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Using fixed point methods, we prove the superstability and generalized Hyers-Ulam stability
of ring homomorphisms on non-Archimedean Banach algebras. Moreover, we investigate the
superstability of ring homomorphisms in non-Archimedean Banach algebras associated with the
Jensen functional equation.

1. Introduction and Preliminaries

In 1897, Hensel [1] has introduced a normed space which does not have the Archimedean
property.

During the last three decades theory of non-Archimedean spaces has gained the
interest of physicists for their research in particular in problems coming from quantum
physics, p-adic strings, and superstrings [2]. Although many results in the classical normed
space theory have a non-Archimedean counterpart, their proofs are essentially different and
require an entirely new kind of intuition [3–10].

Let � be a field. A non-Archimedean absolute value on � is a function | · | : � → �

such that for any a, b ∈ � we have

(i) |a| ≥ 0 and equality holds if and only if a = 0,

(ii) |ab| = |a||b|,
(iii) |a + b| ≤ max{|a|, |b|}.
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Condition (iii) is called the strict triangle inequality. By (ii), we have |1| = | − 1| = 1.
Thus, by induction, it follows from (iii) that |n| ≤ 1 for each integer n. We always assume in
addition that | · | is non trivial, that is, that there is an a0 ∈ � such that |a0| /∈ {0, 1}.

Let X be a linear space over a scalar field � with a non-Archimedean nontrivial
valuation | · |. A function ‖ · ‖ : X → � is a non-Archimedean norm (valuation) if it satisfies
the following conditions:

(NA1) ‖x‖ = 0 if and only if x = 0;

(NA2) ‖rx‖ = |r|‖x‖ for all r ∈ � and x ∈ X;

(NA3) the strong triangle inequality (ultrametric); namely,

∥
∥x + y

∥
∥ ≤ max

{‖x‖,∥∥y∥∥} (

x, y ∈ X)

. (1.1)

Then (X, ‖ · ‖) is called a non-Archimedean space.
It follows from (NA3) that

‖xm − xl‖ ≤ max
{∥
∥xj+1 − xj

∥
∥ : l ≤ j ≤ m − 1

}

(m > l), (1.2)

and therefore a sequence {xm} is Cauchy in X if and only if {xm+1 − xm} converges to zero
in a non-Archimedean space. By a complete non-Archimedean space we mean one in which
every Cauchy sequence is convergent. A non-Archimedean Banach algebra is a complete
non-Archimedean algebraA which satisfies ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A. For more detailed
definitions of non-Archimedean Banach algebras, we can refer to [11].

The first stability problem concerning group homomorphisms was raised by S. M.
Ulam [12] in 1940 and affirmatively solved by D. H. Hyers [13]. Perhaps T. Aoki was the first
author who has generalized the theorem of Hyers (see [14]).

T. M. Rassias [15] provided a generalization of Hyers’ theorem which allows the
Cauchy difference to be unbounded.

Theorem 1.1 (T. M. Rassias). Let f : E → E′ be a mapping from a normed vector space E into a
Banach space E′ subject to the inequality

∥
∥f

(

x + y
) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ∥

∥y
∥
∥
p) (1.3)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f(2nx)
2n

(1.4)

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥
∥f(x) − L(x)∥∥ ≤ 2ε

2 − 2p
‖x‖p (1.5)

for all x ∈ E. Also, if for each x ∈ E the mapping f(tx) is continuous in t ∈ �, then L is �-linear.
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Moreover, D. G. Bourgin [16] and Găvruţa [17] have considered the stability problem
with unbounded Cauchy differences (see also [18–23]).

On the other hand, J. M. Rassias [24–29] considered the Cauchy difference controlled
by a product of different powers of norm. However, there was a singular case; for this
singularity a counterexample was given by Găvruţa [30].

Theorem 1.2 (J. M. Rassias [24]). Let X be a real normed linear space and Y a real complete normed
linear space. Assume that f : X → Y is an approximately additive mapping for which there exist
constants θ ≥ 0 and p, q ∈ � such that r = p + q /= 1 and f satisfies the inequality

∥
∥f

(

x + y
) − f(x) − f(y)∥∥ ≤ θ‖x‖p∥∥y∥∥q (1.6)

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y satisfying

∥
∥f(x) − L(x)∥∥ ≤ θ

|2r − 2| ‖x‖
r (1.7)

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the transformation t 	→ f(tx) is
continuous in t ∈ � for each fixed x ∈ X, then L is an �-linear mapping.

Bourgin [16, 31] is the first mathematician dealing with stability of (ring) homomor-
phism f(xy) = f(x)f(y). The topic of approximate homomorphisms was studied by a
number of mathematicians, see [32–37] and references therein. A function f : A → A is
a ring homomorphism or additive homomorphism if f is an additive function satisfying

f
(

xy
)

= f(x)f
(

y
)

(1.8)

for all x, y ∈ A.
Now we will state the following notion of fixed point theory. For the proof, refer to

[38], see also [39, chapter 5]. For an extensive theory of fixed point theorems and other
nonlinear methods, the reader is referred to [40, 41]. In 2003, Radu [42] proposed a new
method for obtaining the existence of exact solutions and error estimations, based on the
fixed point alternative (see also [43–45]).

Let (X, d) be a generalized metric space. An operator T : X → X satisfies a Lipschitz
condition with Lipschitz constant L if there exists a constant L ≥ 0 such that d(Tx, Ty) ≤
Ld(x, y) for all x, y ∈ X. If the Lipschitz constant L is less than 1, then the operator T is called
a strictly contractive operator. Note that the distinction between the generalized metric and
the usual metric is that the range of the former is permitted to include the infinity. We recall
the following theorem by Margolis and Diaz.

Theorem 1.3 (cf. [38, 42]). Suppose that one is given a complete generalized metric space (Ω, d) and
a strictly contractive mapping T : Ω → Ω with Lipschitz constant L. Then for each given x ∈ Ω,
either

d
(

Tmx, Tm+1x
)

= ∞ ∀m ≥ 0 (1.9)

or there exists a natural number m0 such that
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(i) d(Tmx, Tm+1x) <∞ for allm ≥ m0,

(ii) the sequence {Tmx} is convergent to a fixed point y∗ of T ;

(iii) y∗ is the unique fixed point of T in Λ = {y ∈ Ω : d(Tm0x, y) <∞};

(iv) d(y, y∗) ≤ (1/(1 − L))d(y, Ty) for all y ∈ Λ.

Recently, the first author of the present paper [4] established the stability of ring
homomorphisms on non-Archimedean Banach algebras. In this paper, using fixed point
methods, we prove the generalized Hyers-Ulam stability of ring homomorphisms on
non-Archimedean Banach algebras. Moreover, we investigate the superstability of ring
homomorphisms on non-Archimedean Banach algebras associatedwith the Jensen functional
equation.

2. Approximation of Ring Homomorphisms in
Non-Archimedean Banach Algebras

Throughout this section we suppose that A, B are two non-Archimedean Banach algebras.
For convenience, we use the following abbreviation for a given function f : A → B:

Δf
(

x, y
)

= f
(

x + y
) − f(x) − f(y) (2.1)

for all x, y ∈ A.

Theorem 2.1. Let f : A → B be a function for which there exist functions ϕ, ψ : A ×A → [0,∞)
such that

∥
∥Δf

(

x, y
)∥
∥ ≤ ϕ(x, y), (2.2)

∥
∥f

(

xy
) − f(x)f(y)∥∥ ≤ ψ(x, y) (2.3)

for all x, y ∈ A. If there exists a constant 0 < L < 1 such that

ϕ
(

2x, 2y
) ≤ |2|Lϕ(x, y)

ψ
(

2x, 2y
) ≤ |2|2Lψ(x, y)

(2.4)

for all x, y ∈ A, then there exists a unique ring homomorphismH : A → B such that

∥
∥f(x) −H(x)

∥
∥ ≤ 1

|2|(1 − L)ϕ(x, x), (2.5)

for all x ∈ A.
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Proof. It follows from (2.4) that

lim
n→∞

1
|2|n ϕ

(

2nx, 2ny
)

= 0, (2.6)

lim
n→∞

1

|2|2n
ψ
(

2nx, 2ny
)

= 0 (2.7)

for all x, y ∈ X. By (2.6), limn→∞(1/|2|n)ϕ(0, 0) = 0. Hence, ϕ(0, 0) = 0. Letting x = y = 0 in
(2.2), we get ‖f(0)‖ ≤ ϕ(0, 0) = 0. So f(0) = 0.

Let us define Ω to be the set of all mappings g : A → B and introduce a generalized
metric on Ω as follows:

d
(

g, h
)

= inf
{

K ∈ (0,∞) :
∥
∥g(x) − h(x)∥∥ ≤ Kϕ(x, x), ∀x ∈ A}

. (2.8)

It is easy to show that (Ω, d) is a generalized complete metric space [44, 45].
Nowwe consider the function T : Ω → Ω defined by Tg(x) = (1/2)g(2x) for all x ∈ A

and all g ∈ Ω. Note that for all g, h ∈ Ω,

d
(

g, h
)

< K =⇒ ∥
∥g(x) − h(x)∥∥ ≤ Kϕ(x, x), ∀x ∈ A,

=⇒
∥
∥
∥
∥

1
2
g(2x) − 1

2
h(2x)

∥
∥
∥
∥
≤ 1
|2|Kϕ(2x, 2x), ∀x ∈ A,

=⇒
∥
∥
∥
∥

1
2
g(2x) − 1

2
h(2x)

∥
∥
∥
∥
≤ LKϕ(x, x), ∀x ∈ A,

=⇒ d
(

Tg, Th
) ≤ LK.

(2.9)

Hence, we see that

d
(

Tg, Th
) ≤ Ld(g, h) (2.10)

for all g, h ∈ Ω, that is, T is a strictly self-function of Ωwith the Lipschitz constant L.
Putting y := x in (2.2), we have

∥
∥f(2x) − 2f(x)

∥
∥ ≤ ϕ(x, x) (2.11)

for all x ∈ A. So

∥
∥
∥
∥
f(x) − 1

2
f(2x)

∥
∥
∥
∥
≤ 1
|2|ϕ(x, x) (2.12)

for all x ∈ A, that is, d(f, Tf) ≤ 1/|2| < ∞.
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Now, from the fixed point alternative, it follows that there exists a fixed point H of T
in Ω such that

H(x) = lim
n→∞

1
2n
f(2nx) (2.13)

for all x ∈ A, since limn→∞d(Tnf,H) = 0.
On the other hand it follows from (2.2), (2.6), and (2.13) that

∥
∥ΔH

(

x, y
)∥
∥ = lim

n→∞
1
|2|n

∥
∥Δf

(

2nx, 2ny
)∥
∥ ≤ lim

n→∞
1
|2|n ϕ

(

2nx, 2ny
)

= 0 (2.14)

for all x, y ∈ A. So ΔH(x, y) = 0. This means that H is additive. So it follows from the
definition ofH , (2.3), (2.7), and (2.13) that

∥
∥H

(

xy
)−H(x)H

(

y
)∥
∥= lim

n→∞
1

|2|2n
∥
∥
∥f

(

22nxy
)

− f(2nx)f(2ny)
∥
∥
∥ ≤ lim

n→∞
1

|2|2n
ψ
(

22nx, 22ny
)

= 0

(2.15)

for all x, y ∈ A. SoH(xy) = H(x)H(y). According to the fixed point alterative, sinceH is the
unique fixed point of T in the set Λ = {g ∈ Ω : d(f, g) < ∞},H is the unique function such
that

∥
∥f(x) −H(x)

∥
∥ ≤ Kϕ(x, x) (2.16)

for all x ∈ A andK > 0. Again using the fixed point alternative, we get

d
(

f,H
) ≤ 1

1 − Ld
(

f, Tf
) ≤ 1

|2|(1 − L) (2.17)

and so we conclude that

∥
∥f(x) −H(x)

∥
∥ ≤ 1

|2|(1 − L)ϕ(x, x) (2.18)

for all x ∈ A. This completes the proof.

Corollary 2.2. Let θ, p, s be nonnegative real numbers with p, and s > 1 and 2s − 2p ≥ 1. Suppose
that f : A → B is a function such that

∥
∥Δf

(

x, y
)∥
∥ ≤ θ

(‖x‖p · ∥∥y∥∥p)

∥
∥f

(

xy
) − f(x)f(y)∥∥ ≤ θ(‖x‖s · ∥∥y∥∥s)

(2.19)
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for all x, y ∈ A. Then there exists a unique ring homomorphismH : A → B satisfying

∥
∥f(x) −H(x)

∥
∥ ≤ θ

|2| − |2|2p
‖x‖2p, (2.20)

for all x ∈ A.

Proof. The proof follows from Theorem 2.1 by taking

ϕ
(

x, y
)

:= θ
(‖x‖p · ∥∥y∥∥p), ψ

(

x, y
)

:= θ
(‖x‖s · ∥∥y∥∥s) (2.21)

for all x, y ∈ A. Then we can choose L = |2|2p−1 and we get the desired results.

Remark 2.3. Let f : A → B be a function for which there exist functions ϕ, ψ : A×A → [0,∞)
satisfying (2.2) and (2.3). Let 0 < L < 1 be a constant such that ϕ(x/2, y/2) ≤ (L/|2|)ϕ(x, y)
for all x, y ∈ A. By a similar method to the proof of Theorem 2.1, one can show that there
exists a unique ring homomorphismH : A → B satisfying

∥
∥f(x) −H(x)

∥
∥ ≤ L

|2|(1 − L)ϕ(x, x). (2.22)

For the case ϕ(x, y) := δ+θ(‖x‖p · ‖y‖p) (where θ, δ are nonnegative real numbers and
0 < 2p < 1), there exists a unique ring homomorphism H : A → B satisfying

∥
∥f(x) −H(x)

∥
∥ ≤ δ

|2|2p − |2|
+

θ

|2|2p − |2|
‖x‖2p (2.23)

for all x ∈ A.

In the following we establish the superstability of ring homomorphisms on non-
Archimedean Banach algebras associated with the Jensen functional equation f((x + y)/2) =
(f(x) + f(y))/2.

Theorem 2.4. Suppose there exist functions ϕ, ψ : A×A → [0,∞) such that there exists a constant
0 < L < 1 such that

ϕ
(

0, 2y
) ≤ |2|Lϕ(0, y),

ψ
(

2x, 2y
) ≤ |2|2Lψ(x, y)

(2.24)

for all x, y ∈ A. Moreover, assume that f : A → B is a function such that

∥
∥
∥
∥
∥
f

(
x + y
2

)

− f(x) + f
(

y
)

2

∥
∥
∥
∥
∥
≤ ϕ(0, y), (2.25)

∥
∥f

(

xy
) − f(x)f(y)∥∥ ≤ ψ(x, y) (2.26)

for all x, y ∈ A. Then f is a ring homomorphism.
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Proof. Let us define Ω, d and T : Ω → Ω by the same definitions as in the proof of
Theorem 2.1. By the same reasoning as in the proof of Theorem 2.1, one can show that T
has a (unique) fixed pointH in Ω such that

H(x) = lim
n→∞

1
2n
f(2nx) (2.27)

for all x ∈ A and H : A → B is a ring homomorphism. On the other hand by the same
reasoning as in the proof of Theorem 2.1, we can prove that ϕ(0, 0) = 0 and f(0) = 0. Also,
letting y = 0 in (2.25), we get f(x/2) = f(x)/2 for all x ∈ A (see [24, 25]). So, by uniqueness
property ofH , we haveH = f . It follows that f is a ring homomorphism.

Corollary 2.5. Let θ, p, and s be nonnegative real numbers with p, s > 1. Suppose that f : A → B
is a function such that

∥
∥
∥
∥
∥
f

(
x + y
2

)

− f(x) + f
(

y
)

2

∥
∥
∥
∥
∥
≤ θ∥∥y∥∥p, ∥

∥f
(

xy
) − f(x)f(y)

∥
∥ ≤ θ(‖x‖s ·

∥
∥y

∥
∥
s) (2.28)

for all x, y ∈ A. Then f is a ring homomorphism.
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