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We introduce algorithms marching over a polygonal mesh with elements consistent with the
propagation directions of the particle (radiation) flux. The decision for adopting this kind of
mesh to solve the one-speed Boltzmann transport equation is due to characteristics of the domain
of the transport operator which controls derivatives only in the direction of propagation of the
particles (radiation) flux in the absorbing and scattering media. This a priori adaptivity has the
advantages that it formulates a consistent scheme which makes appropriate the application of the
Lax equivalence theorem framework to the problem. In this work, we present the main functional
spaces involved in the formalism and a description of the algorithms for the mesh generation and
the transport equation solution. Some numerical examples related to the solution of a transmission
problem in a high-contrast model with absorption and scattering are presented. Also, a comparison
with benchmarks problems for source and reactor criticality simulations shows the compatibility
between calculations with the algorithms proposed here and theoretical results.

1. Introduction

A line propagation of radiation and particles is observed for low-density noncharged parti-
cles as neutron in nuclear reactors and X-rays or γ-rays in nuclear medicine and engineering
nondestructive test applications. For charged particles, this collimation is found in accelerator
and spallation target technologies for ADS nuclear plants. This natural behavior of collimated
radiation and particles introduces in the numerical computation a new paradigm of operator,
the one-speed Boltzmann transport operator, which has been extensively studied in the
nuclear community Vladimirov [1], Duderstadt and Martin [2], Kaper et al. [3], Lewis and
Miller Jr. [4], Dautray and Lions [5], Mokhtar-Kharroubi [6] and astrophysical community
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Chandrasekhar [7]. Outside the nuclear community, the analysis of radiation transfer and
particle transport problems has several relevant applications in different areas such as
population dynamics, heat transfer, remote sensing, global warming models, natural water
radiative properties estimation and transmission, scattering and optical tomography.

The huge number of degree of freedom associated with the seven-dimensional phase-
space-time domain introduces the necessity of numerically preprocessing the equation in
order to produce a solution computationally feasibly. This may introduce conceptual errors
in the proposed approximated models. In this work, we are trying to avoid one of the most
commonmistakes in these models, that is, the disrespect with the natural characteristic of the
solution, and also, develop a procedure for discriminating radiation flux of different orders
of magnitudes. In image processing, the lower-order magnitude radiation flux is treated as
noise, and if we have collimated radiation flux, angular averaged numerical methods will
introduce errors. For planes and axis symmetric problems involving the linear Boltzmann
transport equation, the adoption of a polygonal mesh with elements consistent with the
directions of particles and radiation flux gives an a-priori adaptability that is necessary in
the study of the propagation of absorbing and scattering media. This kind of mesh has
been called, by us, a natural pixel partition of the domain of definition and has been used
successfully in problems of image reconstruction from projection Reis and Roberty [8] and
Montero et al. [9]. The use for the solution of the Boltzmann equation is now introduced by
me andmy students and collaborators Chaffin and Roberty [10], Montero [11], Montero et al.
[12]. In the present work, we introduce a new formalism for the radiative transfer and linear
particle transport problem. The procedure has been studied in two dimensional models, but
extension for 3-dimensional problems is straightforward. Recent works explore the respect
with the characteristic of the linear Boltzmann equation, but, contrary to the presented work,
they are based on the ray tracing technique and not in the domain partition, as this work is.
We cite Liu et al. [13], Chetaine et al. [14], Jevremovic et al. [15].

This paper will be structured with the following sequence. The physical formulation
for the stationary model is introduced in Section 2. Some mathematical results that are
important to the understanding of the solution given to this numerically implemented
problem are presented in Section 3. The consequences of the necessity of a special basis
that rotates to accomplish the regularities of the angular flux are discussed in Section 4. We
introduce the implementation of the rotation pixel and the natural partitions elements in
Section 5. The basis generated by this partition is the most relevant and original aspect found
in the present work. Questions related to the algorithm implementation are introduced. The
two-dimensional discrete equation used for algorithm implementation is shown in Section 7.
The algorithms for the transillumination, source, and the eigenvalue problem are detailed
in Section 7.1. The numerical results for the three simulated problems are presented and
discussed in Section 8. Finally, we conclude and point out the advances introduced by the
present work.

2. Physical Formulation for the Stationary Problem

The particle Boltzmann transport equation is a balance of particles (or photons) inside
an absorbing, scattering, or multiplicative participating medium such as a reactor, a
tomography, or the natural environment. To state the stationary equation, consider an n-
dimensional convex region Ω, n = 2, 3, delimiting an region with internal radiation sources
S(ω, x), (ω, x) ∈ Sn−1 ×Ω, subjected to externally generated parallel beams of particles. Here,
Sn−1 is the set of directions in Rn. For the steady-state situation, with one-velocity particles
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or no spectral dependency in the case of radiation, the following formulation is obtained
from the linear Boltzmann equation, Vladimirov [1], Kaper et al. [3], Dautray and Lions
[5], which is usual for the mathematical modeling of the interaction of the radiation with
the participating medium. Based on these initial assumptions, we consider the following
boundary problem: for a given function g−, find the constant velocity radiation intensity
φ ∈ L2(Sn−1 ×Ω) such that

ω · ∇φ(ω, x) + σt(x)φ(ω, x) =
∫
Sn−1

f
(
x,ω′ ·ω)φ(ω′, x

)
dω′ + S(ω, x), (ω, x) ∈ Sn−1 ×Ω,

(2.1)

φ(ω, σ) = g−(ω, σ) for (ω, σ) ∈ Σ−, (2.2)

where Σ± = {(ω, σ) ∈ SN−1 × Γ; ±ν(σ) · ω > 0} are, respectively, the phase space surfaces
of the incident and emergent radiation on the physical surface Γ = ∂Ω, which is the smooth
boundary of the bounded, possibly convex region Ω ⊂ R

n.
The coefficients σt and f in (2.1) are, respectively, the total extinction coefficient

(absorption + outscattering) and the scattering and fission coefficient. We assume that σt ∈
L∞(Ω) and, since ω′ · ω = cos θ0, with θ0 being the angle between the direction of incident
radiation ω′ and the emergent scattered radiation ω, we also assume that

f(·, s) ∈ L∞(Ω), a.e. s ∈ [−1, 1], f(x, ·) ∈ L1([−1, 1]), a.e. x ∈ Ω. (2.3)

Under these assumptions, L2(Σ±; |ν(σ)·ω|dσ dω) become the appropriated spaces for traces of
the functions in the boundary value problem (2.1) and (2.2). For a more detailed discussion,
see Cipolatti [16] and the references therein.

3. Mathematical Preliminaries

The stationary transport (2.1) is composed of the following operators. The operator

A : W
(
Sn−1 ×Ω

)
−→ L2

(
Sn−1 ×Ω

)

φ(ω, x) �−→ A
[
φ
]
(ω, x) = ω · ∇φ(ω, x),

(3.1)

where derivatives are in the sense of distributions. The spaceH = L2(Sn−1 ×Ω) is the closure
of C(Sn−1 ×Ω) with respect to the norm

∥∥φ∥∥H =
(∫

Sn−1

∫
Ω

∣∣φ(ω, x)∣∣2dx dω
)1/2

, (3.2)

where dω denotes the measure on Sn−1 associated with the Lebesgue measure R
n. The space

W is defined fromH as

W =
{
φ ∈ H;Aφ ∈ H}. (3.3)
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W is a Hilbert space for the norm

∥∥φ∥∥W =
(∫

Sn−1

∫
Ω

[∣∣φ(t, ω, x)∣∣2 + ∣∣Aφ(t, ω, x)∣∣2]dωdx

)1/2

. (3.4)

The second operator

B : H −→ H

φ(ω, x) �−→ [Bφ](ω, x) = σt(x)φ(ω, x)
(3.5)

is a bounded operator which has continuous inverse for σt(x) > 0, x ∈ Ω. The total
macroscopic cross-section is, in applications, piecewise smooth (piecewise and infinitely
differentiable), bounded, and strictly positive on Ωwith

0 < inf{σt(x);x ∈ Ω} ≤ σt(x) ≤ c0 = sup{σt(x);x ∈ Ω}. (3.6)

The streaming operator is the sum

Lσ = A + B : W
(
Sn−1 ×Ω

)
−→ L2

(
Sn−1 ×Ω

)

φ(ω, x) �−→ Lσ
[
φ
]
(ω, x) = ω · ∇φ(ω, x) + σt(x)φ(ω, x).

(3.7)

The third operator

C : H −→ H

φ(ω, x) �−→ [Cφ](ω, x) = −
∫
Sn−1

f
(
x,ω′ ·ω)φ(ω′, x

)
dω′

(3.8)

describes the anisotropic scattering and fission process. Kernel f can be expanded in an
absolutely and uniformly convergent series

f
(
x,ω ·ω′) = ∞∑

k=1

2k − 1
4π

σk(x)Pk−1
(
ω ·ω′) + 1

λ
σf(x), (3.9)

where Pk−1 is the surface harmonic of degree k − 1 (Legendre polynomials). The coefficients
σk, k ≥ 1 are nonnegative, and the first coefficient verifies the inequality

0 ≤ inf{(σt(x) − σ1(x);x ∈ Ω)} ≤ c0 − c1, where c1 = inf{(σ1(x);x ∈ Ω)}, (3.10)

and (1/λ)σf is the nonnegative fission cross section divided by the criticality parameter. With
this, the collision operator takes its usual form

C
[
φ
]
(ω, x) =

∫
Sn−1

(
σs
(
ω ·ω′, x

)
+
1
λ
σf(x)

)
φ
(
ω′, x

)
dω′. (3.11)
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The operator C with this kernel is compact from L2(Sn−1) �→ L2(Sn−1), but not from
L2(Sn−1 ×Ω) �→ L2(Sn−1 ×Ω), and this is the main mathematical problem in this engineering
problem.

The trace operator

γ− : W̃ =
{
φ ∈W :

∫
Σ

∣∣φ(ω, σ)∣∣2|ω · ν(σ)|dσ dω < +∞
}

−→ L2(Σ−, |ω · ν(σ)|dσ dω)
(3.12)

is continuous and surjective, where W̃ is a Hilbert space with the norm ‖φ‖2
W̃

= ‖φ‖2W +∫
Σ |φ(ω, σ)|2|ω · ν(σ)|dσ dω.

Given the incident flux by the boundary condition (2.2), g− ∈ L2(Σ−, |ω · ν(σ)|dσ dω),
the following prolongation of g− inside the phase space is defined:

Jσ
[
g−](ω, x) = exp

(
−
∫ τ−(ω,x)
0

σt(x − sω)ds
)
g−(ω, x −ωτ−(ω, x)), (3.13)

where τ±(ω, x) = sup{t ≥ 0 : x ± tω ∈ Ω}are the distance to the emergent and incident
boundary, respectively. Note that this definition implies that Jσ is the solution operator of the
problem Lσ[φ] = 0, φ|Σ− = g−.

These operators can be used to formulate the first-order boundary non-homogeneous
stationary direct problem given (2.1) and (2.2) as the following equivalent homogeneous
problem: to find ϕ = φ − J[g−] ∈W ∩ dom(A) such that

(Lσ − C)
[
ϕ
]
= S − C[Jσ[g−]] = h ∈ H, (3.14)

where dom(A) = {ϕ ∈W : ϕ = 0 on Σ−}.

Theorem 3.1. For each h ∈ H, the boundary value problem (3.14) has a unique solution witch is
given by

φ =
(
I − L−1

σ C
)−1

L−1
σ [h], (3.15)

and verifies the following estimate:

∥∥φ∥∥ ≤ (1 − exp(−c0d)
)∥∥∥∥(I −

(
Lσ)

−1S
)−1∥∥∥∥‖h‖, (3.16)

where d is the diameter of Ω.

Proof. See Chapter (III) and Lemma 3.1 of Vladimirov [1].

In Sections IV thought VII of Vladimirov [1], operators Lσ : D(Lσ) �→ L2(Sn−1 ×Ω) and
C : L2(Sn−1 × Ω) �→ L2(Sn−1 × Ω) are investigated for more general Sobolev spaces. We can
easily adapt them to our Hilbert space framework.
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Lemma 3.2. The operator L−1
σ ◦ C : L2(Sn−1 ×Ω) �→ L2(Sn−1 ×Ω) is compact.

Proof. See Lemma 5.3 of Vladimirov [1].

This result is fundamental for the reformulation of boundary value problem given by
(2.1) and (2.2) in terms of an integral equation based on a compact perturbation of the identity
operator used in this work: to find φ(ω, x) such that

φ = L−1
σ ◦ C[φ] + Jσ[g−], (ω, x) ∈ Sn−1 ×Ω. (3.17)

Remark 3.3. The study of the numerical behavior of compact operators is an very well
known subject. The spectral properties of compact operators are very similar to that of
finite-dimensional operators, fact that make analysis very easy. For this kind of operator, the
subspaces associated with a eigenvalue are finite dimensional. It is based on this behavior our
interest inmodel this problem using integral equation (3.17). A situation similar also occurs in
models based on the Laplacian operator paradigm, which fortunately, for bounded domains,
is an operator with compact resolvent. Since the one-velocity transport equation has a more
complex structure than the Laplacian, it is necessary to do the composition of the inverse
of the streaming operator, L−1

σ , and the collision operator, C, to obtain a compact operator.
Note that L−1

σ presupposes and line integrals through the ray paths of particles inside the
domain, and is this fact that will have a remarkable influence on the numerical behavior of
the problem. We will see that this connects compactness and characteristic basis.

4. Relation between the Integral Operator and the Characteristic Basis

Due to its very nature, the transport equation for the angular flux may be viewed as a system
of ordinary differential equations coupled by the collision operator. Each angular field is
a different field which has its own direction of propagation as its characteristic directions.
This means what characteristic means: the discontinuities of each angular flux field will
separately propagate in its own direction. This observation introduces a natural way to solve
the transport equation, Askew [17], that will be computationally more expensive but will
produce more accurate calculations. For this, consider the mapping in the angular phase
space Sn−1 × Rn

Q(ω, x) =
(
ω′, xω, xω⊥

)
(4.1)

with

ω′ = ω, xω = ω · x, xω⊥ = x − (ω · x)ω. (4.2)

This is an isometry that rotates the axis x to a new direction xω coincident with the
propagation direction. For each fixed direction ω ∈ Sn−1, it introduces a new coordinate
system (xω, xω⊥) with the second coordinate in the projection Πω[Ω] of the physical domain
Ω in a subspace of Rn made with directions ω⊥ and evidences the ordinary character of each
angular flux in the equation

∂φ

∂xω
+ σtφ = Lσ

[
φ
]
= C
[
φ
]
+ S, (ω, xω, xω⊥) ∈ Q

[
Sn−1

]
×Q[Ω], (4.3)
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subject to the same incident boundary condition

φ
(
ω, x−

ω, x
−
ω⊥

)
= g−

(
ω, x−

ω, x
−
ω⊥

)
, (ω, x) ∈ Σ−. (4.4)

Note that this incident boundary condition can be interpreted as an initial value for
this system of ordinary differential equations coupled through the collision operator. For
simplicity, we have used the same notation φ(ω, xω, xω⊥) for the rotated angular flux
Q[φ](ω, xω, xω⊥).

As pointed out in Section 3., the inversion of the operator Lσ and its composition with
special class of collision operator found in nuclear applications gives a compact operator

L−1
σ C = L−1

σ C
scattering +

1
λ
L−1
σ C

fission : L2
(
Sn−1 ×Ω

)
−→ L2

(
Sn−1 ×Ω

)
. (4.5)

Of course this important property will pose the direct problem involving recovery of
the angular flux from appropriate parameter data σ, σs, and σf . Some more functionals
defined in terms of the rotated coordinates systems need to be introduced in order to make
comprehensive the approximations that will be done to solve the problem. First of all, the
optical distance from interior point x to a point x0 ∈ Rn

α
(
x, x0

)
=
∫x·ω
x0ω

σt(Xω,Xω⊥)dXω, (4.6)

where ω = (x − x0)/‖x − x0‖ is the direction that aligns x and x0, and the extension for
points in the possibly bare medium outside the physical domainΩmay be done by assuming
σ(x) = 0, x ∈ Rn \ Ω. When x0 is a boundary point, it is given by x±(ω, x) = x ± τ±(ω, x)ω
which is the point in the boundary where the line passing x with direction ω crosses the
emergent or the incident boundary, respectively. It may be used to define the attenuation
from the incident boundary

a−(ω, xω, xω⊥) = exp

(
−
∫xω
x−ω

σt(Xω,Xω⊥)dXω

)
. (4.7)

We also define the right inverse of the trace operator, the extension operator as

E
[
g−](ω, x) = g−(ω, x −ωτ−(ω, x)); (ω, x) ∈ Sn−1 ×Ω, (4.8)

and the extension with attenuation from the incident boundary

E
[
g−](ω, x)a−(ω, x) = g−(ω, x −ωτ−(ω, x))a−(ω, x) = J

[
g−](ω, x); (ω, x) ∈ Sn−1 ×Ω.

(4.9)
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By noting that the attenuation is the inverse of the integrating factor for the system (4.3),
we may integrate from the incident boundary to the interior point x to obtain an integral
equation which is an explicit expression of (3.17):

φ(ω, xω, xω⊥)

=
∫xω
x−ω

a−(ω, xω, xω⊥)
a−(ω,Xω,Xω⊥)

· S(ω,Xω,Xω⊥)dXω + g−(x −ωτ−(ω, x)) · a−(ω, xω, xω⊥)

·
∫xω
x−ω

a−(ω, xω, xω⊥)
a−(ω,Xω,Xω⊥)

·
∫
Sn−1

(
σs
(
ω ·ω′, Xω,Xω⊥

)
+
1
λ
σf(Xω,Xω⊥)

)
φ
(
ω′, Xω,Xω⊥

)
dω′dXω,

(4.10)

for all (xω, xω⊥) ∈ [x−
ω, x

+
ω] ×Πω[Ω], ω ∈ Sn−1.

The integration may also be done between two arbitrary points, inside or outside the
domain Ω, x, and x0. In this case we must extend the cross-sections outside the domain as
zero. By defining ω = (x − x0)/|x − x0| and a0(ω, xω, xω⊥) = exp(−α(x, x0)), we obtain

φ(ω, xω, xω⊥)

=
∫xω
x0ω

a0(ω, xω, xω⊥)
a0(ω,Xω,Xω⊥)

· S(ω,Xω,Xω⊥)dXω + g−(x −ωτ−(ω, x)) · a0(ω, xω, xω⊥)

·
∫xω
x0ω

a0(ω, xω, xω⊥)
a0(ω,Xω,Xω⊥)

·
∫
Sn−1

(
σs
(
ω ·ω′, Xω,Xω⊥

)
+
1
λ
σf(Xω,Xω⊥)

)
φ
(
ω′, Xω,Xω⊥

)
dω′dXω,

(4.11)

for all (xω, xω⊥) ∈ [x0
ω, x

+
ω] ×Πω[Ω], ω ∈ Sn−1.

Remark 4.1. Problems given by the equations

(1) (2.1) and (2.2),

(2) (3.17),

(3) (4.3) and (4.4), and

(4) (4.10) and (4.11)

are alternative formulations to the one-velocity transport equation model and express
different aspects of this equation. Note that the initial value character of the problem will
be accomplished if we construct the solution by using a method that marches along each one
of the characteristics.

Remark 4.2. The consistence that will be appropriated to the application of the Lax
equivalence theorem framework that has been formulated for time transient problems will
be accomplished by the adoption of a rotated pixel basis in the next section. The compact
operator L−1

σ C is subcritical or critical, which means the inverse of its eigenvalue is not less
than one. So this gives stability to the class of problems been investigated.
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As a consequence of consistency, the Lax equivalence theorem applies, Valtchev and
Roberty [18], and may be stated as follows.

Theorem 4.3. For a well-posed initial value problem, a consistent numerical scheme is convergent if
and only if it is stable.

5. The Natural Partition

The integral form of the transport equation (4.11) has been written in a different coordinate
system for each direction of propagation ω. In order to attempt the regularities requirements
of each angular flux φ, we must introduce a grid with one direction as ω. This is impossible
unless we choose a set of discrete ordinates as representative of all angular directions. This
must be done a priori. Let S be the surface of the unity sphere in R3 and

ω = (ω1, ω2, ω3) =
(
sin(θ) cos

(
ψ
)
, sin(θ) sin

(
ψ
)
, cos(θ)

)
, ψ ∈ [0, 2π), θ ∈ [0, π), (5.1)

where θ and ψ are the usual angles of the spherical coordinates system. To be more specific,
let us consider the two-dimensional equation embedded in R3. So, we choose a set of

Sji =
{
ωji =

(
sin(θi) cos

(
ψj
)
, sin(θi) sin

(
ψj
)
, cos(θi)

)
, j = 1 : 2J, i = 1 : 2I

}
(5.2)

of equally spaced angular angles ψj = ((j − 1)/2J)2π and at least symmetrical with the
angle θ = π/2 of 2I collocations directions out of the plane generated by the vectors
(cos(ψ), sin(ψ)), that is, out of the plane xy. We now may use these directions to introduces
grids, one for each direction, or in the case of a two-dimensional problem, only in the
plane directions Πj = {cos(ψj), sin(ψj)}. Note that in the two dimensional problem, since
the problem is embedded in the three-dimensional space, angular flux is defined for all
directions in the S2 sphere but has spatial variations only in the plane xy. This introduces,
for each direction out of the xy plane, the necessity of a sin(θi) factor correction. This gives
the possibility of extending this formulation to investigate axis symmetric problems, but,
from now on, we will fix in the two-dimensional problem. We have introduced 2J coordinate
systems.Without loss of generality, let us consider each onewith a rectangular equally spaced
grid. These coordinates systems are supposed to be equally rotated with respect to the others.
We have chose an even number for J, so, directions of propagations appear in groups of four,
to complain with the four quadrants.

We know that it is necessary to combine the different directions in order to calculate
the collision operator for groups of pair the directions. Since the cross sections are properties
common for all angular flux, the complete intercessions of the 2J rotated grid is the
appropriate partition consistent with the numerical solution of the transport equation. To
fix ideas, let us introduce the appropriate notation in R2. The direction ωj contains one strip

χnj
(
x, y
)
=

⎧⎨
⎩
1, if nj ≤ −x sin

(
ψj
)
+ y cos

(
ψj
)
< 1 + nj ,

0, else,
(5.3)
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which may be intercept with a strip in one direction in ω⊥
j

χmj

(
x, y
)
=

⎧⎨
⎩
1, if mj ≤ x cos

(
ψj
)
+ y sin

(
ψj
)
< 1 +mj,

0, else,
(5.4)

to form a rotated pixel

Pjmjnj

(
x, y
)
=

⎧⎨
⎩
1,
(
x, y
) ∈ χnj ∩ χmj ,

0, else.
(5.5)

The regular spacing hxj , hyj = 1 has been adopted without loss of generality for simplicity.
Note that in the direction ωj = cos(ψj)ex + sin(ψj)ey, the integrated (4.11)must be collocated
for points (ωj, x0ωj , x

⊥
ωj
) and (ωj, xωj , x

⊥
ωj
) that will be referenced by the indexes (j,mj , nj)

and (j,mj + 1, nj), respectively. This is a consequence of the fact that ωj aligns the points
and x⊥

0ωj
= x⊥

ωj
. As the marching direction is ωj , the equation index mj will grow from its

value corresponding to a point xωj in the incident boundary, where the boundary condition
is imposed, to the corresponding point in the emergent boundary. This happens for each
transversal index nj in each directionωj . We now face the problem of computing the collision
integral in (4.11) with a consistent discretization. Note that the measure dω′dXω

∫xω
x0ω

a0(ω, xω, xω⊥)
a0(ω,Xω,Xω⊥)

·
∫
Sn−1

(
σs
(
ω ·ω′, Xω,Xω⊥

)
+
1
λ
σf(Xω,Xω⊥)dω′dXω

)
(5.6)

will corresponds to a volumetric Lebesgue measure when the two integrals interchanges, that
is, when the Fubini theorem is applicable. The natural way to obtain this in the discretized
approximation is by considering the partition presented by Roberty [19] that makes a
complete intersection of the pixels Pjmjnj . This may be done with the complete interception of
the strips defining the pixels to form the natural pixels

Enj1 ,...,nj2J
(
x, y
)
=

2J∏
j=1

χnj
(
x, y
)
. (5.7)

This interception produces a domain partition which is consistent in the sense that if we
increase the number of directions and reduce the size of the spacing hj = 1 by using a more
refined mesh, the error in the approximation to the exact stationary transport equation will
approache zero accordingly. A particle or photon collected in one interception can only come
from pixels aligned with the current position thought the discrete directions considered in the
model. The approximation made can answer the question “from where the particle came?”,
in a way consistent with the exact equation.

Calculations of the vertex, area, centroid, and all geometric information are a classical
computational geometry problem of domain decomposition, O’Rourke [20], which may
present a great complexity in dimensions greater than two.

As an optimization problem, the mesh generation is the determination of the convex
polygonal sets limiting the maximum area that follows linear restrictions of the type:Ax ≤ b,
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Figure 1: A detail in the J32M64 mesh.

where x is a vector in R
2, b is a vector in some R

Nb related with the strips nj , andA is a 2×Nb

matrix related with the direction angle θj . The search process of the elements in the mesh
executes the following steps:

(1) decomposition of the domain in search subdomains

(2) determination of the minimum and maximum strips for the search subdomain

(3) search for the true intersections,

(4) calculus of elements vertices, edges, area, and pertinence index for all directions

(5) assemble subdomains to form the natural pixel partition.

5.1. Decomposition of the Domain in Search Subdomains

The greater majority of the combinations (n1, . . . , n2J) are false intersections and can be a
prior avoided by restricting the search for parameters on regions for which we can expect
true intersections. We call these regions search subdomains, and they can be a pixel for
some prescribed direction j, an intersection of some given strip with a sector, or any other
type of polygonal subdomain. With them, we avoid a search with a large number of false
intersections in the step (3). As an example in Figure 1 we show a detail of the mesh
J64M128 for huge numbers of direction (64) and pixels (128× 128), which is typical of image
processing and reconstruction problems. Since the rotational symmetry allows us to calculate
the interception only in a J/π sector, we may have less computation than the case of doing
only two interceptions, as illustrated by Figure 2. Finally, in Figure 3, we present the complete
mesh used to simulate our solution with test and benchmark problems.

5.2. Determination of the Minimum and Maximum Strips for
the Search Subdomain

This is a complementary procedure for minimizing the determination of false intersection.
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Figure 2: Sector mesh generated strip by strip in the j = 16 andM = 15 problem.

Figure 3: The J6M24 mesh.

5.3. Search for the True Intersections

In each domain of search, every strip combinationsmust be tested until the area of the domain
is totally filled with natural pixels.

5.4. Calculus of Element Vertexes, Edges, Area, and
Pertinence Index for all Directions

This calculation is done simultaneously with the search for true intersections. Note that not
all intersections of lines limiting the strips are vertexes of the polygons and not all lines across
a vertex are a polygonal edge.

5.5. Assemble Subdomains to Form the Natural Pixel Partition

In each subdomain, the pertinence indexes are calculated independently and are assembled
to form the matrix of pertinence index for the entire mesh.

For more information, please see Roberty [19] and in the references there. In Figure 4,
the dependence of the numbers of polygonal with the numbers of views and slices is
presented. Note that the almost exponential growth observed for growing numbers of
slice and views introduces memories problems in the computational implementation of the
present methodology. In Figure 5, we present a comparison of mesh J6M3 with the classical
Delaunay triangulation made for the same vertex number. Note that it is inconsistent with
the natural partition, that is, it is not a triangular decomposition of it.
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Figure 5: A comparison between the natural and the Delaunay mesh.

6. The Discrete Equation for the Two-Dimensional Problem

As we mention before, we may consider the integral form of the transport (4.11) for direction
ωj , j = 1, 2J , in the pixel Pjmjnj , nj = 1, 2M and mj = 1, 2M. Since we are focusing on the
two dimensional problem, it necessary introduces the sin(θi) correction for each out of the xy
plane direction. Note that the xy plane corresponds to the case sin(θi) = sin(π/2) = 1. There
is by hypotheses no variation of the angular flux in the z = xy⊥ direction, but it still remains
dependent of azimuthal angle. Let us rebuild the notation to make this behavior explicit.
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Since ω3 · ∇xφ = ∂φ/∂z = 0 and all other functional variations in this direction are also zero,
we rewrite ωji = sin(ψi) · ωj and obtain by straightforward calculations, the optical distance
for points with projection xy along the ω3 direction as

α
(
xy, xy0, ψi

)
=

∫xy·ωj

xy0·ωj
σ
(
xy′

ω, xyω⊥
(
xy, xy0

))
dx y′

ωj

sin
(
ψi
) . (6.1)

Since all other parameters, as the cross sections, and sources are linear measures of the change
in the particle population in the direction ωji, it must be corrected accordingly.

As a consequence of the divergence theorem, the angular flux in direction ωji has
average value on all lateral segments (surfaces in three dimension), that is, the segments
that are transversal to the strip χmj (x, y), parallel to ωj for all mj , are equal to zero. We
complement this by introducing the following hypotheses:

(1) that angular flux is well represented by its average value in each transversal section
to the strip χnj (x, y),

(2) the cross sections are known by its average values in the natural pixel

χen1 ,...,n2J =
2J∏
j=1

χnj , (6.2)

(3) the average cross sections inside each rotated rectangular pixel Pjmjnj are the area
(volume in three dimensions) average weight of each natural pixel cross section
value,

(4) to accomplish with high cross section values, we integrate the exponentials inside
the rotated pixel Pjmjnj ,

(5) the mean value of angular flux inside the pixel Pjmjnj is used in the calculation of
scattering and fission reaction rate.

7. The Method of Successive Approximations

With respect to the intensity of the extinction cross section σt, we observe two important class
of problems:

(1) there exists a transillumination of the medium Ω, which means that the extinction
cross sections not sufficient to produce an optical path that shields the radiation
flux. In this class of problems, a flux radiation in the incident boundary
propagates through the medium and can be collected in the emergent boundary. Its
modification will be used to interpret the optical properties of the medium inside
Ω,

(2) there is no transillumination, which means that the extinction cross sections are
sufficient to produce an optical path that completely shields the radiation flux. In
this case, the shielded radiation is must be replaced by an internal source or the
fission in the case of reactors.
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Since the extinction coefficients may present high values, we considered exponential
flux attenuation inside the rotated pixel and calculated the reaction rates using the average
flux expressed in terms of the incident and emergent flux in the rotated pixel. Equation (4.11)
becomes

φmj+1,nj ,j = φmj ,nj ,jE1,mj ,nj ,j + qmj ,nj ,jE2,mj ,nj ,j for mj, nj = 1, 2M; j = 1, 2J. (7.1)

Here, the source with contribution of the scattering andwhich forms fission inside the rotated
pixel is

qmj ,nj ,j =
2J∑
k=1

∑
e∈Pjmj nj

ae ·
[
σs,e +

1
λ
σf,e

]

·[E3,m(e,k),n(e,k),k)φm(e,k),n(e,k),k + E4,m(e,k)+1,n(e,k),kφm(e,k)+1,n(e,k),k
]
; k = 1, 2J,

E1,mj ,nj ,j = exp
(
−σmj ,nj ,j

)
,

E2,mj ,nj ,j =
1 − exp

(
−σmj ,nj ,j

)
σmj ,nj ,j

,

E3,mj ,nj ,j =
1 −
(
1 + σmj ,nj ,j

)
exp
(
−σmj ,nj ,j

)

σmj ,nj ,j

(
1 − exp

(
−σmj ,nj ,j

)) ,

E4,mj ,nj ,j,i =
−1 + σmj ,nj ,j + exp

(
−σmj ,nj ,j

)

σmj ,nj ,j

(
1 − exp

(
−σmj ,nj ,j

)) ,

σmj ,nj ,j =
∑

e∈Pjmj nj
aeσe.

(7.2)

Remark 7.1. Note that the correction for extending this methodology for axis symmetric
problems is

σe,i =
σe

sin
(
ψi
) (7.3)

as mentioned in the introduction of the natural partition in Section 5.

The localization of the natural element en1,...,n2J inside the rotated pixel Pmj ,nj ,j is made
by the incident matrix. As we mentioned before, given one pair (e, j), one may calculate
the rotate integer coordinates (m(e, j), n(e, j), j) by extracting the integer part of the natural
element centroid in each rotate coordinate system. This is a procedure similar to the retro
projection that is done in image reconstruction algorithms. The function relating the two
integer coordinate systems is a discrete version of transformation (4.2). It is one-to-one
between (e, j) → (m,n, j). It is not convenient to make it onto since the implementation
of an procedure for the localization of the boundary of Ω will be computationally expensive.
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We will start the march in the algorithm in the position labeled with mj = 1, which may
correspond to a pixel outside the domain, and march in one of the directions j until the pixel
labeled 2M, which also may be outside the domain, is arrived. This introduces no problem if
we take care in extending outside the domain the cross sections value by zero, the flux by its
boundary value and calculates the exponentials accordingly.

As mentioned before, these equations are consistent and introduce no spatial error
when the properties are constant; in that case only, the angular discretization error will
be presented. The simulation problems that we will solve in Section 8.3 have material
parameters very close to this situation.

As we pointed out before, the marching scheme equation (7.1) is a discretization of the
first-order form of the first order system representing the stationary transport equation that
has initial value in the incident boundary. The fact that the total cross-section is bigger than
the scattering assures contractility of the compact operator related to the scattering kernel,
and from this, we will obtain the stability and as a consequence a convergent scheme.

7.1. Algorithms Based on Successive Approximation Method

Properties of collision operator equation (3.11) and of the boundary conditions allow us to
distinguish the basic class of problems for the stationary transport equation:

φ = (Ea−)
[
g−] + L−1

σ C
scattering[φ] + 1

λ
L−1
σ C

fission[φ] + L−1
σ S; (ω, x) ∈ Sn−1 ×Ω. (7.4)

(1) The collision operator and the external source localized inside Ω are negligible. In
this case, the equation is integrable, and we have the direct problem for the X-ray
transform.

(2) The fission part of the collision operator L−1
σ C

fission has the first positive eigenvalue
greater than one, and the domain Ω is subcritical external source problem. The
incident flux may be zero or not. There are two important cases of nonfission
domain, that is, when there is no fissile material inside the domain and σf is
properly zero. The external source inside the domain problem, with q /= 0 and
g− = 0 and transillumination problem with S = 0 and g− /= 0. The transillumination
problem has a greater interest for tomography and nondestructive testing.

(3) The fission part of the collision operator L−1
σ C

fission is defined with support inside
Ω, and we want to find his first positive eigenvalue and its positive eigenfunction.
Once we find the eigenvalue, we give to κ the same value and obtain a new fission
operator with first eigenvalue equal one, which means that we have found the
critical material composition for the domain Ω.

7.2. The External Source Inside the Domain Problem

The algorithm for the angular flux calculation in the external source inside the domain
problem follows the following steps.

(1) Establish an error tolerance criteria.

(2) Input material properties and source: σt, σs, S.
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(3) Input mesh parameters:M, J , I.

(4) Generate mesh: elements area, centroid, and vertex and incidence integers matrices
for natural elements inside the rotated pixels.

(5) Adjust geometric scale between the regular mesh and the spatial distribution of
reacting material.

(6) Calculate the attenuation, the exponentials, and external source for each rotated
pixel.

(7) Initialize the flux and reaction rates.

(8) For iteration equal 1 to maximum number of iterations do.

(9) Calculate scattering reaction rate based with the previous iteration flux estimate.

(10) Calculate the new iteration flux with (7.1) with zero fission part and zero incident
flux.

(11) Verify if the difference between the old flux and the new iteration flux is respecting
the established tolerance criteria and take the associated decision to break the
iteration before the maximum number of iterations.

(12) End the iteration do.

7.3. First Positive Eigenvalue and Eigen Angular
Flux Determination Problems

The algorithm for first positive eigenvalue and eigen angular flux in the criticality
determination problem follows the following steps.

(1) Establish an error tolerance criteria.

(2) Input material properties and source: σt, σs, σf .

(3) Input mesh parameters:M, J , I.

(4) Generate mesh: elements area, centroid and vertex and incidence integers matrices
for natural elements inside the rotated pixels.

(5) Adjust geometric scale between the regular mesh and the spatial distribution of
reacting material.

(6) Calculate the attenuation and the exponentials for each rotated pixel.

(7) Set the first eigenvalue to one: λ0 = 1.

(8) Initializes with the flux φ0 normalized by the fission part of the collision operator.

(9) For outer iteration equal 1 to maximum number of outer iterations do.

(10) Since the reactions rate is calculated by collecting the contribution of each natural
pixel to its averaged value inside the rotated pixels, take care to zero the rates before
start.

(11) Calculate scattering outer reaction rates and the fission outer reaction rate based on
the previous outer iteration flux.

(12) Calculate the new external outer iteration flux with (7.1) with zero external source
and zero incident flux.
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(13) Initialize the internal loop flux φ0 with the outer loop flux φiterouter and normalizes
it with the fission operator.

(14) For inner iterations equal 1 to maximum number of inner iterations do.

(15) Take care to zero the scattering reaction rate, but not the reaction fission rate, since
it will not change inside the internal loop.

(16) Calculate scattering reaction rate based on the previous inner iteration calculated
flux.

(17) Calculate the new internal iteration flux with (7.1) with zero external source and
zero incident flux and external loop value of the fission reaction rate.

(18) Verify if the difference between the old flux and the new iteration flux is respecting
the established tolerance criteria and take the associated decision to break the
inner iteration before the maximum number of inner iterations. Note that we may
alternatively use the fission reaction rate error as criteria.

(19) End inner iteration do.

(20) Take the convergent inner loop value as the outer loop flux.

(21) Calculates the new eigenvalue value as a ratio between the fission rate based on the
actual outer iteration flux and the fission rate based on the previous outer iteration
flux.

(22) Verify if the difference between the old eigenvalue and the new iteration flux is
respecting the established tolerance criteria and take the associated decision to
break the outer iteration before the maximum number of outer iterations.

(23) End outer iteration do.

Remark 7.2. The first and the inner part of the second algorithm are based on the contracting
behavior of the scattering collision operator, that is, we have a compact operator with spectral
radius less than one and the rate of convergence will be proportional to this ratio. Perhaps
other rates of convergence may be found with other algorithms. The outer loop of the second
algorithm is also based on compactness. The problem is to determine the first eigenvalue in
the pencil problem

(
I − L−1

σ C
scattering

)[
φ
]
= λL−1

σ C
fission[φ] (7.5)

in L2(sn−1 × Ω), that is, a perturbation of the identity by a compact operator in a compact
weigh operator pencil problem. Its convergence with a decreasing sequence of eigenvalues
may be proved by using the fact that the multiplicative region inside Ω has compact support
and the composite operator is positive and compact. The fact that the first eigen angular flux
is positive almost everywhere in Sn−1 × Ω is a classical result based on Jentzsch’s theorem
for compact operators which leaves nonnegative those functions that are non negative.
Once again the consistence has a positive consequence, since numerical artifacts have not
been introduced in the approximation, and good properties of the continuous equation are
preserved.
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Figure 6: High-contrast nonhomogeneous model with 24 views and 30 × 30 pixels view.

8. Numerical Simulations

8.1. The Transillumination Test Problem

In order to start the evaluation of the method proposed, we first study a subcritical
transillumination test problem with no fission and no external sources. The flux for test is

φtest = exp
(
−0.0125 · y2 + 0.05 · (x −M)

)
for j = 24 and zeros for other views. (8.1)

The algorithm is used to solve problem (2.1)with source

S(ω, x) = ω · ∇φtest(ω, x) + σt(x)φtest(ω, x)

−
∫
Sn−1

f
(
x,ω′ ·ω)φtest(ω′, x

)
dω′, (ω, x) ∈ Sn−1 ×Ω,

(8.2)

and incident boundary condition

φ(ω, σ) = φtest(ω, σ) for (ω, σ) ∈ Σ−. (8.3)

A high-contrast inclusion problem as shown in Figure 6 in a 24 views with 30×30 rectangular
pixels/view model is solved with the algorithm proposed here which is based on (7.4)
accordingly. Material properties are given in Table 1. As can be seen from Figure 7 comparing
the given and the reconstructed solution showa that they are almost equal. From Figure 8
showing the absolute error for two views 9 and 24, the error is of order 10−8, bigger in the
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Figure 7: Given and reconstructed view 24 angular test flux in the model.
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Figure 8: Absolute error in view 24 and 9 angular test flux for the model.

region with the high-contrast inclusion, but with the same magnitude. The absolute error
variation with J varying between 6 to 16 andM from 10 to 24 is showed in Figure 9.

8.2. A Transillumination Problem

The same transillumination problem with no fission and no external sources is now
investigated. The incident radiation boundary condition is g(n2J , 2J) = 1, for n2J = 1, . . . , 2M
and g(nj , j) = 0 for all others views. Figure 10 shows selected particles (radiation) flux for
j = 9 and j = 24. We can see the depleted effect in the main direction of the incident flux
j = 24 due to absorption and outscattering and the buildup effect in the other direction j = 9
due to the scattered flux. Also, it is possible to note the differences in magnitudes in the
flux for the incident direction, j = 24, with magnitude order of 1 and the other directions
where there is no incident radiation, with magnitude order of 0, 02, one up to 50-times the
other. Another important information that can be determinated by the solver presented here
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Figure 10: Selected radiation (particles) flux for illumination on view 24 in a high-contrast nonhomoge-
neous problem.

is emergent radiation (flux) map shown in Figure 11. This set of figures graphically defines
the flux in the emergent boundary Σ+

φ = g+ on Σ+, (8.4)

and the Cauchy data for the problem

Cqa,f =
{(
g, g+) on Σ− × Σ+}, (8.5)

characterizes the graph for the albedo operator (the incident to emergent flux mapping)

Aqa,f : L2(Σ−, |ω · ν(σ)|dσ dω) �−→ L2(Σ+, |ω · ν(σ)|dσ dω). (8.6)
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Table 1: Absorption and scattering coefficient in the transillumination model.

Property Symbol Value
Section radius (cm) M 15
Circular inclusion radius (cm) M 1.5
Circular inclusion center (cm) (x1, x2) (3.0, 1.5)
Absorption cross-section blue (nonperturbed) (cm−1) σa 0.0111
Absorption cross-section green (cm−1) σa 0.0555
Scattering cross-section blue (non perturbed) (cm−1) σs 0.0014
Scattering cross-section green (cm−1) σs 0.0167
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Figure 11: Emergent flux for illumination on view 24 in the high-contrast model problem.

In the inverse problem, we ask if it is possible to determine the coefficients functions
σt and f from the a priori knowledge of the albedo operator, that is, data such as that found
in Figure 11 for different incident radiation g−. Finally, the convergent sequence {φiter; iter =
1, . . . , 31, . . .} is tested as a Cauchy sequence in the complete Hilbert spaceH. Figure 12 shows
that before the eleventh iteration, we achieved convergence of order 0, 008. If we claim for
9, 8e − 008, it is achieved in the model problem in the 31 iteration.

8.3. Reactor with the EIR-2A and EIR-2B Data

The EIR-2A and EIR-2B are two problems found in Mordant [21] with data about values on
cross sections, source and geometric domain definition presented in Table 2 and represented
in Figure 13. The total and scattering cross-section is the same for the two problems. The
source values is for the EIR-2A problem, and in this case the fission cross-section is zero. The
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Figure 12: Cauchy error for 24 views and 30 × 30 pixels view.
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Figure 13: EIR-2A and EIR-2B benchmark problems with data as in Table 2.

Table 2: Cross sections and sources values for EIR problems.

Spatial region Total Scattering Fission Source
|x| ≤ 48, |x| ≥ 30, |y| ≤ 43 .90 .89 .00 .00
|x| ≤ 30, |y| ≤ 43, |y| ≥ 25 .90 .89 .00 .00
x < 30, x ≥ 0, y ≥ 0, y < 25 .70 .66 .43 1.00
x > −30, x < 0, y ≥ 0, y < 25 .65 .50 .00 .00
x > −30, x ≤ 0, y > −25, y < 0 .60 .53 .79 1.00
x > 0, x < 30, y > −25, y < 0 .48 .20 .00 .00

fission cross-section is for the EIR-2B problem, and in this case the source term is zero. Results
obtained are in accordance with the theory and are showed in figures. In all cases, the number
of axial directions is I = 1. Figure 14 shows the angular flux for direction j = 1 in the source
problem. Figure 15 shows the maximum Cauchy error flux for the angular flux function,
where a high convergence rate is observed. The Figure 16 shows the maximum Cauchy error
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Figure 14: Angular flux in J6M24 EIR 2A.
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Figure 15: Cauchy error in flux convergence for J6M24 EIR 2A.

in the first eigenvalue function, where a not-so-high convergence rate is observed. Finally,
Figure 17 shows the first eigen angular flux for direction j = 1. These results showing a
monotonically decreasing sequence of eigenvalues with the smallest accumulation point at
1 and a nonnegative angular flux are in complete agreement with theoretical results pointed
out in Remark 7.2. We must finally note that the continuity in the direction perpendicular to
ω1 has been artificially introduced by the graphic algorithm used to present the results. In
reality, the calculations does not impose this restriction on the function.

9. Conclusions

The present methodology utilizes the natural basis concept, originally developed for image
reconstruction, in the numerical solution of very classical and technological problems found
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in reactor physics calculations. The algorithms presented here may be considered as giving
almost exact solutions in case where material properties and sources are constants in a small
number of distinct regions inside the domain, as observed in the simulations EIR-2A and
EIR-2B implemented. It does not array system matrices, and as a consequence few bigger
problems signify more processing time. The algorithms are deduced by introducing, as less
as possible, artifacts related with preprocessing the transport equation by doing inconsistent
averages and simplifications hypotheses. It respects the basic characteristic of the transport
equation, that is, no continuity requirements in the directions transverse to the propagation
direction. It is also based on a scheme consistent with the exact equation. The algorithm
implementation also shows compatibility with the present status of computer development.
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MG, Brazil, 2003.

[17] J. R. Askew, “A characteristic formulation of the neutron tranport equation in complicated geometry,”
AEEW-M1108-1972, 1972.

[18] S. S. Valtchev and N. C. Roberty, “A time-marching MFS scheme for heat conduction problems,”
Engineering Analysis with Boundary Elements, vol. 32, no. 6, pp. 480–493, 2008.

[19] N. C. Roberty, “A natural basis for numerical solution of linear Boltzmann particles transport
equation,” in Proceedings of the 26th Iberian Latin-American Congress on Computational Methods in
Engineering (CILAMCE ’05), Espirito Santo, Brazil, October 2005.

[20] J. O’Rourke, Computational Geometry in C, Cambridge University Press, Cambridge, UK, 1997.
[21] M.Mordant, “Phase-space finite elements encoded in zephyr for X-Y and R-Z transport calculations,”

Progress in Nuclear Energy, vol. 18, no. 1-2, pp. 27–37, 1986.


