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A new nonlinear mapping is introduced. Hybrid projection algorithms are considered for the class
of new nonlinear mappings. Strong convergence theorems are established in a real Banach space.

1. Introduction

Let E be a real Banach space, C a nonempty subset of E, and T : C → C a nonlinear mapping.
Denote by F(T) the set of fixed points of T . Recall that T is said to be nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.1)

We remark that the mapping T is said to be quasinonexpansive if F(T)/= ∅ and (1.1) holds for
all x ∈ C and y ∈ F(T). T is said to be asymptotically nonexpansive if there exists a sequence
{μn} ⊂ [0,∞) with μn → 0 as n → ∞ such that

∥
∥Tnx − Tny

∥
∥ ≤ (

1 + μn

)∥
∥x − y

∥
∥, ∀x, y ∈ C. (1.2)

We remark that the mapping T is said to be asymptotically quasinonexpansive if F(T)/= ∅ and
(1.2) holds for all x ∈ C and y ∈ F(T). The class of asymptotically nonexpansive mappings
was introduced by Goebel and Kirk [1] in 1972. They proved that ifC is a nonempty bounded
closed convex subset of a uniformly convex Banach space E, then every asymptotically
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nonexpansive selfmapping T has a fixed point inC. Further, the set F(T) of fixed points of T is
closed and convex. Since 1972, many authors have studied the weak and strong convergence
problems of iterative algorithms for the class of mappings.

Recall that T is said to be a strict pseudocontraction if there exists a constant κ ∈ [0, 1)
such that

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + κ

∥
∥(I − T)x − (I − T)y

∥
∥
2
, ∀x, y ∈ C. (1.3)

We remark that the mapping T is said to be a strict quasipseudocontraction if F(T)/= ∅ and
(1.3) holds for all x ∈ C and y ∈ F(T).

The class of strict pseudocontractions was introduced by Browder and Petryshyn [2].
In 2007, Marino and Xu [3] proved that the fixed point set of strict pseudocontractions
is closed and convex. They also proved that I − T is demiclosed at the origin in real
Hilbert spaces. A strong convergence theorem of hybrid projection algorithms for strict
pseudocontractions was established; see [3] for more details.

Recall that T is said to be an asymptotically strict pseudocontraction if there exist a
constant κ ∈ [0, 1) and a sequence {μn} ⊂ [0,∞)with μn → 0 as n → ∞ such that

∥
∥Tnx − Tny

∥
∥
2 ≤ (

1 + μn

)∥
∥x − y

∥
∥
2 + κ

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2
, ∀x, y ∈ C. (1.4)

We remark that the mapping T is said to be an asymptotically strict quasipseudocontraction
if F(T)/= ∅ and (1.4) holds for all x ∈ C and y ∈ F(T).

The class of asymptotically strict pseudocontractions was introduced by Qihou
[4] in 1996. Kim and Xu [5] proved that the fixed-point set of asymptotically strict
pseudocontractions is closed and convex. They also obtained a strong convergence theorem
for the class of asymptotically strict pseudocontractions by hybrid projection algorithms. To
be more precise, they proved the following theorem.

Theorem KX. Let C be a closed convex subset of a Hilbert space H, and let T : C → C be an
asymptotically κ-strict pseudocontraction for some 0 ≤ κ < 1. Assume that the fixed-point set F(T) of
T is nonempty and bounded. Let {xn} be the sequence generated by the following (CQ) algorithm:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Tnxn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 ≤

∥
∥
∥xn − z

∥
∥
∥

2
+ [κ − αn(1 − αn)]

∥
∥
∥xn − Txn

∥
∥
∥

2
+ θn

}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(1.5)

where

θn = Δ2
n(1 − αn)μn −→ or n −→ ∞, Δn = sup

{‖xn − z‖ : p ∈ F(T)
}

. (1.6)

Assume that the control sequence {αn} is chosen so that lim supn→∞αn < 1 − κ then {xn} converges
strongly to PF(T)x0.
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It is well known that, in an infinite dimensional Hilbert space, the normal Mann
iterative algorithm has only weak convergence, in general, even for nonexpansive mappings.
Hybrid projection algorithms are popular tool to prove strong convergence of iterative
sequences without compactness assumptions. Recently, hybrid projection algorithms have
received rapid developments; see, for example, [3, 5–24]. In this paper, we will introduce
a new mapping, asymptotically strict quasi-φ-pseudocontractions, and give a strong
convergence theorem by a simple hybrid projection algorithm in a real Banach space.

2. Preliminaries

Let E be a Banach space with the dual space E∗. We denote by J the normalized duality
mapping from E to 2E

∗
defined by

Jx =
{

f∗ ∈ E∗ :
〈

x, f∗〉 = ‖x‖2 = ∥
∥f∗∥∥2

}

, ∀x ∈ E, (2.1)

where 〈·, ·〉 denotes the generalized duality pairing of elements between E and E∗; see [25].
It is well known that if E∗ is strictly convex, then J is single valued, and if E∗ is uniformly
convex, then J is uniformly continuous on bounded subsets of E.

It is also well known that if C is a nonempty closed convex subset of a Hilbert space
H and PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact
actually characterizes Hilbert spaces, and consequently, it is not available in more general
Banach spaces. In this connection, Alber [26] recently introduced a generalized projection
operator ΠC in a Banach space E which is an analogue of the metric projection in Hilbert
spaces.

Recall that a Banach spaceE is said to be strictly convex if ‖(x+y)/2‖ < 1 for all x, y ∈ E
with ‖x‖ = ‖y‖ = 1 and x /=y. It is said to be uniformly convex if limn→∞‖xn −yn‖ = 0 for any
two sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞‖(xn + yn)/2‖ = 1.
E is said to have Kadec-Klee property if a sequence {xn} of E satisfying that xn ⇀ x and
‖xn‖ → ‖x‖, then xn → x. It is known that if E is uniformly convex, then E enjoys Kadec-
Klee property; see [25, 27] for more details. Let UE = {x ∈ E : ‖x‖ = 1} be the unit sphere of
E then the Banach space E is said to be smooth provided

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.2)

exists for each x, y ∈ UE. It is also said to be uniformly smooth if the limit is attained
uniformly for x, y ∈ UE. It is well known that if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on each bounded subset of E.

Let E be a smooth Banach space. Consider the functional defined by

φ
(

x, y
)

= ‖x‖2 − 2
〈

x, Jy
〉

+
∥
∥y

∥
∥
2
, ∀x, y ∈ E. (2.3)

Observe that, in a Hilbert space H, (2.3) is reduced to φ(x, y) = ‖x − y‖2 for all x, y ∈ H.
The generalized projection ΠC : E → C is a mapping that assigns to an arbitrary point x ∈ E
the minimum point of the functional φ(x, y), that is, ΠCx = x, where x is the solution to the
following minimization problem:

φ(x, x) = min
y∈C

φ
(

y, x
)

. (2.4)
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The existence and uniqueness of the operatorΠC follow from the properties of the functional
φ(x, y) and the strict monotonicity of the mapping J ; see, for example, [26–29]. In Hilbert
spaces, ΠC = PC. It is obvious from the definition of the function φ that

(∥
∥y

∥
∥ − ‖x‖)2 ≤ φ

(

y, x
) ≤ (∥

∥y
∥
∥ + ‖x‖)2, ∀x, y ∈ E, (2.5)

φ
(

x, y
)

= φ(x, z) + φ
(

z, y
)

+ 2
〈

x − z, Jz − Jy
〉

, ∀x, y, z ∈ E. (2.6)

Remark 2.1. If E is a reflexive, strictly convex, and smooth Banach space, then, for all x, y ∈ E,
φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From
(2.5), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J ,
we see that Jx = Jy. It follows that x = y; see [25, 27] for more details.

Now, we give some definitions for our main results in this paper.
Let C be a closed convex subset of a real Banach space E and T : C → C a mapping.

(1) A point p in C is said to be an asymptotic fixed point of T [30] if C contains a
sequence {xn} which converges weakly to p such that limn→∞‖xn − Txn‖ = 0. The
set of asymptotic fixed points of T will be denoted by F̃(T).

(2) T is said to be relatively nonexpansive [15, 31, 32] if

F̃(T) = F(T)/= ∅, φ
(

p, Tx
) ≤ φ

(

p, x
)

, ∀x ∈ C, p ∈ F(T). (2.7)

The asymptotic behavior of a relatively nonexpansive mapping was studied in [30–
32].

(3) T is said to be relatively asymptotically nonexpansive [6, 11] if

F̃(T) = F(T)/= ∅, φ
(

p, Tnx
) ≤ (

1 + μn

)

φ
(

p, x
)

, ∀x ∈ C, p ∈ F(T), (2.8)

where {μn} ⊂ [0,∞) is a sequence such that μn → 1 as n → ∞.

(4) T is said to be φ-nonexpansive [14, 16, 17] if

φ
(

Tx, Ty
) ≤ φ

(

x, y
)

, ∀x, y ∈ C. (2.9)

(5) T is said to be quasi-φ-nonexpansive [14, 16, 17] if

F(T)/= ∅, φ
(

p, Tx
) ≤ φ

(

p, x
)

, ∀x ∈ C, p ∈ F(T). (2.10)

(6) T is said to be asymptotically φ-nonexpansive [14] if there exists a real sequence
{μn} ⊂ [0,∞) with μn → 0 as n → ∞ such that

φ
(

Tnx, Tny
) ≤ (

1 + μn

)

φ
(

x, y
)

, ∀x, y ∈ C. (2.11)

(7) T is said to be asymptotically quasi-φ-nonexpansive [14] if there exists a real
sequence {μn} ⊂ [0,∞) with μn → 0 as n → ∞ such that

F(T)/= ∅, φ
(

p, Tnx
) ≤ (

1 + μn

)

φ
(

p, x
)

, ∀x ∈ C, p ∈ F(T). (2.12)
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(8) T is said to be a strict quasi-φ-pseudocontraction if F(T)/= ∅, and there exists a
constant κ ∈ [0, 1) such that

φ
(

p, Tx
) ≤ φ

(

p, x
)

+ κφ(x, Tx), ∀x ∈ C, p ∈ F(T). (2.13)

We remark that T is said to be a quasistrict pseudocontraction in [13].

(9) T is said to be asymptotically regular on C if, for any bounded subset K of C,

lim
n→∞

sup
x∈K

{∥
∥
∥Tn+1x − Tnx

∥
∥
∥

}

= 0. (2.14)

Remark 2.2. The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings are more general than the class of relatively nonexpansive
mappings and the class of relatively asymptotically nonexpansive mappings. Quasi-φ-
nonexpansive mappings and asymptotically quasi-φ-nonexpansive mappings do not require
F(T) = F̃(T), where F̃(T) denotes the asymptotic fixed-point set of T .

Remark 2.3. In the framework of Hilbert spaces, quasi-φ-nonexpansive mappings and asymp-
totically quasi-φ-nonexpansive mappings are reduced to quasinonexpansive mappings and
asymptotically quasinonexpansive mappings.

In this paper, we introduce a new nonlinear mapping: asymptotically strict quasi-φ-
pseudocontractions.

Definition 2.4. Recall that a mapping T : C → C is said to be an asymptotically strict quasi-
φ-pseudocontraction if F(T)/= ∅, and there exists a sequence {μn} ⊂ [0,∞) with μn → 0 as
n → ∞ and a constant κ ∈ [0, 1) such that

φ
(

p, Tnx
) ≤ (

1 + μn

)

φ
(

p, x
)

+ κφ(x, Tnx), ∀x ∈ C, p ∈ F(T). (2.15)

Remark 2.5. In the framework of Hilbert spaces, asymptotically strict quasi-φ-pseudocontrac-
tions are asymptotically strict quasipseudocontractions.

Next, we give an examplewhich is an asymptotically strict quasi-φ-pseudocontraction.
Let E = l2 := {x = {x1, x2, . . .} :

∑∞
n=1 |xn|2 < ∞}, and let BE be the closed unit ball in E.

Define a mapping T : BE → BE by

T(x1, x2, . . .) =
(

0, x2
1, a2x2, a3x3, . . .

)

, (2.16)

where {ai} is a sequence of real numbers such that a2 > 0, 0 < aj < 1, where i /= 2, and
Π∞

i=2aj = 1/2. Then

φ
(

p, Tnx
)

=
∥
∥p − Tnx

∥
∥
2

≤ 2
(

Πn
i=2aj

)∥
∥p − x

∥
∥
2 + κ‖x − Tnx‖2

= 2
(

Πn
i=2aj

)

φ
(

p, x
)

+ κφ(x, Tnx), ∀x ∈ BE, n ≥ 2,

(2.17)
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where p = (0, 0, . . .) is a fixed point of T and κ ∈ [0, 1) is a real number. In view of
limn→∞2(Πn

i=2aj) = 1, we see that T is an asymptotically strict quasi-φ-pseudocontraction.
In order to prove our main results, we also need the following lemmas.

Lemma 2.6 (see [29]). Let E be a uniformly convex and smooth Banach space, and let {xn}, {yn} be
two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded, then xn − yn → 0.

Lemma 2.7 (see [26]). Let C be a nonempty closed convex subset of a smooth Banach space E and
x ∈ E then x0 = ΠCx if and only if

〈

x0 − y, Jx − Jx0
〉 ≥ 0, ∀y ∈ C. (2.18)

Lemma 2.8 (see [26]). Let E be a reflexive, strictly convex, and smooth Banach space, C a nonempty
closed convex subset of E, and x ∈ E then

φ
(

y,ΠCx
)

+ φ(ΠCx, x) ≤ φ
(

y, x
)

, ∀y ∈ C. (2.19)

3. Main Results

Theorem 3.1. Let C be a nonempty closed and convex subset of a uniformly convex and smooth
Banach space E. Let T : C → C be a closed and asymptotically strict quasi-φ-pseudocontraction with
a sequence {μn} ⊂ [0,∞) such that μn → 0 as n → ∞. Assume that T is uniformly asymptotically
regular on C and F(T) is nonempty and bounded. Let {xn} be a sequence generated in the following
manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

Cn+1 =
{

u ∈ Cn : φ(xn, T
nxn) ≤ 2

1 − κ

〈

xn − u, Jxn − JTnxn

〉

+ μn
Mn

1 − κ

}

,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(Υ)

whereMn = sup{φ(p, xn) : p ∈ F(T)} then the sequence {xn} converges strongly to x = ΠF(T)x0.

Proof. The proof is split into five steps.

Step 1. Show that F(T) is closed and convex.
Let {pn} be a sequence in F(T) such that pn → p as n → ∞. We see that p ∈ F(T).

Indeed, we obtain from the definition of T that

φ
(

pn, T
np

) ≤ (

1 + μn

)

φ
(

pn, p
)

+ κφ
(

p, Tnp
)

. (3.1)

In view of (2.6), we see that

φ
(

pn, T
np

)

= φ
(

pn, p
)

+ φ
(

p, Tnp
)

+ 2
〈

pn − p, Jp − JTnp
〉

. (3.2)
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It follows that

φ
(

pn, p
)

+ φ
(

p, Tnp
)

+ 2
〈

pn − p, Jp − JTnp
〉 ≤ (

1 + μn

)

φ
(

pn, p
)

+ κφ
(

p, Tnp
)

, (3.3)

which implies that

φ
(

p, Tnp
) ≤ μn

1 − κ
φ
(

pn, p
)

+
2

1 − κ

〈

p − pn, Jp − JTnp
〉

, (3.4)

from which it follows that

lim
n→∞

φ
(

p, Tnp
)

= 0. (3.5)

From Lemma 2.6, we see that Tnp → p as n → ∞. This implies that TTnp = Tn+1p → p as
n → ∞. From the closedness of T , we obtain that p ∈ F(T). This proves the closedness of
F(T).

Next, we show the convexness of F(T). Let p1, p2 ∈ F(T) and pt = tp1 + (1− t)p2, where
t ∈ (0, 1). We see that pt = Tpt. Indeed, we have from the definition of T that

φ
(

p1, T
npt

) ≤ (

1 + μn

)

φ
(

p1, pt
)

+ κφ
(

pt, T
npt

)

,

φ
(

p2, T
npt

) ≤ (

1 + μn

)

φ
(

p2, pt
)

+ κφ
(

pt, T
npt

)

.
(3.6)

By virtue of (2.6), we obtain that

φ
(

pt, T
npt

) ≤ μn

1 − κ
φ
(

p1, pt
)

+
2

1 − κ

〈

pt − p1, Jpt − JTnpt
〉

, (3.7)

φ
(

pt, T
npt

) ≤ μn

1 − κ
φ
(

p2, pt
)

+
2

1 − κ
〈pt − p2, Jpt − JTnpt〉. (3.8)

Multiplying t and (1 − t) on both the sides of (3.7) and (3.8), respectively, yields that

φ
(

pt, T
npt

) ≤ tμn

1 − κ
φ
(

p1, pt
)

+
(1 − t)μn

1 − κ
φ
(

p2, pt
)

. (3.9)

It follows that

lim
n→∞

φ
(

pt, T
npt

)

= 0. (3.10)

In view of Lemma 2.6, we see that Tnpt → pt as n → ∞. This implies that TTpt = Tn+1pt → pt
as n → ∞. From the closedness of T , we obtain that pt ∈ F(T). This proves that F(T) is
convex. This completes Step 1.

Step 2. Show that Cn is closed and convex for each n ≥ 1.
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It is not hard to see that Cn is closed for each n ≥ 1. Therefore, we only show that
Cn is convex for each n ≥ 1. It is obvious that C1 = C is convex. Suppose that Ch is convex
for some h ∈ N. Next, we show that Ch+1 is also convex for the same h. Let a, b ∈ Ch+1 and
c = ta + (1 − t)b, where t ∈ (0, 1). It follows that

φ
(

xh, T
hxh

)

≤ 2
1 − κ

〈

xh − a, Jxh − JThxh

〉

+ μh
Mh

1 − κ
,

φ
(

xh, T
hxh

)

≤ 2
1 − κ

〈

xh − b, Jxh − JThxh

〉

+ μh
Mh

1 − κ
,

(3.11)

where a, b ∈ Ch. From the above two inequalities, we can get that

φ
(

xh, T
hxh

)

≤ 2
1 − κ

〈

xh − c, Jxh − JThxh

〉

+ μh
Mh

1 − κ
, (3.12)

where c ∈ Ch. It follows that Ch+1 is closed and convex. This completes Step 2.

Step 3. Show that F(T) ⊂ Cn for each n ≥ 1.
It is obvious that F(T) ⊂ C = C1. Suppose that F(T) ⊂ Ch for some h ∈ N. For any

z ∈ F(T) ⊂ Ch, we see that

φ
(

z, Thxh

)

≤ (

1 + μh

)

φ(z, xh) + κφ
(

xh, T
hxh

)

. (3.13)

On the other hand, we obtain from (2.6) that

φ
(

z, Thxh

)

= φ(z, xh) + φ
(

xh, T
hxh

)

+ 2
〈

z − xh, Jxh − JThxh

〉

. (3.14)

Combining (3.13) with (3.14), we arrive at

φ
(

xh, T
hxh

)

≤ μh

1 − κ
φ(z, xh) +

2
1 − κ

〈

xh − z, Jxh − JThxh

〉

≤ μh
Mh

1 − κ
+

2
1 − κ

〈

xh − z, Jxh − JThxh

〉

,

(3.15)

which implies that z ∈ Ch+1. This shows that F(T) ⊂ Ch+1. This completes Step 3.

Step 4. Show that the sequence {xn} is bounded.
In view of xn = ΠCnx0, we see that

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn. (3.16)

In view of F(T) ⊂ Cn, we arrive at

〈xn −w, Jx0 − Jxn〉 ≥ 0, ∀w ∈ F(T). (3.17)
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It follows from Lemma 2.8 that

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ
(

ΠF(T)x0, x0
) − φ

(

ΠF(T)x0, xn

) ≤ φ
(

ΠF(T)x0, x0
)

. (3.18)

This implies that the sequence {φ(xn, x0)} is bounded. It follows from (2.5) that the sequence
{xn} is also bounded. This completes Step 4.

Step 5. Show that xn → x, where x = ΠF(T)x0, as n → ∞.
Since {xn} is bounded and the space is reflexive, we may assume that xn → x weakly.

Since Cn is closed and convex, we see that x ∈ Cn. On the other hand, we see from the weakly
lower semicontinuity of the norm that

φ(x, x0) = ‖x‖2 − 2〈x, Jx0〉 + ‖x0‖2

≤ lim inf
n→∞

(

‖xn‖2 − 2〈xn, Jx0〉 + ‖x0‖2
)

= lim inf
n→∞

φ(xn, x0)

≤ lim sup
n→∞

φ(xn, x0)

≤ φ(x, x0),

(3.19)

which implies that φ(xn, x0) → φ(x, x0) as n → ∞. Hence, ‖xn‖ → ‖x‖ as n → ∞. In view
of Kadec-Klee property of E, we see that xn → x as n → ∞.

Now, we are in a position to show that x ∈ F(T). Notice that limn→∞‖xn+1 − xn‖ = 0.
On the other hand, we see from xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn that

φ(xn, T
nxn) ≤ 2

1 − κ
〈xn − xn+1, Jxn − JTnxn〉 + μn

Mn

1 − κ
, (3.20)

from which it follows that φ(xn, T
nxn) → 0 as n → ∞. In view of Lemma 2.6, we arrive at

lim
n→∞

‖Tnxn − xn‖ = 0. (3.21)

Note that xn → x as n → ∞ in view of

‖Tnxn − x‖ ≤ ‖Tnxn − xn‖ + ‖xn − x‖. (3.22)

It follows from (3.21) that

Tnxn −→ x as n −→ ∞. (3.23)

On the other hand, we have

∥
∥
∥Tn+1xn − x

∥
∥
∥ ≤

∥
∥
∥Tn+1xn − Tnxn

∥
∥
∥ +

∥
∥
∥Tnxn − x

∥
∥
∥. (3.24)
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It follows from the uniformly asymptotic regularity of T and (3.23) that

Tn+1xn −→ x as n −→ ∞ (3.25)

that is, TTnxn → x. From the closedness of T , we obtain that x = Tx.
Finally, we show that x = ΠF(T)x0 which completes the proof. Indeed, we obtain from

xn = ΠCnx0 that

〈xn −w, Jx0 − Jxn〉 ≥ 0, ∀w ∈ Cn. (3.26)

In particular, we have

〈

xn −w′, Jx0 − Jxn

〉 ≥ 0, ∀w′ ∈ F(T). (3.27)

Taking the limit as n → ∞ in (3.27), we obtain that

〈

x −w′, Jx0 − Jx
〉 ≥ 0, ∀w′ ∈ F(T). (3.28)

Hence, we obtain from Lemma 2.7 that x = ΠF(T)x0. This completes the proof.

As applications of Theorem 3.1, we have the following.

Corollary 3.2. Let C be a nonempty closed and convex subset of a uniformly convex and smooth
Banach space E. Let T : C → C be a closed and asymptotically quasi-φ-snonexpansive mapping with
a sequence {μn} ⊂ [0,∞) such that μn → 0 as n → ∞. Assume that T is uniformly asymptotically
regular on C and F(T) is nonempty and bounded. Let {xn} be a sequence generated in the following
manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

Cn+1 =
{

u ∈ Cn : φ
(

xn, T
nxn

)

≤ 2
〈

xn − u, Jxn − JTnxn

〉

+ μnMn

}

,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.29)

whereM = {φ(p, xn) : p ∈ F(T)} then the sequence {xn} converges strongly to x = ΠF(T)x0.

Proof. Putting κ = 0 in Theorem 3.1, we can conclude the desired conclusion easily.

Next, we give two theorems in the framework of real Hilbert spaces.

Theorem 3.3. Let C a nonempty closed and convex subset of a real Hilbert space H. Let T : C → C
be a closed and asymptotically strict quasipseudocontraction with a sequence {μn} ⊂ [0,∞) such that
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μn → 0 as n → ∞. Assume that T is uniformly asymptotically regular on C and F(T) is nonempty
and bounded. Let {xn} be a sequence generated by the following manner:

x0 ∈ H chosen arbitrarily,

C1 = C,

x1 = PC1x0,

Cn+1 =
{

u ∈ Cn : ‖xn − Tnxn‖2 ≤ 2
1 − κ

〈

xn − u, xn − Tnxn

〉

+ μn
Mn

1 − κ

}

,

xn+1 = PCn+1x0, ∀n ≥ 0,

(3.30)

whereMn = sup{‖p − xn‖2 : p ∈ F(T)} then the sequence {xn} converges strongly to x = PF(T)x0.

Theorem 3.4. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let T : C →
C be a closed and asymptotically quasinonexpansive mapping with a sequence {μn} ⊂ [0,∞) such that
μn → 0 as n → ∞. Assume that T is uniformly asymptotically regular on C and F(T) is nonempty
and bounded. Let {xn} be a sequence generated by the following manner:

x0 ∈ H chosen arbitrarily,

C1 = C,

x1 = PC1x0,

Cn+1 =
{

u ∈ Cn : ‖xn − Tnxn‖2 ≤ 2
〈

xn − u, xn − Tnxn

〉

+ μnMn

}

,

xn+1 = PCn+1x0, ∀n ≥ 0,

(3.31)

whereMn = {‖p − xn‖2 : p ∈ F(T)} then the sequence {xn} converges strongly to x = PF(T)x0.
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