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We study a number of fixed point results for the two weakly increasing mappings f and g with
respect to partial ordering relation � in generalized metric spaces. An application to integral
equation is given.

1. Introduction

The existence of fixed points in partially ordered sets has been at the center of active
research. In fact, the existence of fixed point in partially ordered sets has been investigated
in [1]. Moreover, Ran and Reurings [1] applied their results to matrix equations. Some
generalizations of the results of [1] are given in [2–6]. In [6], O’Regan and Petruşel gave
some existence results for the Fredholm and Volterra type.

The notion of G-metric space was introduced by Mustafa and Sims [7] as a
generalization of the notion of metric spaces. Mustafa et al. studied many fixed point results
in G-metric space [8–10] (also see [11–15]). In fact the study of common fixed points of
mappings satisfying certain contractive conditions has been at the center of strong research
activity. The following definition is introduced by Mustafa and Sims [7].

Definition 1.1 (see [7]). Let X be a nonempty set and let G : X × X × X → R+ be a function
satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y), for all x, y ∈ X with x /=y,

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z/=y,
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(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , symmetry in all three variables,

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X.

Then the function G is called a generalized metric, or, more specifically, a G-metric on X, and
the pair (X,G) is called a G-metric space.

Definition 1.2 (see [7]). Let (X,G) be a G-metric space, and let {xn} be a sequence of points of
X, a point x ∈ X is said to be the limit of the sequence {xn}, if limn,m→+∞G(x, xn, xm) = 0, and
we say that the sequence {xn} is G-convergent to x or {xn} G-converges to x.

Thus, xn → x in a G-metric space (X,G) if for any ε > 0, there exists k ∈ N such that
G(x, xn, xm) < ε for all m,n ≥ k.

Proposition 1.3 (see [7]). Let (X,G) be a G-metric space. Then the following are equivalent:

(1) {xn} is G-convergent to x;

(2) G(xn, xn, x) → 0 as n → +∞;

(3) G(xn, x, x) → 0 as n → +∞;

(4) G(xn, xm, x) → 0 as n,m → +∞.

Definition 1.4 (see [7]). Let (X,G) be a G-metric space, a sequence {xn} is called G-Cauchy
if for every ε > 0, there is k ∈ N such that G(xn, xm, xl) < ε, for all n,m, l ≥ k; that is
G(xn, xm, xl) → 0 as n,m, l → +∞.

Proposition 1.5 (see [7]). Let (X,G) be a G-metric space. Then the following are equivalent:

(1) the sequence {xn} is G-Cauchy;

(2) for every ε > 0, there is k ∈ N such that G(xn, xm, xm) < ε, for all n,m ≥ k.

Definition 1.6 (see [7]). Let (X,G) and (X′, G′) be G-metric spaces, and let f : (X,G) →
(X′, G′) be a function. Then f is said to beG-continuous at a point a ∈ X if and only if for every
ε > 0, there is δ > 0 such that x, y ∈ X and G(a, x, y) < δ implies G′(f(a), f(x), f(y)) < ε. A
function f is G-continuous at X if and only if it is G-continuous at all a ∈ X.

Proposition 1.7 (see [7]). Let (X,G) be a G-metric space. Then the function G(x, y, z) is jointly
continuous in all three of its variables.

Every G-metric on X will define a metric dG on X by

dG

(
x, y
)
= G
(
x, y, y

)
+G
(
y, x, x

)
, ∀x, y ∈ X. (1.1)

For a symmetric G-metric space,

dG

(
x, y
)
= 2G

(
x, y, y

)
, ∀x, y ∈ X. (1.2)

However, if G is not symmetric, then the following inequality holds:

3
2
G
(
x, y, y

) ≤ dG

(
x, y
) ≤ 3G

(
x, y, y

)
, ∀x, y ∈ X. (1.3)
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The following are examples of G-metric spaces.

Example 1.8 (see [7]). Let (R, d) be the usual metric space. Define Gs by

Gs

(
x, y, z

)
= d
(
x, y
)
+ d
(
y, z
)
+ d(x, z), (1.4)

for all x, y, z ∈ R. Then it is clear that (R, Gs) is a G-metric space.

Example 1.9 (see [7]). Let X = {a, b}. Define G on X ×X ×X by

G(a, a, a) = G(b, b, b) = 0,

G(a, a, b) = 1, G(a, b, b) = 2
(1.5)

and extend G to X ×X ×X by using the symmetry in the variables. Then it is clear that (X,G)
is a G-metric space.

Definition 1.10 (see [7]). A G-metric space (X,G) is called G-complete if every G-Cauchy
sequence in (X,G) is G-convergent in (X,G).

The notion of weakly increasing mappings was introduced in by Altun and Simsek
[16].

Definition 1.11 (see [16]). Let (X,�) be a partially ordered set. Two mappings F,G : X → X

are said to be weakly increasing if Fx � GFx and Gx � FGx, for all x ∈ X.

Two weakly increasing mappings need not be nondecreasing.

Example 1.12 (see [16]). Let X = R, endowed with the usual ordering. Let F,G : X → X
defined by

Fx =

⎧
⎨

⎩

x, 0 ≤ x ≤ 1,

0, 1 < x < +∞,

gx =

⎧
⎨

⎩

√
x, 0 ≤ x ≤ 1,

0, 1 < x < +∞.

(1.6)

Then F and G are weakly increasing mappings. Note that F and G are not nondecreasing.

The aim of this paper is to study a number of fixed point results for two weakly
increasing mappings f and g with respect to partial ordering relation (�) in a generalized
metric space.
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2. Main Results

Theorem 2.1. Let (X,�) be a partially ordered set and suppose that there exists G-metric in X such
that (X,G) is G-complete. Let f, g : X → X be two weakly increasing mappings with respect to �.
Suppose there exist nonnegative real numbers a, b, and c with a + 2b + 2c < 1 such that

G
(
fx, gy, gy

) ≤ aG
(
x, y, y

)
+ b
[
G
(
x, fx, fx

)
+G
(
y, gy, gy

)]

+ c
[
G
(
x, gy, gy

)
+G
(
y, fx, fx

)]
,

(2.1)

G
(
gx, fy, fy

) ≤ aG
(
x, y, y

)
+ b
[
G
(
x, gx, gx

)
+G
(
y, fy, fy

)]

+ c
[
G
(
x, fy, fy

)
+G
(
y, gx, gx

)]
,

(2.2)

for all comparative x, y ∈ X. If f or g is continuous, then f and g have a common fixed point u ∈ X.

Proof. By inequality (2.2), we have

G
(
gy, fx, fx

) ≤ aG
(
y, x, x

)
+ b
[
G
(
y, gy, gy

)
+G
(
x, fx, fx

)]

+ c
[
G
(
y, fx, fx

)
+G
(
x, gy, gy

)]
.

(2.3)

If X is a symmetric G-metric space, then by adding inequalities (2.1) and (2.3), we obtain

G
(
fx, gy, gy

)
+G
(
gy, fx, fx

)

≤ a
[
G
(
x, y, y

)
+G
(
y, x, x

)]
+ 2b

[
G
(
x, fx, fx

)
+G
(
y, gy, gy

)]

+ 2c
[
G
(
x, gy, gy

)
+G
(
y, fx, fx

)]
,

(2.4)

which further implies that

dG

(
fx, fy

) ≤ adG

(
x, y
)
+ b
[
dG

(
x, fx

)
+ dG

(
y, gy

)]
+ c
[
dG

(
x, gy

)
+ dG

(
y, fx

)]
, (2.5)

for all x, y ∈ X with 0 ≤ a + 2b + 2c < 1 and the fixed point of f and g follows from [2].
Now if X is not a symmetric G-metric space. Then by the definition of metric (X, dG)

and inequalities (2.1) and (2.3), we obtain

dG

(
fx, gy

)
= G
(
fx, gy, gy

)
+G
(
gy, fx, fx

)

≤ a
[
G
(
x, y, y

)
+G
(
x, x, y

)]
+ 2b

[
G
(
x, fx, fx

)
+G
(
y, gy, gy

)]

+ 2c
[
G
(
x, gy, gy

)
+G
(
y, fx, fx

)]
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≤ adG

(
x, y
)
+ 2b

[
2
3
dG

(
x, fx

)
+
2
3
dG

(
y, gy

)]

+ 2c
[
2
3
dG

(
x, gy

)
+
2
3
dG

(
y, fx

)
]

= adG

(
x, y
)
+
4
3
b
[
dG

(
x, fx

)
+ dG

(
y, gy

)]
+
4
3
c
[
dG

(
x, gy

)
+ dG

(
y, fx

)]
,

(2.6)

for all x ∈ X. Here, the contractivity factor a + (8/3)b + (8/3)c may not be less than 1.
Therefore metric gives no information. In this case, for given x0 ∈ X, choose x1 ∈ X

such that x1 = fx0. Again choose x2 ∈ X such that gx1 = x2. Also, we choose x3 ∈ X such
that x3 = fx2. Continuing as above process, we can construct a sequence {xn} in X such that
x2n+1 = fx2n, n ∈ N∪ {0} and x2n+2 = gx2n+1, n ∈ N∪ {0}. Since f and g are weakly increasing
with respect to �, we have

x1 = fx0 � g
(
fx0
)
= gx1 = x2 � f

(
gx1
)
= fx2 = x3 � g

(
fx2
)
= gx3 = x4 � · · · . (2.7)

Thus from (2.1), we have

G(x2n+1, x2n+2, x2n+2) = G
(
fx2n, gx2n+1, gx2n+1

)

≤ aG(x2n, x2n+1, x2n+1)

+ b
[
G
(
x2n, fx2n, fx2n

)
+G
(
x2n+1, gx2n+1, gx2n+1

)]

+ c
[
G
(
x2n, gx2n+1, gx2n+1

)
+G
(
x2n+1, fx2n, fx2n

)]

= aG(x2n, x2n+1, x2n+1)

+ b[G(x2n, x2n+1, x2n+1) +G(x2n+1, x2n+2, x2n+2)]

+ c
[
G
(
x2n, x2n+2, gx2n+2

)
+G(x2n+1, x2n+1, x2n+1)

]

= (a + b)G(x2n, x2n+1, x2n+1) + bG(x2n+1, x2n+2, x2n+2)

+ cG(x2n, x2n+2, x2n+2).

(2.8)

By (G5), we have

G(x2n+1, x2n+2, x2n+2) ≤ a + b + c

1 − b − c
G(x2n, x2n+1, x2n+1). (2.9)

Also, we have

G(x2n, x2n+1, x2n+1) = G
(
gx2n−1, fx2n, fx2n

)

≤ aG(x2n−1, x2n, x2n)

+ b
[
G
(
x2n−1, gx2n−1, gx2n−1

)
+G
(
x2n, fx2n, fx2n

)]

+ c
[
G
(
x2n−1, fx2n, fx2n

)
+G
(
x2n, gx2n−1, gx2n−1

)]
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= aG(x2n−1, x2n, x2n)

+ b[G(x2n−1, x2n, x2n) +G(x2n, x2n+1, x2n+1)]

+ c
[
G
(
x2n−1, x2n+1, gx2n+1

)
+G(x2n, x2n, x2n)

]

= (a + b)G(x2n−1, x2n, x2n) + bG(x2n, x2n+1, x2n+1)

+ cG(x2n−1, x2n+1, x2n+1).

(2.10)

By (G5), we get

G(x2n, x2n+1, x2n+1) ≤ a + b + c

1 − b − c
G(x2n−1, x2n, x2n). (2.11)

Let

k =
a + b + c

1 − b − c
. (2.12)

Then by (2.9) and (2.11), we have

G(xn, xn+1, xn+1) ≤ kG(xn−1, xn, xn), ∀n ∈ N. (2.13)

Thus, if x0 = x1, we get G(xn, xn+1, xn+1) = 0 for each n ∈ N. Hence xn = x0 for each n ∈ N.
Therefore {xn} is G-Cauchy. So we may assume that x0 /=x1. Let n,m ∈ N with m > n. By
axiom (G5) of the definition of G-metric space, we have

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + · · · +G(xm−1, xm, xm). (2.14)

By (2.13), we get

G(xn, xm, xm) ≤ knG(x0, x1, x1) + kn+1G(x0, x1, x1) + · · · + km−1G(x0, x1, x1)

≤ kn

1 − k
G(x0, x1, x1).

(2.15)

On taking limit m,n → ∞, we have

lim
m,n→∞

G(xn, xm, xm) = 0. (2.16)

So we conclude that (xn) is a Cauchy sequence inX. SinceX isG-complete, then it yields that
(xn) and hence any subsequence of (xn) converges to some u ∈ X. So that, the subsequences
(x2n+1) = (fx2n) and (x2n+2) = (gx2n+1) converge to u. First suppose that f is G-continuous.
Since (x2n) converges to u, we get (fx2n) converges fu. By the uniqueness of limit we get
fu = u. Claim: gu = u.
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Since u � u, by inequality (2.1), we have

G
(
u, gu, gu

)
= G
(
fu, gu, gu

)

≤ aG(u, u, u) + b
[
G
(
u, fu, fu

)
+G
(
u, gu, gu

)]

+ c
[
G
(
u, gu, gu

)
+G
(
u, fu, fu

)]

≤ (b + c)G
(
u, gu, gu

)
.

(2.17)

Since b + c < 1, we get G(u, gu, gu) = 0. Hence gu = u. If g is G-continuous, by similar
argument as above we show that g and f have a common fixed point.

Theorem 2.2. Let (X,�) be a partially ordered set and suppose that there exists G-metric in X such
that (X,G) is G-complete. Let f, g : X → X be two weakly increasing mappings with respect to �.
Suppose there exist nonnegative real numbers a, b, and c with a + 2b + 2c < 1 such that

G
(
fx, gy, gy

) ≤ aG
(
x, y, y

)
+ b
[
G
(
x, fx, fx

)
+G
(
y, gy, gy

)]

+ c
[
G
(
x, gy, gy

)
+G
(
y, fx, fx

)]
,

G
(
gx, fy, fy

) ≤ aG
(
x, y, y

)
+ b
[
G
(
x, gx, gx

)
+G
(
y, fy, fy

)]

+ c
[
G
(
x, fy, fy

)
+G
(
y, gx, gx

)]
,

(2.18)

for all comparative x, y ∈ X. Assume that X has the following property:

(P) If (xn) is an increasing sequence converges to x in X, then xn � x for all n ∈ N.

Then f and g have a common fixed point u ∈ X.

Proof. As in the proof of Theorem 3.1, we construct an increasing sequence (xn) in X such
that x2n+1 = fx2n and x2n+2 = gx2n+1. Also, we can show (xn) is G-Cauchy. Since X is G-
complete, there is u ∈ X such that (xn) is converges to u ∈ X. Thus (x2n), (x2n+1), (fx2n) and
(gx2n+1) converge to u. Since X satisfies property (P), we get that xn � u, for all n ∈ N. Thus
x2n and u are comparative. Hence by inequality (2.1), we have

G
(
fx2n, gu, gu

) ≤ aG(x2n, u, u) + b
[
G
(
x2n, fx2n, fx2n

)
+G
(
u, gu, gu

)]

+ c
[
G
(
x2n, gu, gu

)
+G
(
u, fx2n, fx2n

)]
.

(2.19)

On letting n → +∞, we get

G
(
u, gu, gu

) ≤ (b + c)G
(
u, gu, gu

)
. (2.20)

Since b + c < 1, we get G(u, gu, gu) = 0. Hence gu = u. By similar argument, we may show
that u = fu.
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Corollary 2.3. Let (X,�) be a partially ordered set, and suppose that (X,G) is a G-complete metric
space. Let f : X → X be a continuous mapping such that fx � f(fx), for all x ∈ X. Suppose there
exist nonnegative real numbers a, b and c with a + 2b + 2c < 1 such that

G
(
fx, fy, fy

) ≤ aG
(
x, y, y

)
+ b
[
G
(
x, fx, fx

)
+G
(
y, fy, fy

)]

+ c
[
G
(
x, fy, fy

)
+G
(
y, fx, fx

)]
,

(2.21)

for all comparative x, y ∈ X. Then f has a fixed point u ∈ X.

Proof. It follows from Theorem 2.1 by taking g = f .

Corollary 2.4. Let (X,�) be a partially ordered set and suppose that there exists G-metric in X such
that (X,G) isG-complete. Let f : X → X be a mapping such that fx � f(fx) for all x ∈ X. Suppose
there exist nonnegative real numbers a, b and c with a + 2b + 2c < 1 such that

G
(
fx, fy, fy

) ≤ aG
(
x, y, y

)
+ b
[
G
(
x, fx, fx

)
+G
(
y, fy, fy

)]

+ c
[
G
(
x, fy, fy

)
+G
(
y, fx, fx

)] (2.22)

for all comparative x, y ∈ X. Assume that X has the following property:

(P) If (xn) is an increasing sequence converges to x in X, then xn � x for all n ∈ N.

Then f has fixed point u ∈ X.

Proof. It follows from Theorem 2.2 by taking g = f .

3. Application

Consider the integral equation:

u(t) =
∫T

0
K(t, s, u(s))ds + g(t), t ∈ [0, T], (3.1)

where T > 0. The aim of this section is to give an existence theorem for a solution of the above
integral equation using Corollary 2.4 This section is related to those [16–19].

Let X = C([0, T]) be the set of all continuous functions defined on [0, T]. Define

G : X ×X ×X → R+ (3.2)

by

G
(
x, y, z

)
= sup

t∈[0,T]

∣∣x(t) − y(t)
∣∣ + sup

t∈[0,T]
|x(t) − z(t)| + sup

t∈[0,T]

∣∣y(t) − z(t)
∣∣. (3.3)
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Then (X,G) is a G-complete metric space. Define an ordered relation � on X by

x � y iff x(t) ≤ y(t), ∀t ∈ [0, T]. (3.4)

Then (X,�) is a partially ordered set. The purpose of this section is to give an existence
theorem for solution of integral equation on (3.1). This section is inspired in [17–19].

Theorem 3.1. Suppose the following hypotheses hold:

(1) K : [0, T] × [0, T] × R → R and g : R → R are continuous,

(2) for each t, s ∈ [0, T], one has

K(t, s, u(t)) ≤ K

(

t, s,

∫T

0
K(s, τ, u(τ))dτ + g(s)

)

, (3.5)

(3) there exists a continuous function G : [0, T] × [0, T] → [0,+∞] such that

|K(t, s, u) −K(t, s, v)| ≤ G(t, s)|u − v|, (3.6)

for each comparable u, v ∈ R and each t, s ∈ [0, T],

(4) supt∈[0,T]
∫T
0 G(t, s)ds ≤ r for some r < 1.

Then the integral equation (3.1) has a solution u ∈ C([0, T]).

Proof. Define S : C([0, T]) → C([0, T]) by

Sx(t) =
∫T

0
K(t, s, x(s))ds + g(t), t ∈ [0, T]. (3.7)

Now, we have

Sx(t) =
∫T

0
K(t, s, x(s))ds + g(t)

≤
∫T

0
K

(

t, s,

∫T

0
K(s, τ, x(τ))dτ + g(s)

)

ds + g(t)

=
∫T

0
K(t, s, Sx(s))ds + g(t)

= S(Sx(t)).

(3.8)

Thus, we have Sx � S(Sx), for all x ∈ C([0, T]).
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For x, y ∈ C([0, T]) with x � y, we have

G
(
Sx, Sy, Sy

)
= 2 sup

t∈[0,T]

∣
∣Sx(t) − Sy(t)

∣
∣

= 2 sup
t∈[0,T]

∣
∣∣∣∣

∫T

0
K(t, s, x(s)) −K

(
t, s, y(s)

)
ds

∣
∣∣∣∣

≤ 2 sup
t∈[0,T]

∫T

0

∣∣K(t, s, x(s)) −K
(
t, s, y(s)

)∣∣ds

≤ 2 sup
t∈[0,T]

∫T

0
G(t, s)

∣∣x(s) − y(s)
∣∣ds

≤ 2 sup
t∈[0,T]

∣
∣x(t) − y(t)

∣
∣ sup
t∈[0,T]

∫T

0
G(t, s)ds

= G
(
x, y, y

)
sup
t∈[0,T]

∫T

0
G(t, s)ds.

(3.9)

By using hypotheses (4), there is r ∈ [0, 1) such that

sup
t∈[0,T]

∫T

0
G(t, s)ds < r. (3.10)

Thus, we have G(Sx, Sy, Sy) ≤ rG(x, y, y). Thus all the required hypotheses of Corollary 2.4
are satisfied. Thus there exist a solution u ∈ C([0, T]) of the integral equation (3.1).
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