtain

2m(ab, c) = am(b, c) + bm(a, c). (4.18)

Now, for all a, b, c, d ∈ A, using (4.18) twice,

2m(abd, c) = abm(d, c) + dm(ab, c)

= abm(d, c) +
1
2
d[2m(ab, c)]

= abm(d, c) +
1
2
dam(b, c) +

1
2
dbm(a, c).

(4.19)
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By commutativity of A and using (4.18) twice as above,

2m(abd, c) = 2m(adb, c) = adm(b, c) + bm(ad, c)

= adm(b, c) +
1
2
[bam(d, c) + bdm(a, c)]

= adm(b, c) +
1
2
abm(d, c) +

1
2
dbm(a, c).

(4.20)

Comparing (4.19) and (4.20), abm(d, c) = adm(b, c). Since this holds for all a ∈ A and A is
faithful, bm(d, c) = dm(b, c). Hence, for all d ∈ A,

dm(ab, c) = abm(d, c) = a[bm(d, c)] = adm(b, c) = dam(b, c). (4.21)

Since this holds for all d ∈ A and A is faithful,m(ab, c) = am(b, c).
A similar computation shows that m(a, bc) = m(a, b)c. Hence m is a quasimultiplier.

Definition 4.5. Let QM(A) denote the set of all bilinear jointly continuous quasimultipliers
on a topological algebra A. Clearly, QM(A) is a vector space under the usual pointwise
operations. Further, QM(A) becomes an A-bimodule as follows. For any m ∈ QM(A) and
a ∈ A, we can define the products a ◦m andm ◦ a as mappings fromA ×A into A given by

(a ◦m)
(
x, y

)
= m

(
xa, y

)
, (m ◦ a)(x, y) = m

(
x, ay

)
, x, y ∈ A. (4.22)

Then a ◦m, m ◦ a ∈ QM(A), so thatQM(A) is an A-bimodule.

Definition 4.6. Let (A, q) be an F-normed algebra. Following [2, 4, 8], we can definemappings

φA : A −→ QM(A), φ� : M�(A) −→ QM(A),

φr : Mr(A) −→ QM(A), φd : Md(A) −→ QM(A),
(4.23)

by

(
φA(a)

)(
x, y

)
= xay, a ∈ A,

(
φ�(T)

)(
x, y

)
= xT

(
y
)
, T ∈ M�(A),

(
φr(T)

)(
x, y

)
= T(x)y, T ∈ Mr(A),

(
φd(S, T)

)(
x, y

)
= xS

(
y
)
, (S, T) ∈ Md(A),

(4.24)

for all (x, y) ∈ A ×A. By Lemma 4.2, these mappings are well defined.
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Definition 4.7. (1) A bounded approximate identity {eλ : λ ∈ I} in a topological algebra A is
said to be ultra-approximate if, for all m ∈ QM(A) and a ∈ A, the nets {m(a, eλ) : λ ∈ I} and
{m(eλ, a) : λ ∈ I} are Cauchy in A (see [2]).

(2)A topological algebraA is calledm-symmetric if, for each S ∈ M�(A)∪Mr(A), there
is a T ∈ M�(A) ∪Mr(A) such that either (S, T) ∈ Md(A) or (T, S) ∈ Md(A)(see [4]).

Theorem 4.8. Let (A, q) be an F-algebra with a bounded approximate identity {eλ : λ ∈ I}. Consider
the following conditions.

(a) {eλ : λ ∈ I} is ultra-approximate.

(b) For any a ∈ A, S ∈ M�(A), and T ∈ Mr(A), the nets {aS(eλ)} and {T(eλ)a} are Cauchy
in A.

(c) A ism-symmetric.

Then (a)⇒ (b)⇔ (c). If A is factorable, then (c)⇒ (a); hence (a), (b), and (c) are equivalent.

Proof. (a)⇒ (b) Suppose that {eλ : λ ∈ I} in A is ultra-approximate. Let S ∈ M�(A) and
T ∈ Mr(A). Put m1 = φ�(S) and m2 = φr(T). Then m1, m2 ∈ QM(A) and, for any a ∈
A, {m1(a, eλ)} = {aS(eλ)} and {m1(eλ, a)} = {T(eλ)a} which are Cauchy inA by hypothesis.

(b)⇒ (c) Suppose that (b) holds, let S ∈ M�(A)∪Mr(A), and suppose that S ∈ M�(A).
Since A is complete, the map T : A → A given by

T(a) = lim
λ

aS(eλ), a ∈ A, (4.25)

is well-defined. Since S is continuous, for any a, b ∈ A,

aS(b) = a lim
λ

S(eλb) = a lim
λ

S(eλ)b =
[
lim
λ

aS(eλ)
]
b = T(a)b. (4.26)

Since A is a faithful F-algebra, by Theorem 3.7(b), (S, T) ∈ Md(A). Hence A is m-symmetric.
(c)⇒ (b) Suppose that (c) holds. Let S ∈ M�(A) and T ∈ Mr(A). By (c), there exist

T1 ∈ Mr(A), S1 ∈ M�(A) such that (S, T1),(S1, T) ∈ Md(A). Then, for any a ∈ A,

aS(eλ) = T1(a)eλ −→ T1(a),

T(eλ)a = eλS1(a) −→ S1(a).
(4.27)

Thus, both {aS(eλ)} and {T(eλ)a}, being convergent, are Cauchy in A.
Suppose that A is factorable. Then (c)⇒ (a), as follows. Let m ∈ QM(A) and a ∈ A.

By factorability, a = bc for some b, c ∈ A. Define the mappings S, T : A → A by

S(x) = m(c, x), T(x) = m(x, b), x ∈ A. (4.28)
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Then, for any x, y ∈ A,

S
(
xy

)
= m

(
c, xy

)
= m(c, x)y = S(x)y,

T
(
xy

)
= m

(
xy, b

)
= xm

(
y, b

)
= xT

(
y
)
,

(4.29)

and so S ∈ M�(A) and T ∈ Mr(A). By (c), there exist T1 ∈ Mr(A), S1 ∈ M�(A) such that
(S, T1), (S1, T) ∈ Md(A). Then

m(a, eλ) = m(bc, eλ) = bm(c, eλ) = bS(eλ) = T1(b)eλ −→ T1(b),

m(eλ, a) = m(eλ, bc) = m(eλ, b)c = T(eλ)c = eλS1(c) −→ S1(c).
(4.30)

Hence {m(a, eλ) : λ ∈ I} and {m(eλ, a) : λ ∈ I} are Cauchy in A. So {eλ : λ ∈ I} is ultra-
approximate.

Theorem 4.9. Let (A, q) be an F-algebra having an ultra-approximate identity {eλ : λ ∈ I}. Then,

(a) each of the maps φA, φ� , φr , and φd is a bijection;

(b) φd | M(A) = φ� | M(A) = φr | M(A);

(c) φd | μd(A) = φA.

Proof. (a) We give the proof only for φd : Md(A) → QM(A). To show that φd is onto, let
m ∈ QM(A). Since {eλ} is ultra-approximate, for each x ∈ A, the nets {m(x, eλ) : λ ∈ I} and
{m(eλ, x) : λ ∈ I} are convergent. For each x ∈ A, define S, T : A → A by

S(x) = lim
λ

m(eλ, x), T(x) = lim
λ

m(x, eλ). (4.31)

Then (S, T) ∈ Md(A) since, for any x, y ∈ A,

xS
(
y
)
= x lim

λ
m
(
eλ, y

)
= lim

λ
m
(
xeλ, y

)
= m

(
x, y

)

= lim
λ

m
(
x, eλy

)
= lim

λ
m(x, eλ)y = T(x)y.

(4.32)

Further, we have for any (a, b) ∈ A ×A,

[
φd(S, T)

]
(a, b) = aS(b) = a lim

λ
m(eλ, b) = lim

λ
m(aeλ, b) = m(a, b); (4.33)

that is, φd(S, T) = m.
To show that, φd is one to one, let (S1, T1), (S2, T2) ∈ Md(A) with φd(S1, T1) =

φd(S2, T2). Then, for any a, b ∈ A,

φd(S1, T1)(a, b) = φd(S2, T2)(a, b), or aS1(b) = aS2(b). (4.34)
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Since A is faithful, S1(b) = S2(b), b ∈ A. So S1 = S2. Consequently, by Theorem 3.3(c), also
T1 = T2. Thus (S1, T1) = (S2, T2).

(b) Let T ∈ M(A) and x, y ∈ A. Then, since T ∈ M�(A) ∩Mr(A) and (T, T) ∈ Md(A),

φd(T)
(
x, y

)
= φd(T, T)

(
x, y

)
= xT

(
y
)
= T

(
xy

)
. (4.35)

Also

φ�(T)
(
x, y

)
= xT

(
y
)
= T

(
xy

)
; φr(T)

(
x, y

)
= T(x)y = T

(
xy

)
. (4.36)

(c) For any a ∈ A and (x, y) ∈ A ×A,

φd

(
μd(a)

)(
x, y

)
= φd(La, Ra)

(
x, y

)
= xLa

(
y
)
= xay = φA(a)

(
x, y

)
. (4.37)

Thus φd | μd(A) = φA.

We obtain the following lemma for later use.

Lemma 4.10. (a) If (A, q) is a factorable F-normed algebra having an approximate identity {eλ : λ ∈
I}, then

lim
λ

q(eλaeλ − a) = 0, ∀a ∈ A. (4.38)

(b) If (A, q) is an F-algebra having a minimal ultra-approximate identity {eλ : λ ∈ I}, then,
for any m ∈ QM(A),

lim
λ

eλm(eλ, x) = lim
λ

m(eλ, x) (exists), ∀x ∈ A. (4.39)

Compare with [10, page 124].

Proof. (a) Let a ∈ A. Since A is factorable, there exist x, y ∈ A such that a = xy. Then

−−
lim
λ

q(eλaeλ − a) =
−−
lim
λ

q
[(
eλxyeλ − eλxy

)
+
(
eλxy − xy

)]

≤
−−
lim
λ

q(eλx) · q
(
yeλ − y

)
+

−−
lim
λ

q
(
eλxy − xy

)

= q(x) · q(0) + q(0) = 0.

(4.40)

Since A is complete and {eλ} is ultra-approximate, for any x ∈ A, limλ m(eλ, x) = y (say)
exists. Since q(eλ) ≤ 1,

q
[
y − eλm(eλ, x)

] ≤ q
(
y − eλy

)
+ q

[
eλy − eλm(eλ, x)

]

≤ q
(
y − eλy

)
+ q(eλ)q

(
y −m(eλ, x)

)

≤ q
(
y − eλy

)
+ q

(
y −m(eλ, x)

) −→ 0.

(4.41)
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Definition 4.11. Let (A, q) be a k-normed algebra. For any m ∈ QM(A), we define

‖m‖q = sup

{
q
[
m
(
x, y

)]

q(x)q
(
y
) : x, y ∈ A, x, y /= 0

}

. (4.42)

Clearly,

q
[
m
(
x, y

)] ≤ ‖m‖q q(x)q
(
y
)
, ∀x, y ∈ A. (4.43)

Theorem 4.12. Let (A, q) be a k-normed algebra. Then,

(a) ‖ · ‖q is a k-norm on QM(A);

(b) if (A, q) is complete, then so is (QM(A), ‖ · ‖q).

Proof. (a) For any m ∈ QM(A),

‖m‖q = 0 ⇐⇒ sup
x /= 0,y /= 0

q
[
m
(
x, y

)]

q(x)q
(
y
) = 0

⇐⇒ q
[
m
(
x, y

)]
= 0, ∀x, y ∈ A, x /= 0, y /= 0

⇐⇒ q
[
m
(
x, y

)]
= 0, ∀x, y ∈ A

⇐⇒ m = 0.

(4.44)

Also, for any α ∈ � , q(αx) = |α|kq(x) and so it follows that ‖αm‖q = |α|k‖m‖q.
Next, letm, u ∈ QM(A), and let ε > 0. Choose x, y ∈ A such that

‖m + u‖q ≤
q
[
(m + u)

(
x, y

)]

q(x)q
(
y
) − ε. (4.45)

Then,

‖m + u‖q ≤
q
[
m
(
x, y

)
+ u

(
x, y

)]

q(x)q
(
y
) − ε

≤ q
[
m
(
x, y

)]

q(x)q
(
y
) +

q
[
u
(
x, y

)]

q(x)q
(
y
) − ε

≤ ‖m‖q + ‖u‖q − ε.

(4.46)

Since ε > 0 is arbitrary, ‖m + u‖q ≤ ‖m‖q + ‖u‖q. Thus ‖ · ‖q is a k-norm on QM(A).
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(b) Let {mi : i ∈ �} be a ‖ · ‖q-Cauchy sequence in QM(A). Then, for any x, y ∈ A,

−−−
lim
i,j

q
[
mi

(
x, y

) −mj

(
x, y

)]
=

−−−
lim
i,j

q
[(
mi −mj

)(
x, y

)]

≤
−−−
lim
i,j

∥∥mi −mj

∥∥
q
· q(x)q(y) = 0.

(4.47)

Therefore, for any x, y in A, {mi(x, y)} is a Cauchy sequence in A. Since A is complete, the
map m : A ×A → A given by

m
(
x, y

)
= lim

i
mi

(
x, y

)
, x, y ∈ A, (4.48)

is welldefined. Clearly,m is bilinear and, by Theorem 2.7(b),m is jointly continuous. Further,
for any a, b, x, y ∈ A,

m
(
ax, yb

)
= lim

i
mi

(
ax, yb

)
= lim

i

[
ami

(
x, y

)
b
]
= a

[
lim
i
mi

(
x, y

)]
b = am

(
x, y

)
b. (4.49)

Hence, m ∈ QM(A). Next, ‖mi −m‖q → 0 as follows. Let ε > 0. Since {mi} is ‖ · ‖q-Cauchy,
there exists an integer N ≥ 1 such that

∥∥mi −mj

∥∥
q
<

ε

2
, ∀ pairs i, j ≥ N, (4.50)

that is,

q
[(
mi −mj

)(
x, y

)]

q(x)q
(
y
) <

ε

2
, ∀ pairs i, j ≥ N, x, y ∈ A, x, y /= 0. (4.51)

Let x, y ∈ A, x, y /= 0. Fix any io ≥ N in (4.51); since mj(x, y) → m(x, y) in A, letting j → ∞
in (4.51),

q
[
mio

(
x, y

) −m
(
x, y

)]

q(x)q
(
y
) ≤ ε

2
. (4.52)

Then, for any i ≥ N, using (4.51) and (4.52),

q
[
mi

(
x, y

) −m
(
x, y

)]

q(x)q
(
y
) ≤ q

[
mi

(
x, y

) −mio

(
x, y

)]

q(x)q
(
y
) +

q
[
mio

(
x, y

) −m
(
x, y

)]

q(x)q
(
y
)

<
ε

2
+
ε

2
= ε.

(4.53)

Thus mi

‖·‖q−−−→ m.
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Theorem 4.13. Let (A, q) be a factorable k-normed algebra having a minimal approximate identity
{eλ : λ ∈ I}. Then

(a) each of the maps φA, φ� , φr , and φd defined above is a linear isometry;

(b) for any a, b ∈ A andm ∈ QM(A), ‖a ◦m ◦ b‖q = q(m(a, b)).

Proof. (a)We give the proof only for φd : Md(A) → QM(A). Clearly, φd is linear. Let (S, T) ∈
Md(A). Then

∥
∥φd(S, T)

∥
∥
q
= sup

x/= 0,y /= 0

q
[
φd(S, T)

(
x, y

)]

q(x)q
(
y
) = sup

x /= 0,y /= 0

q
[
xS

(
y
)]

q(x)q
(
y
)

≤ sup
x/= 0,y /= 0

q(x)q
(
S
(
y
))

q(x)q
(
y
) = sup

y /= 0

q
(
S
(
y
))

q
(
y
) = ‖S‖q.

(4.54)

To prove the reverse inequality, let ε > 0. There exists (y /= 0) ∈ A such that ‖S‖q <

q(S(y))/q(y) + ε. For any λ ∈ I, since 0 < q(yeλ) ≤ q(y)q(eλ) ≤ q(y),

∥
∥φd(S, T)

∥
∥
q
≥ q

[
φd(S, T)

(
eλ, yeλ

)]

q(eλ)q
(
yeλ

) ≥ q
[
eλS

(
yeλ

)]

q
(
yeλ

) ≥ q
[
eλS

(
y
)
eλ
]

q
(
y
) ; (4.55)

hence, in view of factorability, using Lemma 4.10(a),

∥∥φd(S, T)
∥∥
q ≥ lim

λ

q
[
eλS

(
y
)
eλ
]

q
(
y
) =

q
(
S
(
y
))

q
(
y
) > ‖S‖q − ε. (4.56)

Since ε > 0 is arbitrary, we obtain ‖φd(S, T)‖q = ‖S‖q = ‖(S, T)‖q, and so φd is an isometry.
(b) By (a), φA is an isometry and so

‖a ◦m ◦ b‖q = sup
x/= 0,y /= 0

q
[
(a ◦m ◦ b)(x, y)]

q(x)q
(
y
) = sup

x /= 0,y /= 0

q
[
m
(
xa, by

)]

q(x)q
(
y
)

= sup
x/= 0,y /= 0

q
[
xm(a, b)y

]

q(x)q
(
y
) = sup

x/= 0,y /= 0

q
[
φA(m(a, b))

(
x, y

)]

q(x)q
(
y
)

=
∥∥φA(m(a, b))

∥∥
q
= q(m(a, b)).

(4.57)

We next consider multiplication in QM(A) in various equivalent ways.

Definition 4.14 (see [2, 4]). LetA be an F-algebra with an ultra-approximate identity {eλ : λ ∈
I} andm1, m2 ∈ QM(A). Since φd is onto, there exist (S1, T1), (S2, T2) ∈ Md(A) such that

φd(S1, T1) = m1, φd(S2, T2) = m2. (4.58)
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By the definitions of φ� and φr ,

φ�(S1) = m1 = φr(T1), φ�(S2) = m2 = φr(T2). (4.59)

Therefore, the product of m1, m2 can be defined in any of the following ways:

(i) m1◦φdm2 = φd(S1, T1)◦φdφd(S2, T2) = φd[(S1, T1)(S2, T2)] = φd(S1S2, T2T1),

(ii) m1◦φ�m2 = φ�(S1)◦φ�φ�(S2) = φ�(S1S2),

(iii) m1◦φrm2 = φr(T1)◦φrφr(T2) = φr(T2T1).

Note that, for any (x, y) ∈ A ×A,

[
φd(S1S2, T2T1)

](
x, y

)
= x(S1S2)

(
y
)
=
[
φ�(S1S2)

](
x, y

)
, (4.60)

also

x(S1S2)
(
y
)
= (T2T1)(x)y =

[
φr(T2T1)

](
x, y

)
. (4.61)

Hence, m1◦φdm2 = m1◦φ�m2 = m1◦φrm2.

Remark 4.15. (1) Ifm = φ�(T) with T ∈ M�(A) and a ∈ A, then, by Theorem 3.6(a),

m◦φ�φA(a) = φ�(T)◦φ�φ�(La) = φ�(TLa) = φ�

(
LT(a)

)
= φA(T(a)) ∈ φA(A). (4.62)

(2) If m = φr(T) with T ∈ Mr(A) and a ∈ A, then, by Theorem 3.6(b),

φA(a)◦φrm = φr(Ra)◦φrφr(T) = φr(TRa) = φr

(
RT(a)

)
= φA(T(a)) ∈ φA(A). (4.63)

(3) If m = φd(S, T) and a ∈ A, then, by Theorem 3.6(c),

m◦φdφA(a) = φd[(S, T)(La, Ra)] = φd(SLa, RaT)

= φd

(
LS(a), RS(a)

)
= φA(S(a)) ∈ φA(A).

(4.64)

In the sequel, we denote the product on QM(A) arising from (i), (ii), or (iii) by �. Some
properties of this product are given as follows.

Theorem 4.16. Let A be a factorable complete k-normed algebra with a minimal ultra-approximate
identity {eλ : λ ∈ I}. Then,

(a) for any m1, m2 ∈ QM(A),

(m1 �m2)
(
x, y

)
= m1

(
x, lim

λ
m2

(
eλ, y

)) ((
x, y

) ∈ A ×A
)
, (4.65)

defines a product � on QM(A) so that (QM(A), ‖ · ‖q) is a complete k-normed algebra
with identitymo = φd(I, I);
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(b) for any m ∈ QM(A) and a ∈ A,

φA(a) �m = a ◦m, m � φA(a) = m ◦ a; (4.66)

(c) φA(A) is a two-sided ideal in QM(A);

(d) If A is factorable, then bothM�(A) andMd(A) are isometrically algebraically isomorphic
to QM(A), whileMr(A) is isometrically algebraically anti-isomorphic to QM(A);

Proof. (a) Let m1, m2 ∈ QM(A) and (x, y) ∈ A × A. Choose (S1, T1), (S2, T2) ∈ Md(A) such
that

φd(S1, T1) = m1, φd(S2, T2) = m2, (4.67)

that is,

xS1
(
y
)
= m1

(
x, y

)
, xS2

(
y
)
= m2

(
x, y

)
. (4.68)

Then,

(m1 �m2)
(
x, y

)
=
[
φd(S1S2, T2T1)

](
x, y

)
= x(S1S2)

(
y
)

= x
[
S1

(
S2

(
y
))]

= x

[
S1

(
lim
λ

eλS2
(
y
)
)]

= m1

(
x, lim

λ
eλS2

(
y
))

= m1

(
x, lim

λ
m2

(
eλ, y

))
.

(4.69)

It is easy to verify that ‖m1 � m2‖q ≤ ‖m1‖q‖m2‖q, so that (QM(A), ‖ · ‖q) is an F-normed
algebra. Further, by Theorem 4.12, (QM(A), ‖ · ‖q) is also complete.

(b) Letm ∈ QM(A) and a ∈ A. Using (a), for any (x, y) ∈ A ×A,

[
m � φA(a)

](
x, y

)
= m

(
x, lim

λ
φA(a)

(
eλ, y

))
= m

(
x, lim

λ
meλay

)

= m
(
x, ay

)
= (m ◦ a)(x, y).

(4.70)

Similarly, [φA(a) �m](x, y) = (a ◦m)(x, y).
(c) To show that φA(A) is a two-sided ideal, let m ∈ QM(A) and a ∈ A. By

Theorem 4.9(a), there exists (S, T) ∈ Md(A) such that φd(S, T) = m. Using (b), for any
(x, y) ∈ A ×A,

[
m � φA(a)

](
x, y

)
= (m ◦ a)(x, y) = m

(
x, ay

)
= φd(S, T)

(
x, ay

)

= xS
(
ay

)
= xS(a)y = φA(S(a))

(
x, y

)
.

(4.71)

Hence, m � φA(a) = φA(S(a)) ∈ φA(A). Similarly, φA(a) �m = φA(T(a)) ∈ φA(A).
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(d) Suppose that A is factorable. Then, by Theorem 4.13(a), each of the maps φd, φ� ,
φr , and φA is a linear isometry. If (S1, T1), (S2, T2) ∈ Md(A), then by definition

φd(S1, T1) ◦φd φd(S2, T2) = φd[(S1, T1)(S2, T2)]. (4.72)

If S1, S2 ∈ M�(A), then by definition

φ�(S1) ◦φ� φ�(S2) = φ�(S1S2). (4.73)

If T1, T2 ∈ Mr(A), then by definition

φr(T1) ◦φr φr(T2) = φr(T2T1). (4.74)

Hence, φd : Md(A) → QM(A) and φ� : M�(A) → QM(A) are algebraic isomorphisms and
φr : Mr(A) → QM(A) is algebraic anti-isomorphism.

Remark 4.17. If A has an identity e, then A may be identified with QM(A) as follows. Let
m ∈ QM(A). Thenm(e, e) ∈ A and, for any x, y ∈ A,

φA(m(e, e))
(
x, y

)
= xm(e, e)y = m

(
xe, ey

)
= m

(
x, y

)
. (4.75)

5. Quasistrict and Strict Topologies on QM(A)

In this section, we consider the quasistrict and strict topologies onQM(A) and extend several
results from [2, 4, 8]. Throughout we will assume, unless stated otherwise, that (A, q) is a
factorable complete k-normed algebra having a minimal ultra-approximate identity {eλ : λ ∈
I}.

Definition 5.1. For any m ∈ QM(A) and a, b ∈ A, we define mappings a ◦m,m ◦ a, a ◦m ◦ b :
A ×A → A by

(a ◦m)
(
x, y

)
= m

(
xa, y

)
, (m ◦ a)(x, y) = m

(
x, ay

)
,

(a ◦m ◦ b)(x, y) = m
(
xa, by

)
,

(
x, y

) ∈ A ×A.
(5.1)

Lemma 5.2. Let m ∈ QM(A) and a, b ∈ A. Then

(a) ‖a ◦m‖q ≤ ‖m‖qq(a), ‖m ◦ a‖q ≤ ‖m‖qq(a),

(b) ‖a ◦m ◦ b‖q = q(m(a, b)) ≤ ‖m‖qq(a)q(b).
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Proof. (a) By definition,

‖a ◦m‖q = sup
x/= 0,y /= 0

q
[
(a ◦m)

(
x, y

)]

q(x)q
(
y
) = sup

x/= 0,y /= 0

q
[
x ·m(

a, y
)]

q(x)q
(
y
)

≤ sup
x/= 0,y /= 0

q(x)q
(
m
(
a, y

))

q(x)q
(
y
) = sup

y /= 0

q
(
m
(
a, y

))

q
(
y
)

= sup
y /= 0

‖m‖qq(a)q
(
y
)

q
(
y
) = ‖m‖qq(a).

(5.2)

Similarly, ‖m ◦ a‖q ≤ ‖m‖qq(a).
(b) By Theorem 4.13(b), q(m(a, b)) = ‖a ◦m ◦ b‖q. Further, using (a),

‖a ◦m ◦ b‖q ≤ ‖a ◦m‖qq(b) ≤ ‖m‖qq(a)q(b). (5.3)

Definition 5.3. (1) The quasistrict topology γ on QM(A) is determined by the family {ξa,b(m) :
a, b ∈ A} of k-seminorms, where

ξa,b(m) = ‖a ◦m ◦ b‖q = q(m(a, b)), m ∈ QM(A). (5.4)

Compare with [2, page 109]; [4, page 558].
(2) The strict topology β on QM(A) is determined by the family {ηa(m) : a ∈ A} of

k-seminorms, where

ηa(m) = max
{
‖a ◦m‖q, ‖m ◦ a‖q

}
, m ∈ QM(A). (5.5)

Compare with [8, page 227].
Let τ denote the topology on QM(A) generated by the k-norm ‖ · ‖q.

Lemma 5.4. γ ⊆ β ⊆ τ on QM(A).

Proof. To show that γ ⊆ β, let a, b ∈ A. Then

ξa,b(m) = ‖a ◦m ◦ b‖q ≤ ‖a ◦m‖qq(b) ≤ ηa(m)q(b), m ∈ QM(A), (5.6)

also

ξa,b(m) = ‖a ◦m ◦ b‖q ≤ ‖m ◦ b‖qq(a) ≤ ηb(m)q(a), m ∈ QM(A). (5.7)
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Hence,

ξa,b(m) ≤ max
{
ηa(m), ηb(m)

}
q(a)q(b), m ∈ QM(A). (5.8)

Let {mα : α ∈ J} be a net in QM(A) with mα
β−→ m ∈ QM(A). Then, for any a, b ∈ A,

ηa(mα −m) → 0 and ηb(mα −m) → 0. Hence,

ξa,b(mα −m) ≤ max
{
ηa(mα −m), ηb(mα −m)

}
q(a)q(b) −→ 0. (5.9)

Thus mα
γ−→ m, and so γ ⊆ β.

To show that β ⊆ τ , Let a ∈ A. Note that, for any x, y ∈ A,

(a ◦m)
(
x, y

)
= m

(
xa, y

)
= x ·m(

a, y
)
, m ∈ QM(A),

(m ◦ a)(x, y) = m
(
x, ay

)
= m(x, a)y, m ∈ QM(A).

(5.10)

By Lemma 5.2(a), ‖a ◦m‖q ≤ ‖m‖qq(a) and ‖m ◦ a‖q ≤ ‖m‖qq(a); hence,

ηa(m) = max
{
‖a ◦m‖q, ‖m ◦ a‖q

}
≤ ‖m‖qq(a), m ∈ QM(A). (5.11)

Consequently, if {mα} is a net in QM(A) with mα
τ−→ m ∈ QM(A), then ‖mα −m‖q → 0, and

so, for any a, b ∈ A,

ηa(mα −m) ≤ ‖mα −m‖qq(a) −→ 0. (5.12)

Thus mα
β−→ m; that is, β ⊆ τ .

Theorem 5.5. φA(A) is β-dense in QM(A) and hence γ -dense in QM(A).

Proof. Let m ∈ QM(A). Clearly {m(eλ, eλ)}λ∈I ⊆ A. We claim that φA(m(eλ, eλ))
β−→ m. Let

a ∈ A. We need to show that

ηa

[
φA(m(eλ, eλ)) −m

] −→ 0. (5.13)

For any x, y ∈ A, by joint continuity of m,

q
[
a ◦ {φA(m(eλ, eλ)) −m

}(
x, y

)]

= q
[{
φA(m(eλ, eλ)) −m

}(
xa, y

)]
= q

[
xam(eλ, eλ)y −m

(
xa, y

)]

= q
[
m
(
xaeλ, eλy

) −m
(
xa, y

)] −→ q
[
m
(
xa, y

) −m
(
xa, y

)]
= 0.

(5.14)
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Hence ‖a ◦ {φA(m(eλ, eλ)) −m}‖q → 0. Similarly, ‖{φA(m(eλ, eλ)) −m} ◦ a‖q → 0. Thus,

ηa

[
φA(m(eλ, eλ)) −m

] −→ 0; (5.15)

that is, φA(A) is β-dense in QM(A). Since γ ⊆ β, it follows that φA(A) is γ -dense in QM(A).

Theorem 5.6. (a) (QM(A), γ) and (QM(A), β) are sequentially complete.
(b) If, in addition, (A, q) is strongly factorable, then (QM(A), γ) and (QM(A), β) are

complete.

Proof. (a) Let {mi : i ∈ �} be a γ -Cauchy sequence in QM(A). For any x, y ∈ A, using
Theorem 4.13(b),

q
[
mi

(
x, y

) −mj

(
x, y

)]
= q

[(
mi −mj

)(
x, y

)]

=
∥
∥x ◦ (mi −mj

) ◦ y∥∥
q
= ξx,y

(
mi −mj

)
,

(5.16)

which implies that {mi(x, y)} is a Cauchy sequence inA. Definem : A×A → A bym(x, y) =
limi mi(x, y). Clearly, m is bilinear and, by Theorem 2.7(b), m is jointly continuous. Further,
for any a, b, x, y ∈ A,

m
(
ax, yb

)
= lim

i
mi

(
ax, yb

)
= a

[
lim
i

mi

(
x, y

)
]
b = am

(
x, y

)
b, (5.17)

and som ∈ QM(A). Further, for any a, b ∈ A,

ξa,b(mi −m) = ‖a ◦mi ◦ b − a ◦m ◦ b‖q = q[(mi −m)(a, b)] −→ 0. (5.18)

Hence mi
γ−→ m. So (QM(A), γ) is sequentially complete.

Next we show that (QM(A), β) is sequentially complete. We first note that, if m ∈
QM(A), then, for each c ∈ A, the mappings Sc, Tc : A → A given by

Sc(x) = m(c, x), Tc(x) = m(x, c), x ∈ A, (5.19)

define elements inM�(A) andMr(A), respectively, and it is easy to see that

φ�(Sc) = c ◦m, φr(Tc) = m ◦ c. (5.20)

Let {mi : i ∈ �} be a β-Cauchy sequence in QM(A), and let c ∈ A. It follows
from the definition of the β-topology that the sequences {φ�(Sc)i} and {φr(Tc)i}, where
(Sc)i(x) = mi(c, x) and (Tc)i(x) = mi(x, c), are τ-Cauchy in QM(A). Since φ� and φr are
topological embeddings, the sequences {(Sc)i} and {(Tc)i} are ‖ · ‖q-Cauchy in M�(A) and
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Mr(A), respectively. Both M�(A) and Mr(A) are complete (Theorem 3.9) and so there exist
S(c) in M�(A) and T (c) inMr(A) such that

∥∥∥(Sc)i − S(c)
∥∥∥
q
−→ 0,

∥∥∥(Tc)i − T (c)
∥∥∥
q
−→ 0. (5.21)

Since γ ⊆ β, the sequence {mi} is γ -Cauchy. As proved above, the space QM(A) is
γ -complete and so there exists an element mo in QM(A) such that

lim
i
mi

(
x, y

)
= mo

(
x, y

)
, ∀x, y ∈ A. (5.22)

For any a, b ∈ A,

[
φ�

(
S(c)

)]
(a, b) = lim

i

[
φ�

(
S(c)

)

i

]
(a, b) = lim

i
ami(c, b) = (c ◦mo)(a, b), (5.23)

which implies that φ�(S(c)) = c ◦mo. Similarly, we can prove that φr(T (c)) = mo ◦ c. Thus, by
(5.21),

‖c ◦mi − c ◦mo‖q =
∥∥
∥φ�

(
S(c)

)

i
− φ�

(
S(c)

)∥∥
∥
q
=
∥∥
∥
(
S(c)

)

i
− S(c)

∥∥
∥
q
−→ 0,

‖mi ◦ c −mo ◦ c‖q =
∥∥∥φr

(
T (c)

)

i
− φr

(
T (c)

)∥∥∥
q
=
∥∥∥
(
T (c)

)

i
− T (c)

∥∥∥
q
−→ 0,

(5.24)

which implies thatmo is the β-limit of the sequence {mi} that is, QM(A) is β-complete.
(b) Suppose that A is strongly factorable. Let {mα : α ∈ J} be a γ -Cauchy net in

QM(A). Replacing the sequence {mi : i ∈ �} by the net {mα : α ∈ J} in part (a), we obtain
a map m : A ×A → A given by m(x, y) = limαmα(x, y). Then m is bilinear; further, for any
a, b, x, y ∈ A,

m
(
ax, yb

)
= lim

α
mα

(
ax, yb

)
= a

[
lim
α

mα

(
x, y

)
]
b = am

(
x, y

)
b. (5.25)

Hence, using strong factorability as in Theorem 4.3(c), it follows that m is jointly continuous

and so m ∈ QM(A). Again, as in part (a), it follows that mα
γ−→ m and consequently

(QM(A), γ) is complete. That QM(A) is β-complete also follows by the argument similar
to the above one.

Remark 5.7. The authors do not know whether part (b) of the above theorem can be proved
without the assumption of the strong factorability of A.
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Theorem 5.8. (QM(A), γ), (QM(A), β), and (QM(A), τ) have the same bounded sets.

Proof. (a) Since γ ⊆ τ , every τ-bounded set is γ -bounded. Let H be any γ -bounded set in
QM(A). Then, for each a, b ∈ A, there exists a constant r = r(a, b) > 0 such that

‖a ◦m ◦ b‖q ≤ r, ∀m ∈ H,

or q[m(a, b)] ≤ r, ∀m ∈ H
(
using Theorem 4.13(b)

)
.

(5.26)

For each a ∈ A and m ∈ H , define Ma : A → A by

Ma(x) = m(a, x), x ∈ A. (5.27)

Then, F = {Ma : m ∈ H} ⊆ CL(A). By (5.26), for any x ∈ A

q[Ma(x)] = q[m(a, x)] ≤ r(a, x), ∀m ∈ H ; (5.28)

hence F is pointwise bounded. Then, by the uniform boundedness principle (Theorem 2.6),
there exists c = c(a) > 0 such that

‖Ma‖q ≤ c, ∀m ∈ H. (5.29)

Consider now the family P = {pm : m ∈ H} of k-seminorms on A defined by

pm(a) = ‖Ma‖q = sup
b /= 0

q[Ma(b)]
q(b)

= sup
b /= 0

q[m(a, b)]
q(b)

, a ∈ A. (5.30)

For eachm ∈ H, pm is continuous on A since, if {an} ⊆ Awith an → ao in A, then

∣
∣pm(an) − pm(ao)

∣
∣ ≤ pm(an − ao) = sup

b /= 0

q[Man−ao(b)]
q(b)

= sup
b /= 0

q[m(an − ao, b)]
q(b)

≤ sup
b /= 0

‖m‖qq(an − ao)q(b)

q(b)

= ‖m‖qq(an − ao) −→ 0.

(5.31)

Then, by (5.29), the family P is pointwise bounded. Applying Theorem 2.5, there exists a ball
B = B(xo, r) = {x ∈ A : q(x − xo) ≤ r} and a constant C > 0 such that

pm(x) ≤ C, ∀m ∈ H, x ∈ B(xo, r). (5.32)
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For any fixed a ∈ A, we claim that

pm(a) ≤
2C · q(a)

r
. (5.33)

If a = 0, this is obvious. Suppose that a/= 0. For simplification, put t = (r/q(a))1/k. Then, q is
k-homogeneous, and we have ta + xo, xo ∈ B(xo, r), as follows:

q(ta + xo − xo) = q(ta) = tk · q(a) ≤ r

q(a)
q(a) = r,

q(xo − xo) = q(0) = 0 < r.

(5.34)

So, by (5.32),

pm(ta + xo) ≤ C, pm(xo) ≤ C. (5.35)

Now, using (5.35) and the properties of k-norm again,

pm(a) = pm

(
1
t
ta

)
=
(
1
t

)k

pm(ta) ≤
q(a)
r

pm[ta + xo − xo]

≤ q(a)
r

[
pm(ta + xo) + pm(xo)

]

≤ q(a)
r

[C + C] =
2C · q(a)

r
.

(5.36)

This proves our claim. Hence, using (5.33), for any m ∈ H ,

‖m‖q = sup
a,b /= 0

q[m(a, b)]
q(a)q(b)

= sup
a/= 0

1
q(a)

sup
b /= 0

q[m(a, b)]
q(b)

= sup
a/= 0

1
q(a)

pm(a) ≤ sup
a/= 0

1
q(a)

.
2C · q(a)

r
≤ 2C

r
.

(5.37)

Consequently, H is τ-bounded.
(b) This follows from (a) since γ ⊆ β ⊆ τ .
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