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We prove the Hyers-Ulam stability of power series equation
∑∞

n=0 anxn = 0, where an for n =
0, 1, 2, 3, . . . can be real or complex.

1. Introduction and Preliminaries

A classical question in the theory of functional equations is that “when is it true that a function
which approximately satisfies a functional equation E must be somehow close to an exact
solution of E.” Such a problem was formulated by Ulam [1] in 1940 and solved in the next
year for the Cauchy functional equation by Hyers [2]. It gave rise to the Hyers-Ulam stability
for functional equations.

In 1978, Th. M. Rassias [3] provided a generalization of Hyers’ theorem by proving
the existence of unique linear mappings near approximate additive mappings. On the other
hand, J. M. Rassias [4–6] considered the Cauchy difference controlled by a product of
different powers of norm. This new concept is known as generalized Hyers-Ulam stability
of functional equations (see also [7–10] and references therein).

Recently, Li and Hua [11] discussed and proved the Hyers-Ulam stability of a
polynomial equation

xn + αx + β = 0, (1.1)

where x ∈ [−1, 1] and proved the following.
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Theorem 1.1. If |α| > n, |β| < |α| − 1 and y ∈ [−1, 1] satisfies the inequality

∣
∣yn + αy + β

∣
∣ ≤ ε, (1.2)

then there exists a solution v ∈ [−1, 1] of (1.1) such that

∣
∣y − v

∣
∣ ≤ Kε, (1.3)

where K > 0 is constant.

They also asked an open problem whether the real polynomial equation

anx
n + an−1xn−1 + · · · + a1x + a0 = 0 (1.4)

has Hyers-Ulam stability for the case that this real polynomial equation has some solution in
[a, b].

In this paper we establish the Hyers-Ulam-Rassias stability of power series with real
or complex coefficients. So we prove the generalized Hyers-Ulam stability of equation

f(z) = 0, (1.5)

where f is any analytic function. First we give the definition of the generalized Hyers-Ulam
stability.

Definition 1.2. Let p be a real number. We say that (1.7) has the generalized Hyers-Ulam
stability if there exists a constant K > 0 with the following property:

for every ε > 0, y ∈ [−1, 1] if

∣
∣
∣
∣
∣

∞∑

n=0

any
n

∣
∣
∣
∣
∣
≤ ε

( ∞∑

n=0

|an|p
2n

)

, (1.6)

then there exists some x ∈ [−1, 1] satisfying

∞∑

n=0
anx

n = 0 (1.7)

such that |y−x| ≤ Kε. For the complex coefficients, [−1, 1] can be replaced by closed unit disc

D = {z ∈ � ; |z| ≤ 1}. (1.8)
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2. Main Results

The aim of this work is to investigate the generalized Hyers-Ulam stability for (1.7).

Theorem 2.1. If

∞∑

n=0,n /= 1

|an| < |a1|, (2.1)

∞∑

n=2

n|an| < |a1|, (2.2)

then there exists an exact solution v ∈ [−1, 1] of (1.7).

Proof. If we set

g(x) =
−1
a1

⎛

⎝
∞∑

n=0,n /= 1

anx
n

⎞

⎠, (2.3)

for x ∈ [−1, 1], then we have

∣
∣g(x)

∣
∣ =

1
|a1|

∣
∣
∣
∣
∣
∣

∞∑

n=0,n /= 1

anx
n

∣
∣
∣
∣
∣
∣

≤ 1
|a1|

⎛

⎝
∞∑

n=0,n /= 1

|an|
⎞

⎠

≤ 1

(2.4)

by (2.1).
Let X = [−1, 1], d(x, y) = |x − y|. Then (X, d) is a complete metric space and g map X

to X. Now, we will show that g is a contraction mapping from X to X. For any x, y ∈ X, we
have

d
(
g(x), g

(
y
))

=
∣
∣
∣
∣
1
a1

(
−a0 − a2x

2 − · · ·
)
− 1
a1

(
−a0 − a1y

2 − · · ·
)∣∣
∣
∣

≤ 1
|a1|
∣
∣x − y

∣
∣

{ ∞∑

n=2

n|an|
}

.

(2.5)

For x, y ∈ [−1, 1], x /=y, from (2.2), we obtain

d
(
g(x), g

(
y
)) ≤ λd

(
x, y
)
, (2.6)
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where

λ =
∑∞

n=2 n|an|
|a1| < 1. (2.7)

Thus g is a contraction mapping from X to X. By the Banach contraction mapping theorem,
there exists a unique v ∈ X, such that

g(v) = v. (2.8)

Hence, (1.7) has a solution on [−1, 1].

Theorem 2.2. Under the conditions of Theorem 2.1, (1.7) has the generalized Hyers-Ulam stability.

Proof. Let ε > 0 and y ∈ [−1, 1] be such that

∣
∣
∣
∣
∣

∞∑

n=0

any
n

∣
∣
∣
∣
∣
≤ ε

( ∞∑

n=0

|an|p
2n

)

. (2.9)

We will show that there exists a constant K independent of ε, v, and y such that

∣
∣y − v

∣
∣ ≤ Kε (2.10)

for some v ∈ [−1, 1] satisfying (1.7).
Let us introduce the abbreviationK = 2/(|a1|1−p(1 − λ)). Then

∣
∣y − v

∣
∣ =
∣
∣y − g

(
y
)
+ g
(
y
) − g(v)

∣
∣ ≤ ∣∣y − g

(
y
)∣
∣ +
∣
∣g
(
y
) − g(v)

∣
∣

≤
∣
∣
∣
∣
∣
∣
y −
⎛

⎝−1
a1

∞∑

n=0,n /= 1

any
n

⎞

⎠

∣
∣
∣
∣
∣
∣
+ λ
∣
∣y − v

∣
∣

=
1
|a1|

∣
∣
∣
∣
∣

∞∑

n=0

any
n

∣
∣
∣
∣
∣
+ λ
∣
∣y − v

∣
∣.

(2.11)

Thus, we have

∣
∣y − v

∣
∣ ≤ 1

|a1|(1 − λ)

∣
∣
∣
∣
∣

∞∑

n=0

any
n

∣
∣
∣
∣
∣
≤ 1

|a1|(1 − λ)

( ∞∑

n=0

|an|p
2n

)

ε

≤ 1
|a1|(1 − λ)

( ∞∑

n=0

|a1|p
2n

)

ε

≤ Kε

(2.12)

by (2.9) and so the result follows.
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Next, for equation of complex power series

∞∑

n=0
anz

n = 0, (2.13)

as an application of Rouche’s theorem, we prove the following theoremwhich is much better
than above result. In fact, we prove the following.

Theorem 2.3. If

∞∑

n=0,n /= 1

|an| < |a1|. (2.14)

Then there exists an exact solution in open unit disc for (2.13).

Proof. If we set

g(z) =
−1
a1

⎛

⎝
∞∑

n=0,n /= 1

anz
n

⎞

⎠, (2.15)

for |z| ≤ 1. Such as above we have

∣
∣g(z)

∣
∣ =

1
|a1|

∣
∣
∣
∣
∣
∣

∞∑

n=0,n /= 1

anz
n

∣
∣
∣
∣
∣
∣

≤ 1
|a1|

⎛

⎝
∞∑

n=0,n /= 1

|an|
⎞

⎠, for |z| ≤ 1

< 1

(2.16)

by (2.14).
Since |g(z)| < 1 for |z| = 1, hence for |g(z)| < | − z| = 1 and by Rouche’s theorem, we

observe that g(z) − z has exactly one zero in |z| < 1 which implies that g has a unique fixed
point in |z| < 1.

Corollary 2.4. Under the conditions of Theorem 2.1, (2.13) has the generalized Hyers-Ulam stability.

For R � 1, we have the following corollary.

Corollary 2.5. If

∞∑

n=0,n /= 1

|an|Rn < |a1|R, (2.17)

then there exists an exact solution in {z ∈ � ; |z| < R} for (2.13).
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The proof is similar to previous and details are omitted.

Remark 2.6. By the similar way, one can easily prove the generalized Hyers-Ulam stability of
(1.7) on any finite interval [a, b].

Remark 2.7. By replacing an = f (n)(0) in (2.14), we can prove the generalized Hyers-Ulam
stability for (1.5).
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