
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 152635, 9 pages
doi:10.1155/2011/152635

Research Article
Product of Extended Cesàro Operator and
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This paper characterizes the boundedness and compactness of the product of extended Cesàro
operator and composition operator from Lipschitz space to F(p, q, s) space on the unit ball of � n .

1. Introduction

Let � be the unit ball in the n-dimensional complex space �
n , the closure of � will be written

as � . By dv we denote the Lebesgue measure on � normalized so that v(� ) = 1 and by dσ
the normalized rotation invariant measure on the boundary S = ∂� of � . Let H(� ) be the
class of all holomorphic functions on � and S(� ) the collection of all the holomorphic self-
mappings of � . Denote byA(� ) the unit ball algebra of all continuous functions on � that are
holomorphic on � .

For f ∈ H(� ), let

�f(z) =
n∑

j=1

zj
∂f

∂zj
(z) (1.1)

be the radial derivative of f .
We recall that the α-Bloch space Bα for α ≥ 0 consists of all f ∈ H(� ) such that

Bα

(
f
)
= sup

z∈�

(
1 − |z|2

)α∣∣�f(z)
∣∣ < ∞. (1.2)



2 Abstract and Applied Analysis

The expression Bα(f) defines a seminorm while the natural norm is given by ‖f‖Bα = |f(0)| +
Bα(f). This norm makes Bα into a Banach space. When α = 1, B1 = B is the well known Bloch
space.

For α ∈ (0, 1), Lα(� ) denotes the holomorphic Lipschitz space of order α which is the
set of all f ∈ H(� ) such that, for some C > 0,

∣∣f(z) − f(w)
∣∣ ≤ C|z −w|α (1.3)

for every z,w ∈ � . It is clear that each spaceLα(� ) contains the polynomials and is contained
in the ball algebraA(� ). It is well known that Lα(� ) is endowed with a complete norm ‖ · ‖Lα

that is given by

∥∥f
∥∥
Lα

=
∣∣f(0)

∣∣ + sup
z/=w;z,w∈�

{∣∣f(z) − f(w)
∣∣

|z −w|α
}
. (1.4)

See [1, 2] for more information of the Lipschitz spaces on � .
For a ∈ � , let g(z, a) = log |ϕa(z)|−1 be Green’s function on � with logarithmic sin-

gularity at a, where ϕa is the Möbius transformation of � with ϕa(0) = a, ϕa(a) = 0, and
ϕa = ϕ−1

a .
Let 0 < p, s < ∞, −n − 1 < q < ∞, a function f ∈ H(� ) is said to belong to F(p, q, s) if

(see, e.g., [3–5])

∥∥f
∥∥p
F(p,q,s) =

∣∣f(0)
∣∣p + sup

a∈�

∫

�

∣∣�f(z)
∣∣p
(
1 − |z|2

)q
gs(z, a)dυ(z) < ∞. (1.5)

If X is a Banach space of holomorphic functions on a domain Ω and if ϕ is a
(holomorphic) self-map of Ω, the composition operator of symbol ϕ is defined by Cϕ(f) =
f ◦ ϕ. The study of composition operators consists in the comparison of the properties of
the operator Cϕ with that of the function ϕ itself, which is called the symbol of Cϕ. One can
characterize boundedness and compactness of Cϕ and many other properties. We refer to the
books in [6, 7] and to some recent papers in [4, 5, 8] to learn much more on this subject.

Let h ∈ H(� ), the following integral-type operator was first introduced in [9]

Thf(z) =
∫1

0
f(tz)�h(tz)

dt

t
, f ∈ H(� ), z ∈ � . (1.6)

This operator is called generalized Cesàro operator. It has been well studied in many papers,
see, for example, [3, 9–24] as well as the related references therein.

It is natural to discuss the product of extended Cesàro operator and composition
operator. For h ∈ H(� ) and ϕ ∈ S(� ), the product can be expressed as

ThCϕf(z) =
∫1

0
f
(
ϕ(tz)

)
�h(tz)

dt

t
, f ∈ H(� ), z ∈ � . (1.7)
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It is interesting to characterize the boundedness and compactness of the product operator on
all kinds of function spaces. Even on the disk of � , some properties are not easily managed;
see some recent papers in [18, 25–28].

Building on those foundations, the present paper continues this line of research and
discusses the operator in high dimension. The remainder is assembled as follows: in Section 2,
we state a couple of lemmas. In Section 3, we characterize the boundedness and compactness
of the product ThCϕ of extended Cesàro operator and composition operator from Lipschitz
spaces to F(p, q, s) spaces on the unit ball of � n .

Throughout the remainder of this paper, C will denote a positive constant, the exact
value of which will vary from one appearance to the next. The notation A � B means that
there is a positive constant C such that B/C ≤ A ≤ CB.

2. Some Lemmas

To begin the discussion, let us state a couple of lemmas, which are used in the proofs of the
main results.

Lemma 2.1. Suppose that f, h ∈ H(� ). Then,

�
[
ThCϕ

(
f
)]
(z) = f

(
ϕ(z)

)
�h(z). (2.1)

Proof. The proof of this Lemma follows by standard arguments (see, e.g., [9, 29, 30]).

Lemma 2.2 (see [2, 31]). If 0 < α < 1, then B1−α = Lα(� ); furthermore,
∥∥f
∥∥
B1−α �

∥∥f
∥∥
Lα

(2.2)

as f varies through Lα(� ).

The following criterion for compactness follows from standard arguments similar to
the corresponding lemma in [6]. Hence, we omit the details.

Lemma 2.3. Assume that h ∈ H(� ) and ϕ ∈ S(� ). Suppose that X or Y is one of the following
spaces Lα(� ), F(p, q, s). Then, ThCϕ : X → Y is compact if and only if ThCϕ : X → Y is bounded,
and for any bounded sequence {fk}k∈N in X which converges to zero uniformly on compact subsets of
� as k → ∞, one has ‖ThCϕfk‖Y → 0 as k → ∞.

Lemma 2.4 (see [4, 5]). If f ∈ Bα, then

∣∣f(z)
∣∣ ≤ C

∥∥f
∥∥
Ba , 0 < α < 1, (2.3)

∣∣f(z)
∣∣ ≤ C

∥∥f
∥∥
Ba ln

e

1 − |z|2
, α = 1, (2.3

′
)

∣∣f(z)
∣∣ ≤ C

∥∥f
∥∥
Ba

(
1 − |z|2

)α−1 , α > 1. (2.3
′′
)

The next lemma was obtained in [32].
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Lemma 2.5. If a > 0, b > 0, then the elementary inequality holds

(a + b)p ≤
⎧
⎨

⎩
ap + bp, 0 < p < 1,

2p−1(ap + bp), p ≥ 1.
(2.4)

It is obvious that Lemma 2.5 holds for the sum of finite number k, that is,

(a1 + · · · + ak)p ≤ C
(
a
p

1 + · · · + a
p

k

)
, (2.5)

where a1, . . . , ak > 0 and C is a positive constant.

Lemma 2.6 (see [4, 5]). For 0 < p, s < +∞, −n − 1 < q < +∞, q + s > −1, there exists C > 0 such
that

sup
a∈�

∫

�

(
1 − |w|2

)p

|1 − 〈z,w〉|n+1+q+p
(
1 − |z|2

)q
gs(z, a)dν(z) ≤ C (2.6)

for every ω ∈ � .

Lemma 2.7 (see [4]). There is a constant C > 0 so that, for all t > −1 and z ∈ � , one has

∫

�

∣∣∣∣ln
1

1 − 〈z,w〉
∣∣∣∣
2
(
1 − |w|2

)t

|1 − 〈z,w〉|n+1+t
dν(z) ≤ C

(
ln

1

1 − |z|2
)2

. (2.7)

Lemma 2.8 (see [4, 5]). Suppose that 0 < p, s < ∞, −n−1 < q < ∞, and q+s > −1. If f ∈ F(p, q, s),
then f ∈ B(n+1+q)/p , and ‖f‖B(n+1+q)/p ≤ C‖f‖F(p,q,s).

Lemma 2.9. Let {fk}k∈N be a bounded sequence in F(p, q, s) which converges to zero uniformly on
compact subsets of the unit ball � , where (n + 1 + q)/p < 1. Then, limk→∞supz∈� |fk(z)| = 0.

Proof. It follows from Lemma 2.8 that F(p, q, s) ⊆ B(n+1+q)/p and ‖f‖B(n+1+q)/p ≤ C‖f‖F(p,q,s) for
any f ∈ F(p, q, s). So, when (n + 1 + q)/p < 1, the proof of this lemma is similar to that of
Lemma 3.6 of [33], hence the proof is omitted.

3. The Boundedness and Compactness of the Operator ThCϕ : Lα(� ) →
F(p, q, s)

Theorem 3.1. Assume that α ∈ (0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, ϕ ∈ S(� ), and
h ∈ H(� ). Then, ThCϕ : Lα → F(p, q, s) is bounded if and only if h ∈ F(p, q, s).

Proof. Assume that h ∈ F(p, q, s). Since 0 < 1 − α < 1, by Lemmas 2.2 and 2.4, for any f ∈ Lα,
we have

∣∣f(z)
∣∣ ≤ C

∥∥f
∥∥
B1−α ≤ C

∥∥f
∥∥
Lα
. (3.1)



Abstract and Applied Analysis 5

Since |ThCϕf(0)| = 0, by using Lemma 2.1 and relations (2.3) and (3.1), we have

∥∥ThCϕf
∥∥p
F(p,q,s) = sup

a∈�

∫

�

∣∣f
(
ϕ(z)

)
�h(z)

∣∣p
(
1 − |z|2

)q
gs(z, a)dν(z)

≤ C sup
a∈�

∫

�

|�h(z)|p
(
1 − |z|2

)q
gs(z, a)dν(z)

∥∥f
∥∥p
B1−α

≤ C‖h‖p
F(p,q,s)

∥∥f
∥∥p
Lα < ∞.

(3.2)

Thus ThCϕ : Lα → F(p, q, s) is bounded.
Conversely, suppose that ThCϕ : Lα → F(p, q, s) is bounded. Taking the function

f(z) = 1 ∈ Lα, then

∥∥ThCϕf
∥∥p
F(p,q,s) =

∣∣ThCϕf(0)
∣∣p + sup

a∈�

∫

�

∣∣�
(
ThCϕf

)
(z)
∣∣p
(
1 − |z|2

)q
gs(z, a)dν(z)

= sup
a∈�

∫

�

∣∣f
(
ϕ(z)

)
�h(z)

∣∣p
(
1 − |z|2

)q
gs(z, a)dν(z)

= sup
a∈�

∫

�

|�h(z)|p
(
1 − |z|2

)q
gs(z, a)dν(z) = ‖h‖pF(p,q,s).

(3.3)

From which, the boundedness of ThCϕ implies that h ∈ F(p, q, s). This completes the proof of
this theorem.

Next, we characterize the compactness of ThCϕ : Lα → F(p, q, s).

Theorem 3.2. Assume that α ∈ (0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, ϕ ∈ S(� ),
and h ∈ H(� ). Then, ThCϕ : Lα → F(p, q, s) is compact if and only if ThCϕ : Lα → F(p, q, s) is
bounded, and

lim
r→ 1

sup
a∈�

∫

{|ϕ(z)|>r}
|�h(z)|p

(
1 − |z|2

)q
gs(z, a)dν(z) = 0. (3.4)

Proof. Assume that ThCϕ : Lα → F(p, q, s) is bounded and (3.4) holds. It follows from
Theorem 3.1 that h ∈ F(p, q, s).

Now, let {fj}j∈N be a bounded sequence of functions inLα such that fj → 0 uniformly
on the compact subsets of � as j → ∞. Suppose that supj∈N‖fj‖Lα ≤ L. It follows from (3.4)
that, for any ε > 0, there exists r0 ∈ (0, 1) such that, for every r0 < r < 1,

sup
a∈�

∫

{|ϕ(z)|>r}
|�h(z)|p

(
1 − |z|2

)q
gs(z, a)dν(z) < ε. (3.5)
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Set r0 < r < 1, then

∥∥ThCϕfj
∥∥p
F(p,q,s) = sup

a∈�

∫

�

∣∣fj
(
ϕ(z)

)∣∣p|�h(z)|p
(
1 − |z|2

)q
gs(z, a)dν(z)

≤ sup
a∈�

∫

{|ϕ(z)|≤r}

∣∣fj
(
ϕ(z)

)∣∣p|�h(z)|p
(
1 − |z|2

)q
gs(z, a)dν(z)

+ sup
a∈�

∫

{|ϕ(z)|>r}

∣∣fj
(
ϕ(z)

)∣∣p|�h(z)|p
(
1 − |z|2

)q
gs(z, a)dν(z)

= I1 + I2,

(3.6)

where

I1 := sup
a∈�

∫

{|ϕ(z)|≤r}

∣∣fj
(
ϕ(z)

)∣∣p|�h(z)|p
(
1 − |z|2

)q
gs(z, a)dν(z),

I2 := sup
a∈�

∫

{|ϕ(z)|>r}

∣∣fj
(
ϕ(z)

)∣∣p|�h(z)|p
(
1 − |z|2

)q
gs(z, a)dν(z).

(3.7)

Let K = {w : |w| ≤ r}, then K is a compact subset of � . Since fj → 0 uniformly on
compact subsets of � as j → ∞ and h ∈ F(p, q, s), we get

I1 ≤ sup
w∈K

∣∣fj(w)
∣∣psup

a∈�

∫

{|ϕ(z)|≤r}
|�h(z)|p

(
1 − |z|2

)q
gs(z, a)dν(z)

≤ ‖h‖p
F(p,q,s)sup

w∈K

∣∣fj(w)
∣∣p ≤ C sup

w∈K

∣∣fj(w)
∣∣p −→ 0, j −→ ∞.

(3.8)

On the other hand, by (3.5) and Lemmas 2.2 and 2.4, it follows that

I2 ≤ C
∥∥fj
∥∥p
B1−αsup

a∈�

∫

{|ϕ(z)|>r}
|�h(z)|p

(
1 − |z|2

)q
gs(z, a)dν(z)

≤ C‖fj‖pLα
ε ≤ CLpε.

(3.9)

Since ε is arbitrary, from the above inequalities, we get

lim
j→∞

∥∥ThCϕfj
∥∥
F(p,q,s) = 0. (3.10)

Hence, by (3.10) and Lemma 2.3, we conclude that ThCϕ : Lα → F(p, q, s) is compact.
For the converse direction, we suppose that ThCϕ : Lα → F(p, q, s) is compact. It is

obvious that ThCϕ : Lα → F(p, q, s) is bounded.
Now, we prove (3.4). Setting the test functions f

(m)
l

(z) = zm
l
for fixed l ∈ {1, . . . , n},

where z = (z1, . . . , zn) and m = 1, 2, . . .. It is easy to check that ‖f (m)
l ‖Lα ≤ C, and f

(m)
l → 0



Abstract and Applied Analysis 7

uniformly on the compact subsets of � as m → ∞. Write ϕ = (ϕ1, . . . , ϕn), since ThCϕ : Lα →
F(p, q, s) is compact, by Lemma 2.3, it follows that, asm → ∞,

∥∥∥ThCϕf
(m)
l

∥∥∥
p

F(p,q,s)
= sup

a∈�

∫

�

∣∣ϕl(z)
∣∣mp|�h(z)|p

(
1 − |z|2

)q
gs(z, a)dν(z) −→ 0. (3.11)

Note that |ϕ(z)|2 = |ϕ1(z)|2 + · · · + |ϕn(z)|2 ≤ (|ϕ1(z)| + · · ·+ |ϕn(z)|)2; by the relation (3.11) and
Lemma 2.5, we have

sup
a∈�

∫

�

∣∣ϕ(z)
∣∣mp|�h(z)|p

(
1 − |z|2

)q
gs(z, a)dν(z)

≤ sup
a∈�

∫

�

(
n∑

l=1

∣∣ϕl(z)
∣∣
)mp

|�h(z)|p
(
1 − |z|2

)q
gs(z, a)dν(z)

≤ C sup
a∈�

∫

�

(
n∑

l=1

∣∣ϕl(z)
∣∣mp

)
|�h(z)|p

(
1 − |z|2

)q
gs(z, a)dν(z) −→ 0, m −→ ∞.

(3.12)

This means that, for every ε > 0, there is m0 ∈ N such that, for every r ∈ (0, 1),

rm0psup
a∈�

∫

{|ϕ(z)|>r}
|�h(z)|p

(
1 − |z|2

)q
gs(z, a)dν(z)

= sup
a∈�

∫

{|ϕ(z)|>r}
rm0p|�h(z)|p

(
1 − |z|2

)q
gs(z, a)dν(z)

≤ sup
a∈�

∫

{|ϕ(z)|>r}

∣∣ϕ(z)
∣∣m0p|�h(z)|p

(
1 − |z|2

)q
gs(z, a)dν(z)

≤ sup
a∈�

∫

�

∣∣ϕ(z)
∣∣m0p|�h(z)|p

(
1 − |z|2

)q
gs(z, a)dν(z)

< ε.

(3.13)

Thus, when r > 2−(1/m0p), by the above inequality, we obtain

sup
a∈�

∫

{|ϕ(z)|>r}
|�h(z)|p

(
1 − |z|2

)q
gs(z, a)dν(z) < 2ε. (3.14)

From which, the desired result (3.4) holds. This completes the proof of this theorem.

Remark 3.3. When ϕ(z) = z, the product of extended Cesàro operator ThCϕ is the generalized
extended Cesàro operator Th; thus, by Theorems 3.1 and 3.2, we have the following two
corollaries.

Corollary 3.4. Assume that α ∈ (0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, and h ∈ H(� ).
Then, Th : Lα → F(p, q, s) is bounded if and only if h ∈ F(p, q, s).
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Corollary 3.5. Assume that α ∈ (0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, and h ∈ H(� ).
Then, Th : Lα → F(p, q, s) is compact if and only if Th : Lα → F(p, q, s) is bounded, and

lim
r→ 1

sup
a∈�

∫

|z|>r
|�h(z)|p

(
1 − |z|2

)q
gs(z, a) = 0. (3.15)
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