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The challenge of tensor field visualization is to provide simple and comprehensible representations
of data which vary both directionally and spatially. We explore the use of differential operators to
extract features from tensor fields. These features can be used to generate skeleton representations
of the data that accurately characterize the global field structure. Previously, vector field operators
such as gradient, divergence, and curl have previously been used to visualize of flow fields.
In this paper, we use generalizations of these operators to locate and classify tensor field
degenerate points and to partition the field into regions of homogeneous behavior. We describe
the implementation of our feature extraction and demonstrate our new techniques on synthetic
data sets of order 2, 3 and 4.

1. Introduction

Many approaches to the visualization of vector and tensor fields involve reducing the
dense input data to a sparse set of features that are more easily displayed and understood.
Topological approaches to vector field visualization also attempt to reduce the input data to
a simpler representation of the structure of the field in terms of critical points (such as foci of
sources and sinks, or the centers of vortices for, example) and a few separating streamlines
(separatrices). These points and curves comprise a skeleton description of the flow field [1].
Such flow skeletons are concise and intuitive representations of vector fields. In contrast,
direct visualization of the vector field in terms of glyphs or streamlines often results in
distracting visual clutter. To improve the robustness of topological feature extraction, some
vector field visualization methods apply feature extraction to a decomposition of the original
field. One particular decomposition, the Helmholtz decomposition, allows a flow field to be
separated into divergence-free (solenoidal) and curl-free (irrotational) parts. These parts may
then be analyzed separately to robustly identify different types of critical points in the field.
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Some developments in topological tensor field visualization have proceeded by
generalizing the concepts of vector field topology. Degenerate points (in 2D tensor fields) and
degenerate lines (in 3D tensor fields) have commonly been defined in terms of eigenvectors
of the tensors. Separatrices in the tensor case are hyperstreamlines, or integral curves of
the eigenvector field. A simplified tensor field representation may also be generated by
computing scalar fields of tensor invariants, and by extracting ridge lines of these scalars.

In this paper, we present a novel approach to tensor field visualization which builds
upon our previously developed tensor decomposition method [2]. We do not depend on the
computation of eigenvalues or eigenvectors as many other approaches do. Nor do we trace
deterministic or probabilistic hyperstreamlines. Instead, we generate scalar fields based on
differential operators which have been generalized from existing vector field operators. With
these scalar fields, we are able to locate and classify features in the field and partition the field
into regions of homogeneous behavior. In this method, feature points are local extrema and
segmenting curves are isocontours. This approach has the benefit of being very general with
respect to tensor order. In contrast to our earlier paper [2], this work describes a visualization
method which segments the data and explicitly extracts feature points. We are also now able
to identify additional features (helices and saddles), whereas the earlier work only concerns
sources and sinks in the field.

The rest of this paper is organized as follows. In Section 2, we review previous work
on visualization of vector and tensor fields, with special attention being paid to vector field
methods utilizing the Helmholtz decomposition. In Section 3, we describe the differential
operators and their generalization to high-order tensors. In Section 4, we present the detailed
formulation of the generalized Helmholtz decomposition for tensor fields. In Section 5, we
describe our experiments in visualizing synthetic tensor fields and discuss the performance of
the algorithm. Lastly, in Section 6, we present conclusions and discuss areas for future work.

2. Previous Work

The Helmholtz decomposition has been used in the solution of many problems in fluid
mechanics and electromagnetism and has recently also proven to be useful in the topological
analysis of vector fields. Polthier and Preuss [3, 4] used a discrete Helmholtz decomposition
to robustly locate singularities in vector fields. Since they were dealing with vector fields
defined on irregular meshes, they were required to carefully define divergence and curl
operators. In our approach, since we consider data only on regular Cartesian grids, we use
standard finite difference approximations to differential operators. Tong et al. [5] described
vector fields in a multiscale framework by defining a vector field scale space in terms of the
separate scale spaces of the solenoidal and irrotational parts of the field. They then smoothed
the vector field by separately smoothing these constituent fields. They were able to show that
this approach better preserves singularities than smoothing the input field directly. They also
enhanced features of the field by separately amplifying the components of the decomposed
field. Li et al. [6] used the Helmholtz decomposition to segment 2D discrete vector fields.
They used Green’s function method to compute the decomposition, then for each critical
point, they found the region of influence using graph cuts. In their work, the critical points
were defined in terms of scalar stream and potential functions.

Several approaches to topological tensor field visualization have been described in
previous literature. Many have considered the topology of the dominant eigenvector field
[7, 8] and so defined degenerate points as locations where two or more eigenvalues are equal
to each other. Zheng et al. [9, 10] described categories of feature points and numerically stable
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(a) Helix (b) Saddle (c) Source (d) Spiral (e) Vortex

Figure 1: Second-order tensor field features and surface plots of the functions whose critical points identify
them. From top to bottom, the functions are trace of helicity, divergence of the Lamb vector, trace of
irrotational component, and trace of solenoidal component. The irrotational and solenoidal parts are
computed from the generalized Helmholtz decomposition.

methods for extracting them. The points were then joined to form feature lines. By using
discriminant analysis, they were able to find the locations of critical features with subvoxel
accuracy.

Approaches specific to diffusion tensor MRI have traditionally considered the
topology of scalar fields of tensor invariants as defined by crease lines. Tricoche et al.
[11] used this framework applied to tensor mode (which is related to the skewness of
eigenvalues), and Kindlmann et al. [12, 13] used fractional anisotropy (which is related to
the variance of eigenvalues) [14]. Another approach based on degenerate lines derived from
probabilistic tractography has been described by Schultz et al. [15], as well as robust method
for extracting crease surfaces from 3D data. In a sense, our approach is the opposite of several
of these earlier approaches. Rather than extracting a scalar field and analyzing its critical
points with differential operators, we apply the differential operators to the tensor field itself
and then compute scalar values from the results.

3. Background

In the following subsections, we will define the divergence, curl, and gradient of Cartesian
tensors as given by Heinbockel [16]. We will also demonstrate the usefulness of these
differential operators in extracting critical points and classifying tensor field features. The
features we consider are shown in Figure 1 along with the functions we use to classify them.
These features are shown as a single slice of the 3D second-order tensor fields describing a
helix, a saddle point, a source, a spiral, and a vortex.

3.1. Tensor Notation

The order of the tensor (referred to as rank in some literature) is the number of indices required
to specify each element. Tensors of order0 are represented by scalars, and tensors of order
1 are represented by vectors. An order 2 tensor can be represented as a matrix. Higher-
order tensors can be represented as multiway arrays. For tensors in d-dimensional space,
each index can take one of d different values. In 3 dimensions, an order-� tensor then has
3� components. In general, a tensor may also have two different types of indices, covariant
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and contravariant, usually denoted using subscripts and superscripts. For Cartesian tensors,
these are equivalent, so they will denote indices using only subscripts.

In writing an expression containing tensors, we will use the Einstein summation
convention. This means that repeated indices are to be multiplied pairwise and summed over
all possible values,

Ai1i2···i�Bi1i2···i� =
d∑

i1=1

d∑

i2=1

· · ·
d∑

i�=1

Ai1i2···i�Bi1i2···i� . (3.1)

Partial derivatives will be denoted by the ∂ symbol, where

∂i =
∂

∂xi
. (3.2)

This notation permits tensor equations to be expressed in a very compact manner. For
example, the familiar vector field divergence operator in 3D

divv =
∂v1
∂x

+
∂v2
∂y

+
∂v3
∂z

, (3.3)

which is given as ∇ · v in vector calculus notation, would be given as ∂ivi in index notation.

3.2. Tensor Field Divergence

In general, the divergence of an order � tensor field is an order (� − 1) tensor field. For � = 4,
the divergence is given in Einstein notation as

divD = ∂iDijkl. (3.4)

This notation indicates that for all possible values of index i, the tensor components are
differentiated with respect to that index and summed over. Note that when the field consists
of totally symmetric tensors, the divergence tensor is also totally symmetric. The divergence
operator frequently appears in conservation laws. We can understand the meaning of tensor
field divergence in the context of conservation of mass. Consider the volume element shown
in Figure 3 and the velocity field u = [ux, 0, 0]

T . The mass flux into the left face is jin =
ρuxΔyΔz, and the flux out of the right face is jout = ρ(ux + (∂ux/∂x)Δx)ΔyΔz, where ρ
is the material density. If mass is to be conserved, it is required that jout = jin, or ∂ux/∂x = 0.
For more general flows with nonzero y and z components, if we take the limit as the volume,
V = ΔxΔyΔz, of the box approaches 0, this conservation property can be written in terms of
the integral

lim
V → 0

1
V

∫ ∫
u · ndS, (3.5)

which is the definition of the divergence of u.
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Now consider the case of a flow field Du resulting from the action of a second-
order tensor field D on u. The flux into the left side of the volume will be given by
jin = ρ(Dxxux + Dxyuy + Dxzuz)ΔyΔz, and the flux out of the right side is given by
jout = ρ(Dxxux +Dxyuy +Dxzuz) + ∂(Dxxux +Dxyuy +Dxzuz)/(∂xΔxΔyΔz). Conservation of
mass for the one-dimensional case leads to the condition ∂/∂x(Dxxux +Dxyuy +Dxzuz) = 0.
By applying the product rule for differentiation, we get terms which depend on the rate of
change of D, and terms which depend on the rate of change of u. The terms which depend
on the rate of change of D, are characterized by the divergence of D.

In index notation, applying the product rule for differentiation to Du,

div(Du) = ∂i
(
Dijuj

)
= uj∂iDij +Dij∂iuj . (3.6)

The first term on the right hand side, uj∂iDij , depends on the divergence ofD, and the second
termDij∂iuj depends on the gradient of u. This can also be rewritten in vector calculus terms
as u · divD + tr(D∇u).

In the context of diffusion, the divergence appears in Fick’s second law

div(D∇c) = 0, (3.7)

which is a statement of conservation of mass for the diffusion process governed by
concentration gradient ∇c and diffusion tensor field D. Expanding (3.7) using the product
rule in (3.6), it is easy to see that if the concentration gradient is nonzero and constant, then
mass can only be conserved if the divergence of the tensor field is zero.

We consider extrema (local minima and maxima) of the magnitude of the divergence
of the tensor field to be one type of critical point which describes the structure of the tensor
field.

3.3. Tensor Field Curl

The curl of an order � tensor field in 3 dimensions is an order � tensor field. For the order 4
case, it is defined as

curlD = εijk
(
∂jDklmn

)
, (3.8)

where εijk is the permutation tensor

εijk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+1
(
i, j, k

)
is an even permutation of indices,

−1 (
i, j, k

)
is an odd permutation of indices,

0 otherwise.

(3.9)

The permutation tensor is often used to define the vector cross product u × v = εijkujvk. This
leads to the vector calculus notation curlu = ∇ × u. The tensor curl can be analyzed just as
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the divergence was in (3.6). In this case, the result is that curl(D) characterizes the part of
curl(Du)which is due to the spatially varying tensor field D,

curl(Dklul) = εijk∂j(Dklul)

= εijk
(
ul∂jDkl +Dkl∂jul

)

= ul
(
εijk∂jDkl

)
+ εijk

(
∂jul

)
Dkl.

(3.10)

Extrema of the magnitude of the curl of the tensor field are the second type of critical
point we consider.

3.4. Tensor Field Gradient

The gradient of an order � tensor field is an order (� + 1) tensor field. For n = 4, the gradient
is given by

gradD = ∂iDjklm. (3.11)

For order-0 tensors, the vector calculus notation is gradφ = ∇φ, and for order-1 tensors, the
gradient is equivalent to the Jacobian matrix. We do not analyze the tensor field directly in
terms of gradient but use it within the generalized Helmholtz decomposition. Although the
gradient may contain useful information, the fact that the resultant tensor field is one order
higher than the field being studied makes it costly to compute and store.

3.5. The Lamb Tensor

The Lamb vector is commonly used to analyze turbulent flows [17]. It is given by v × ∇ × v
where v is the velocity. The Lamb vector for the flow around a cylinder is shown in Figure 4.

The Lamb vector can be generalized by considering the action of a tensor field on a
vector field and expanding the definition of the Lamb vector using the product rule. The part
of that expansion which is due to the changing tensor field is given by

Lpnl = εpmiDmnεij∂jDkl. (3.12)

Sample Lamb tensor plots are shown in the top row of Figure 2. It can be seen from (3.12) that
in general the Lamb tensor of an order � tensor field is of order 2� − 1. In order to reduce the
storage requirements for L, we perform order reduction to obtain a lower-order tensor field
which approximates L. Analysis of L is done in terms of its divergence, which again results in
reduction of storage requirements. We have found that reduction of L to its order-one (vector)
approximation is useful for identifying saddle points in tensor fields.

The order reduction process was described by Ozarslan et al. in the context of even-
order diffusion tensors, but the same idea holds here. The homogeneous polynomial which is
represented by a tensor can be decomposed into the spherical harmonic basis. The spherical
harmonic coefficients for both tensors can be written as a linear combination of tensor
components, resulting in a linear systemwhichmay be solved by least squares. The reduction
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(a) (b) (c) (d) (e)

(f) Helix (g) Saddle (h) Source (i) Spiral (j) Vortex

Figure 2: Lamb tensor (top row) and Helicity tensor (bottom row) of synthetic second-order tensor fields.
The Lamb vector characterizes shear in the tensor field. Positive lobes are plotted in blue, and negative
lobes are red. Note that the shear is primarily in an outward radial direction for all fields except for
the saddle where the shear is directed inward. This makes the saddle feature easy to identify using the
divergence of the Lamb tensor. The helicity tensor has both positive and negative lobes (and trace = 0) for
all features except the helix.

jin jout

∆x

Figure 3: Flux in equals flux out for the control volume.

(a) (b)

Figure 4: A slice of a 3D velocity field for fluid flow around a cylinder (a) and streamlines of the
corresponding Lamb vector field (b).
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of a symmetric third-, fifth- and seventh-order tensor to a vector is given by (3.13), (3.14), and
(3.15) respectively,

vx =
6
10

(
Dxxx +Dxyy +Dxzz

)
,

vy =
6
10

(
Dxxy +Dyyy +Dyzz

)
,

vz =
6
10

(
Dxxz +Dyyz +Dzzz

)
,

(3.13)

vx =
1
35

(
15Dxxxxx + 3Dxxxyy + 3Dxxxzz + 3Dxyyyy + 3Dxzzzz +Dxyyzz

)
,

vy =
1
35

(
15Dyyyyy + 3Dxxyyy + 3Dyyyzz + 3Dxxxxy + 3Dyzzzz +Dxxyzz

)
,

vz =
1
35

(
15Dzzzzz + 3Dxxzzz + 3Dyyzzz + 3Dxxxxz + 3Dyyyyz +Dxxyyz

)
,

(3.14)

vx =
1
105

(
35Dxxxxxxx + 5Dxxxxxyy + 5Dxxxxxzz + 3Dxxxyyyy +Dxxxyyzz

+3Dxxxzzzz + 5Dxyyyyyy +Dxyyyyzz +Dxyyzzzz + 5Dxzzzzzz

)
,

vy =
1
105

(
5Dxxxxxxy + 3Dxxxxyyy +Dxxxxyzz + 5Dxxyyyyy +Dxxyyyzz

+Dxxyzzzz + 35Dyyyyyyy + 5Dyyyyyzz + 3Dyyyzzzz + 5Dyzzzzzz

)
,

vz =
1
105

(
5Dxxxxxxz +Dxxxxyyz + 3Dxxxxzzz +Dxxyyyyz +Dxxyyzzz

+5Dxxzzzzz + 5Dyyyyyyz + 3Dyyyyzzz + 5Dyyzzzzz + 35Dzzzzzzz

)
.

(3.15)

We use these relations to reduce the order of the Lamb tensor of order 2, 3, and 4 fields,
respectively.

Since the Lamb vector is not guaranteed to be symmetric, we apply the order reduction
to the symmetric part of the tensor. The symmetric part of a tensor is given by

SymD =
1
�!

�!∑

j=1

D(i1i2···i�)j , (3.16)

where (i1i2 · · · i�)j denotes the jth permutation of the indices.
In the appendix, we present an analytical demonstration of the ability of the Lamb

tensor to differentiate saddles from other tensor field features.

3.6. Tensor Field Helicity

Helicity is motion along a helical, or corkscrew path. The equation for helicity is similar to the
Lamb vector but involves the inner product of the vector field and its curl [18]. As a result,
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the helicity of an order � tensor field is an order 2� − 2 tensor field. For a second-order tensor
field, the helicity tensor is given by

Hml = Dmiεijk∂jDkl. (3.17)

Sample helicity plots are shown in the bottom row of Figure 2. We use the trace of the
helicity tensor to quantify the magnitude of helicity. Extrema of tr(H) indicate the location of
centers of helices. In the appendix, we present an analytical justification of this choice.

4. The Helmholtz Decomposition

The Helmholtz decomposition [19] of a vector field, v, is given by

v = ∇φ +∇ × ψ + h, (4.1)

where ∇φ is the gradient of a scalar potential field φ, ∇× ψ is the curl of a vector stream field
ψ, and h is a harmonic vector field. Note that ∇φ is irrotational, so it is useful for isolating
features such as local maxima and minima of divergence (foci of sources and sinks) in v
without interference from curl-based features. Likewise, ∇ × ψ is solenoidal and is useful
for isolating centers of vortices in v. The harmonic vector field, h, is both solenoidal and
irrotational and typically is of small magnitude.

The Helmholtz decomposition is known to extend from vector fields to differential
forms (where it is often referred to as the Hodge decomposition [20]), and therefore also to
antisymmetric tensors.

4.1. Helmholtz Decomposition of Tensor Fields

Weutilize the generalizedHelmholtz decomposition as described byMcGraw et al. [2]. Using
the previously defined operators, the Helmholtz decomposition of second- and fourth-order
tensor fields is given as

Dij = ∂iφj + εimn
(
∂mψnj

)
+Hij ,

Dijk = ∂iφjk + εimn
(
∂mψnjk

)
+Hijk,

Dijkl = ∂iφjkl + εimn
(
∂mψnjkl

)
+Hijkl.

(4.2)

Just as in the vector field case, we have div(curlψ) = 0 and curl(gradφ) = 0. The formulation
can bemade for tensors of arbitrary order, but we present the order 2, 3, and 4 decompositions
since those are the basis for the experiments in Section 5. The second- and fourth-order
tensors describe a wide range of physical phenomena. Tensors can represent diffusivity
[21, 22], the fiber orientation distribution function (ODF) in DT-MRI [23], mechanical
stress and strain [24], and electromagnetic quantities [25]. More abstractly, tensors may
represent covariance, skew, kurtosis, and higher-order moments of multivariate probability
distributions as well as homogeneous polynomials. Third-order tensors have been used to
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describe the apparent bidirectional reflectance distribution function (BRDF) in face relighting
applications [26].

For numerical computational purposes, we will be reshaping tensor fields into column
vectors. For each tensor component, the elements of the field are vectorized in lexical order of
the spatial coordinates (x, y, z). The components are then orderedwithin the vector according
to lexical order of indices. An input second-order tensor field, D, with spatial dimensions
n×m×p is then vectorized as [DxxDxyDxzDyxDyyDyzDzxDzyDzz]

T which has 9mnp elements.
We will represent the discretized operators as block matrices where the blocks

correspond to finite difference operators applied to a single tensor component. For 3D fields,
the multidimensional difference matrices are given by

Δx = Ip×p ⊗ Im×m ⊗Δn×n,

Δy = Ip×p ⊗Δm×m ⊗ In×n,
Δz = Δp×p ⊗ Im×m ⊗ In×n,

(4.3)

where In×n is an n × n identity matrix, ⊗ is the Kronecker product and, Δn×n is an n × n finite
difference matrix. We use central differences for approximating derivatives, in which case Δ
is given by

Δ =
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 · · · 0

+1 0 −1 . . .
...

0 +1 0
. . . 0

...
. . . . . . . . . −1

0 · · · 0 +1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.4)

This definition of this matrix may be modified as needed to impose boundary conditions on
the tensor field.

We can approximate the curl of the second-order tensor field ψij as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cxx

Cxy

Cxz

Cyx

Cyy

Cyz

Czx

Czy

Czz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψxx

ψxy

ψxz

ψyx

ψyy

ψyz

ψzx

ψzy

ψzz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.5)
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where C is the sparse block matrix

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −Δz 0 0 Δy 0 0

0 0 0 0 −Δz 0 0 Δy 0

0 0 0 0 0 −Δz 0 0 Δy

Δz 0 0 0 0 0 −Δx 0 0

0 Δz 0 0 0 0 0 −Δx 0

0 0 Δz 0 0 0 0 0 −Δx

−Δy 0 0 Δx 0 0 0 0 0

0 −Δy 0 0 Δx 0 0 0 0

0 0 −Δy 0 0 Δx 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.6)

Similarly, the gradient of the first-order tensor field φi is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gxx

Gxy

Gxz

Gyx

Gyy

Gyz

Gzx

Gzy

Gzz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= G

⎡
⎢⎢⎣

φx

φy

φz

⎤
⎥⎥⎦, (4.7)

where G is the sparse block matrix

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δx 0 0

0 Δx 0

0 0 Δx

Δy 0 0

0 Δy 0

0 0 Δy

Δz 0 0

0 Δz 0

0 0 Δz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.8)
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Although we do not need the divergence operator to compute the Helmholtz decomposition,
we will use it to identify critical points. The divergence of the second-order tensor field,D, is
given by

⎡
⎢⎢⎣

dx

dy

dz

⎤
⎥⎥⎦ = D

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dxx

Dxy

Dxz

Dyx

Dyy

Dyz

Dzx

Dzy

Dzz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.9)

where D is the sparse block matrix

D =

⎡
⎢⎢⎣

Δx 0 0 Δy 0 0 Δz 0 0

0 Δx 0 0 Δy 0 0 Δz 0

0 0 Δx 0 0 Δy 0 0 Δz

⎤
⎥⎥⎦. (4.10)

The discretized operators for fourth-order tensors are not given here since they contain
81 rows each, but they are easily generated from the equations in the previous sections.

To perform the generalized Helmholtz decomposition, we solve the least squares
problem

min
ψ,φ

∥∥D − Cψ −Gφ
∥∥2
F,

(4.11)

where ‖ · ‖F denotes the Frobenius norm of the tensor ‖Xik‖F = trace(XijXjk).
Using the fact that CTG = GTC = 0, we implement this numerically by alternately

solving the normal equations

CTCφ = CTD, (4.12)

GTGψ = GTD, (4.13)

using a stabilized biconjugate gradients (BiCG-stab) method until convergence is reached.
Although the matrices on the left-hand sides of (4.12) are symmetric, they are not positive
definite, so the standard conjugate gradients method cannot be used. No preconditioner
was used for the results presented in this paper. The derivatives of all tensor components
are constrained to be zero across each boundary. The biconjugate gradients method can be
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Figure 5: Helmholtz decomposition results for synthetic second-order tensor fields.

implemented in terms of basic matrix arithmetic and requires very little temporary storage.
If the size of the dataset does not permit the matrices C and G to be stored in memory, the
matrix multiplication can be implemented procedurally. This is the approach we have used
for all of the fourth-order tensor data processed in this paper. We do not explicitly solve for
H, the harmonic part of the field, but instead letH = D − gradφ − curlψ. As a result there is
no fitting error, but the quality of the decomposition can be assessed by checking the criteria
which define the decomposition that gradφ is irrotational, curlψ is solenoidal, and thatH is
harmonic (both irrotational and solenoidal).

Synthetic second-tensor fields were generated (as described in the appendix) from 5
fields each containing one type of critical point (helix, saddle, source, spiral, and vortex).
The tensor field plot shown in Figure 5 was generated by plotting the radial surfaces r(x) =
Dijxixj for unit vectors x.

The results of the generalized Helmholtz decomposition of the tensor fields are shown
in the second and third rows of Figure 5. The harmonic field, which is typically of small



14 Journal of Applied Mathematics

magnitude for vector field decompositions, can be substantial in terms of the tensor trace, but
it is extremely smooth nearly constant in all of our synthetic field experiments as shown in the
fourth row of Figure 5. In the decomposed fields, there seems to be a correspondence between
sources of positive-definite tensors and vortices of negative-definite tensors and vice verse.
For example, the source is decomposed as a sum of a negative vortex and a positive source
(ignoring the harmonic part). The vortex is a sum of a positive vortex and a negative source.
When decomposing the spiral, the components differ not only in sign, but in handedness.
The right-handed spiral is decomposed as a right-handed positive spiral and a left-handed
negative spiral. We quantify the positiveness/negativeness of tensors by using the tensor
trace: negative-definite tensors have tr(D) < 0 and positive-definite tensors have tr(D) < 0.
In the results section, we will use this face to distinguish sources, vortices, and spirals.

The decompositions of the helix and saddle are also shown for reference, but
the location and classification of these critical points do not depend on the Helmholtz
decomposition.

When analyzing the results of the Helmholtz decomposition, it is important to keep in
mind that the fields produced are not unique. You may add any constant tensor field to curlψ
or gradφ and subtract that field fromH and obtain new fields which satisfy the conditions of
the decomposition. This fact also allows us to generate a decomposition which does maintain
positive (or negative) definiteness of the resulting fields. For example, we can make gradφ
and curlψ positive by adding a constant isotropic tensor field to each and subtracting the
isotropic tensor fields from H. However, our subsequent visualizations do not depend on
either technique.

Differential operators allow us to classify critical points, but the Helmholtz decompo-
sition gives us a method of classifying arbitrary points in the field by using the difference of
errors, d, given by

eψ =
∥∥D − Cψ

∥∥
F,

eφ =
∥∥D −Gφ

∥∥
F,

d = eψ − eφ.
(4.14)

This function can be used to segment the field into two regions. When d < 0, the field is better
approximated by curlψ, and when d > 0, it is better approximated by gradφ. Li et al. [6] used
a similar decision criterion based on a ratio of errors for segmentation of vector fields. The
contour line d = 0 separates the field into relatively low-divergence and low-curl regions.

5. Results

The generalized Helmholtz decomposition was implemented in Matlab and run on a system
with Intel Quad Core QX6700 2.66GHz CPU and 4GB RAM. The algorithm was applied
to the synthetic datasets as described below. The fitting quality of the decomposition can
be analyzed in terms of the magnitude of the harmonic term ‖D − gradφ − curlψ‖, and
‖div curlψ‖ and ‖ curl gradφ‖. All three of these terms should be very near to zero. Fitting
results are presented in Tables 1 and 2, and timing results are given in Figure 8.

We assessed the fitting quality by generating 100 random fields, with uniformly
distributed tensor components in the range [−1, 1]. The tables show the mean, variance,
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Table 1: Random second-order tensor fitting error.

‖div curlψ‖
‖divD‖

‖ curl∇φ‖
‖divD‖

‖divH‖
‖divD‖

‖ curlH‖
‖divD‖

mean 5.73E-017 3.09E-017 6.07E-016 5.11E-016
variance 7.12E-038 5.46E-038 4.23E-035 3.99E-035
max 5.77E-017 3.11E-017 6.17E-016 5.21E-016

Table 2: Random fourth-order tensor fitting error.

‖div curlψ‖
‖divD‖

‖ curl∇φ‖
‖divD‖

‖divH‖
‖divD‖

‖ curlH‖
‖divD‖

mean 2.66E-008 1.35E-008 1.69E-007 1.48E-007
variance 2.80E-021 5.11E-022 2.13E-019 8.02E-020
max 2.67E-008 1.35E-008 1.70E-007 1.48E-007

and maximum of the each fitting parameters. Examples of the random fields and their error
difference plots are shown in Figures 6 and 7.

For all datasets, the decomposition obeys the expected Helmholtz properties. The
divergence of the solenoidal part is many orders of magnitude smaller than the divergence
of the input field. Likewise, the curl of the irrotational part of the field is many orders
of magnitude smaller than the input field. The resulting harmonic part has very small
divergence and curl. The same observations hold when considering many randomly
generated field. The variance of the fitting parameters is very small, suggesting that the
decomposition has consistent behavior over a large number of fields.

It is clear from these tables that the fitting quality of the generalized Helmholtz
decomposition for the fourth-order tensor fields is worse than the second-order tensor fields
but still shows a great reduction in divergence and curl compared to the input data.

The runtime of our visualization approach is dominated by the time it takes
to compute the generalized Helmholtz decomposition. A summary of timing results is
presented in Figure 8. The red line shows the time to compute the decomposition of a second-
order tensor field by forming the sparse matrices C andG in memory and solving the normal
equations using BiCG. The blue line shows the computation time for the same data when
implementing matrix multiplications by C and G procedurally. For the fourth-order tensor
field, we do not attempt to construct the matrices since they are so large.

We analyzed the source, vortex, and spiral features by generating many synthetic
tensor fields. We start with a vector field containing a source (as described in the appendix)
and generate different spiral by rotating each vector in the field. When the rotation angle is
90◦ the source is transformed into a vortex. We also varied the strength of the spiral feature
by adding an isotropic component to each voxel in the field. Several of the generated tensor
fields are shown on the left side of Figure 9. This method of generating the data reflects
the fact that these features (source, spiral, and vortex) lie on a continuum. We can quantify
the position along this continuum using the trace of the irrotational part as given by the
Helmholtz decomposition. As shown in the center column of Figure 9, the trace is positive
when the spiral is more vortexlike, and negative when the spiral is more sourcelike. The
location and strength of the feature may be quantified by the divergence of the irrotational
part of the field, as shown in the right column of Figure 9. The solenoidal part of the tensor
field contains similar information.
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(a) Order 2 (b) Order 4

Figure 6: A sample random second-order field and the error difference.

(a) Order 2 (b) Order 4

Figure 7: A sample random fourth-order field and the error difference.

Our next experiment involves fields containing multiple critical points. Synthetic
second- and fourth-order tensor fields were generated (as described in the appendix) from
the sources and vortices shown in Figure 10 and then summing them,D = D1 +D2 +D3 +D4.
The tensor fields in all following figures are visualized by plotting the radial surfaces
r(x) = Dijxixj for unit vectors x in the second-order case, and plotting r(x) = Dijkxixjxk,
and r(x) = Dijklxixjxkxl in the third- and fourth-order cases. The surface is colored blue
when r is positive and red when r is negative.

Several interesting observations can be made from the results of the Helmholtz
decomposition shown in Figure 11. The critical points in the original field Figure 10(a) are
not clearly visible. Summing the 4 fields together made it very difficult to visually discern the
critical points in the original field, but in the decomposed fields, they are quite evident.

The error difference function, d, for the second- and fourth-order tensor decompo-
sition, is shown in Figure 12 as a filled contour plot. Note that the “hot”, colored regions
represent the solenoidal part of the field, and the “cool” colors represent the irrotational part
of the field. The smaller contour curves encircle the critical point in the field. The contour at
d = 0 segments the field into two regions and even separates the nearby critical points in
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Figure 8: Run time of Helmholtz decomposition for tensor fields of various orders and sizes.

the center of the field. This function can be seen as a simple classifier for the critical points,
separating nodes of sources/sinks from centers of vortices. The d = 0 isocontour should not
be interpreted as a hyperstreamline, but instead as the boundary between solenoidal and
irrotational regions in the field. The generality of the decomposition with respect to tensor
order is reflected in the similarity of these 2 functions. In both cases, the error difference
function segments the field into disjoint regions of irrotational and solenoidal behavior.

The previous experiment involved data generated by summing even-order tensor
fields. The same experiments applied to third-order tensor fields did not have comparable
results since directions where Dijkxixjxk are negative result in destructive interference when
the fields are added together. This effect causes the locations of critical points in the resulting
field to be significantly different from the original fields. To overcome this problem, we
designed a new experiment in which a set of synthetic fields were generated from the vector
field v = [sin2x+y, cos(x+y2), 0] by repeated vector contraction, as described in the appendix.
The fields are displayed as glyphs in Figure 13, and the resulting error differences are shown
in Figure 14. The error differences all show similar results although the exact location of the
d = 0 isocontour (shown as a thick black line) varies with tensor order.

Five tensor fields of order 2 and 4 were generated by transforming and summing the
fields shown in Figure 5. The ground-truth locations of critical points in the original fields
are shown in Figure 15. The second-order tensor field is shown in Figure 16, and the error
difference is shown in Figure 17with the d = 0 isocontour being plotted as a thicker black line.
Figures 18 and 19 show the results of field visualization using filled contour plots and crosses
marking the locations of critical points. The plots contain the error difference contours, but the
color map has been changed to differentiate these images from previous results. These plots
also contain extrema and filled contours of the trace of the helicity tensor and the divergence
of the Lamb tensor. Helicity contours are filled with purple, and local maxima are denoted by
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(a) Spiral 1

(b) Spiral 2

(c) Spiral 3

(d) Spiral 4

(e) Spiral 5

Figure 9: Continued.
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(f) Spiral 6

(g) Spiral 7

Figure 9: Spiral tensor field features with varying spiral angle (left), the trace of the irrotational part of D
(middle), and the divergence of the irrotational part of D (right).

cyan-colored crosses. Saddle contours are filled with green, and local maxima are denoted by
yellow-colored crosses. Spiral points are drawn in green but may occur inside of the red or
blue contours of sources or vortices.

Some spurious contours do occur, but some of these are due to boundary effects, as
in Figure 18(b), and some are very small, such as in Figure 18(a). Some unexpected contours
occur due to the process of generating the tensor fields. For example, regions surrounded by
multiple vortices resemble saddle points, and this is reflected in Figure 18(c). In all cases, we
were able to identify and correctly classify all of the critical points which were present in the
original fields.

Also note the similarity between the order 2 and 4 results in Figures 18 and 19. This
suggests that in future work these same differential operators may be applied to tensor fields
of order 5 and higher.

6. Conclusions

Differential operators can provide intuitive and useful information about the structure of
tensor fields. Specifically, local peaks in magnitude of divergence and curl correspond to
critical points in the tensor field. We have introduced generalizations of helicity and the
Lamb vector for identifying helices and saddle points in tensor fields. The usefulness of these
measures was validated analytically and demonstrated on synthetic tensor fields of order 2,
3, and 4. We have also presented a method of segmenting tensor fields in a meaningful way
by finding a separating curve which partitions the field into approximately irrotational and
solenoidal regions.
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(a) D1 (b) D2

(c) D3 (d) D4

Figure 10: Vortices and sources used to construct the synthetic field.

(a) Synthetic field D =
(D1 +D2 +D3 +D4)

2
(b) curlψ (c) gradφ (d) harmonic termH

Figure 11:Helmholtz decomposition results for fourth-order synthetic tensor fieldD = curlψ +gradφ+H.

The formulations we have presented are general with respect to tensor order and do
not require eigenvalues to be computed. However, processing time for fourth-order tensor
fields is high, and future work will involve exploiting constraints, such as symmetry, to
reduce the computational complexity of the problem.

Using these operators, we have developed skeleton-like visualizations which provide
concise and intuitive representations of tensor fields. The separating curve and local extrema
of differential operators form a sparse skeleton representation of the field which is still
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(a) Order 2 (b) Order 4

Figure 12: Error difference, d, for second- and fourth-order synthetic fields.

(a) Order 1 (b) Order 2 (c) Order 3 (d) Order 4

Figure 13: Synthetic tensor fields.

(a) Order 1 (b) Order 2 (c) Order 3 (d) Order 4

Figure 14: Error difference of Helmholtz decomposition.

(a) (b) (c) (d) (e)

Figure 15: Ground-truth location of critical points.
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(a) (b) (c) (d) (e)

Figure 16: Resulting tensor field.

(a) (b) (c) (d) (e)

Figure 17: Error difference.

(a) (b) (c) (d) (e)

Figure 18: Field visualization.

(a) (b) (c) (d) (e)

Figure 19: Order 4 field visualization.

much information about the global structure of the field. These methods for analyzing and
visualizing tensor fields hold promise for simplifying these rich and complex datasets. In
contrast, direct visualization of tensor fields may obscure critical points due to the resulting
visual clutter.

In future work, we plan to improve the performance of the Helmholtz decomposition
by exploiting CPU or GPU parallelism, and by using local (rather than global) optimization
methods, such as moving least squares.
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Table 3: Lamb tensor components.

Source Vortex Saddle Helix Spiral

Lxxx xy2 3xy2 −xy2 3xy2 —

Lxxy −x2y −3x2y x2y −y − 3x2y —

Lxxz 0 0 0 −2xy 0

Lxyx y3 −3x2y −x2y −3xy —

Lxyy −xy2 3x3 x3 x + 3x3 —

Lxyz 0 0 0 2x2 0

Lxzx 0 0 0 −3xy 0

Lxzy 0 0 0 1 + 3x2 0

Lxzz 0 0 0 2x 0

Lyxx −x2y 3y3 y3 y + 3y3 —

Lyxy x3 −3xy2 −xy2 −3xy2 —

Lyxz 0 0 0 −2y2 0

Lyyx −xy2 −3xy2 xy2 −x − 3xy2 —

Lyyy x2y 3x2y −x2y 3x2y —

Lyyz 0 0 0 2xy 0

Lyzx 0 0 0 −1 − 3y2 0

Lyzy 0 0 0 3xy 0

Lyzz 0 0 0 2y 0

Lzxx 0 0 0 −xy 0

Lzxy 0 0 0 −y2 0

Lzxz 0 0 0 0 0

Lzyx 0 0 0 x2 0

Lzyy 0 0 0 xy 0

Lzyz 0 0 0 0 0

Lzzx 0 0 0 x 0

Lzzy 0 0 0 y 0

Lzzz 0 0 0 0 0

Appendices

A.

Consider the vector fields v1 = [x, y, 0], v2 = [−y, x, 0], v3 = [y, x, 0], v4 = [−y, x, 1], and
v5 = [x cos θ − y sin θ, x sin θ + y cos θ]. These represent a source, vortex, saddle, helix, and
spiral, respectively. Tensor fields can be constructed by repeated contraction of these vector
fields, for example, Dij = vivj . We applied our experiments to combinations of these 5 basic
fields and applied discrete numerical approximations of the differential operators to the
data. In this appendix, we present a closed-form analytical analysis of the Lamb tensor (for
saddle detection) and helicity tensor (for helix detection)when applied to the source, vortex,
saddle, and helix. Since the differential operators used are linear operators, and are invariant
to rotation, translation and scale, similar analyses can be performed on fields comprising
combinations of these five basic fields.
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Table 4: Detecting saddles and helices in second-order tensor fields.

Div(Reduce(L(D))) Tr(Helicity(D))

Source 8(x2 + y2) 0

Vortex 24(x2 + y2) 0

Saddle 0 0

Helix 12(1 + 2x2 + 2y2) 2(1 + x2 + y2)

Spiral c1x
2 + c2xy + c1y2 0

Table 5: Detecting saddles and helices in third-order tensor fields.

Div(Reduce(L(D))) Tr(Helicity(D))

Source
12
175

(x4 + 75x2y2 + y4) 0

Vortex
24
175

(14x4 − 3x2y2 + 14y4) 0

Saddle − 6
175

(19x4 + 12x2y2 + 19y4) 0

Helix
8

175
(3 + 42x4 + 5y2 + 42y4 + x2(5 − 9y2)) 2(1 + x4 + y4)

Spiral c1x
4 − c2x3y + c3x2y2 + c2xy3 + c1y4 0

A.1. Detecting Saddle Points

In Section 3, we describe saddle detection using the divergence of a vector field computed
by reducing the order of the Lamb tensor of the original tensor field. The expression for each
component of the Lamb vector for second-order tensor fields is given in Table 3. Expressions
for the divergence of the reduced Lamb tensor for second-, third- and fourth-order fields are
given in Tables 4, 5, and 6, respectively. Note that in these tables, the constants c1 through c4
are positive. For the second-order case, it is trivial to differentiate the saddle from the other
features since the divergence is zero everywhere for the saddle, and a quadratic polynomial
in all other cases.

For the order 3 and 4 fields, the divergence is no longer zero, but the saddle can
be differentiated from other features by concavity of the divergence, as demonstrated in
Figure 20. Therefore, we locate and classify saddle points as local maxima of the Lamb tensor
divergence.

A.2. Detecting Helices

Expressions for the trace of helicity of the second-, third- and fourth-order fields are given
in Tables 4, 5, and 6, respectively. In all cases, it is trivial to differentiate the helix from other
features since tr(Helicity(D)) is only nonzero when D is helical.
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(a) Order 3 Source (b) Order 3 Vortex

(c) Order 3 Saddle (d) Order 4 Source

(e) Order 4 Vortex (f) Order 4 Saddle

Figure 20: Saddles are indicated by concavity of the Lamb divergence.

Table 6: Detecting saddles and helices in fourth-order tensor fields.

Div(Reduce(L(D))) Tr(Helicity(D))

Source
2

735
(x2 + y2)(7x4 + 1884x2y2 + 7y4) 0

Vortex
2
49

(x2 + y2)(45x4 − 56x2y2 + 45y4) 0

Saddle − 2
147

(x2 + y2)(61x4 − 28x2y2 + 61y4) 0

Helix
2

147
(5 + 135x6 + 5y2 + 14y4 + 135y6 + x4(14 − 33y2) +

x2(5 − 3y2 − 33y4))

2(1 + x6 + y6)

Spiral c1x
6 − c2x5y+ c3x4y2 + c4x3y3 + c3x2y4 + c2xy5 + c1y6 0
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