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The study of multiple solutions for quasilinear elliptic problems under Dirichlet or nonlinear
Neumann type boundary conditions has received much attention over the last decades. The
main goal of this paper is to present multiple solutions results for elliptic inclusions of Clarke’s
gradient type under Dirichlet boundary condition involving the p-Laplacian which, in general,
depend on two parameters. Assuming different structure and smoothness assumptions on the
nonlinearities generating the multivalued term, we prove the existence of multiple constant-sign
and sign-changing (nodal) solutions for parameters specified in terms of the Fučik spectrum of
the p-Laplacian. Our approach will be based on truncation techniques and comparison principles
(sub-supersolution method) for elliptic inclusions combined with variational and topological
arguments for, in general, nonsmooth functionals, such as, critical point theory, Mountain Pass
Theorem, Second Deformation Lemma, and the variational characterization of the “beginning”of
the Fučik spectrum of the p-Laplacian. In particular, the existence of extremal constant-sign
solutions and their variational characterization as global (resp., local) minima of the associated
energy functional will play a key-role in the proof of sign-changing solutions.

1. Introduction

Let Ω ⊂ R
N be a bounded domain with a C2-boundary ∂Ω, and let V = W1,p(Ω) and

V0 = W
1,p
0 (Ω), 1 < p < +∞, denote the usual Sobolev spaces with their dual spaces V ∗ and

V ∗
0 , respectively. We consider the following nonlinear multi-valued elliptic boundary value

problem under Dirichlet boundary condition: find u ∈ V0 \ {0} and parameters a ∈ R, b ∈ R

such that

−Δpu ∈ ∂j(·, u, a, b) in V ∗
0 , (1.1)
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where Δpu = div(|∇u|p−2∇u) is the p-Laplacian, and s �→ ∂j(x, s, a, b) denotes Clarke’s
generalized gradient of some locally Lipschitz function s �→ j(x, s, a, b) which depends on
x ∈ Ω and the parameters a, b. For a = b =: λ problem (1.1) reduces to

−Δpu ∈ ∂j(·, u, λ) in V ∗
0 , (1.2)

which may be considered as a nonlinear and nonsmooth eigenvalue problem. We are going
to study the existence of multiple solutions of (1.1) for two different classes of j which are
in some sense complementary. Our presentation is based on and extends the authors’ recent
results obtained in [1–3]. For the first class of j we let a = b = λ and assume the following
structure of j:

j(x, s, λ) =
∫s

0
f(x, t, λ) dt, (1.3)

where f : Ω × R × (0, λ) → R is such that f(·, ·, λ) : Ω × R → R is a Carathéodory function.
Problem (1.1) reduces then to the following nonlinear eigenvalue problem:

u ∈ V0 \ {0} : −Δpu = f(·, u, λ) in V ∗
0 , (1.4)

which will be considered in Section 2 when the parameter λ is small enough.
The second class of j has the following structure:

j(x, s, a, b) =
a

p
(s+)p +

b

p

(
s−

)p +G(x, s), (1.5)

where s+ = max{s, 0} and s− = max{−s, 0} is the positive and negative part of s, respectively,
and G : Ω × R → R is assumed to be the primitive of a measurable function g : Ω × R → R

that is merely bounded on bounded sets; that is, g ∈ L∞
loc(Ω × R) and G is given by

G(x, s) :=
∫s

0
g(x, t) dt. (1.6)

Problem (1.1) reduces then to the following parameter-dependent multi-valued elliptic
problem:

u ∈ V0 \ {0} : −Δpu ∈ a(u+)p−1 − b(u−)p−1 − ∂G(x, u) in V ∗
0 , (1.7)

which will be studied in Section 3 for parameters a and b large enough. Note that s �→
∂G(x, s) stands for the generalized Clarke’s gradient of the locally Lipschitz function s �→
G(x, s). Obviously, if g : Ω × R → R is a Carathéodory function, that is, x �→ g(x, s)
is measurable in Ω for all s ∈ R and s �→ g(x, s) is continuous in R for a.a. x ∈ Ω,
then ∂G(x, s) = {g(x, s)} is single-valued, and thus problem (1.7) reduces to the following
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nonlinear elliptic problem depending on parameters a and b: find u ∈ V0 \ {0} and constants
a ∈ R, b ∈ R such that

−Δpu = a(u+)p−1 − b(u−)p−1 − g(x, u) in V ∗
0 . (1.8)

Multiple solution results for (1.8) were obtained by the authors in [4]. Furthermore, note that

|u|p−2u = |u|p−2(u+ − u−) = (u+)p−1 − (
u−

)p−1
. (1.9)

Therefore, if one assumes, in addition, a = b =: λ, then (1.8) reduces to the nonlinear elliptic
eigenvalue problem: find u ∈ V0 \ {0} and a constant λ ∈ R such that

−Δpu = λ|u|p−2u − g(x, u) in V ∗
0 . (1.10)

In a recent paper (see [5]) the authors considered the eigenvalue problem (1.10) for a
Carathéodory function g. Combining the method of sub-supersolution with variational
techniques and assuming certain growth conditions of s �→ g(x, s) at infinity and at zero
the authors were able to prove the existence of at least three nontrivial solutions including
one that changes sign. The results in [5] improve among others recent results obtained in
[6]. For a = b =: λ, (1.7) reduces to the corresponding multivalued eigenvalue problem: find
u ∈ V0 \ {0} and a constant λ ∈ R such that

−Δpu ∈ λ|u|p−2u − ∂G(x, u) in V ∗
0 . (1.11)

The existence of multiple solutions for (1.11) has been shown recently in [7] where techniques
for single-valued problems developed in [5] and hemivariational methods applied in [8] have
been used. Multiplicity results for (1.11) have been obtained also in [9].

The existence of multiple solutions for semilinear and quasilinear elliptic problems
has been studied by a number of authors, for example, [10–24]. All these papers deal with
nonlinearities (x, s) �→ g(x, s) that are sufficiently smooth.

2. Problem (1.4) for λ being Small

The aim of this section is to provide an existence result of multiple solutions for all values of
the parameter λ in an interval (0, λ0), with λ0 > 0, guaranteeing that for any such λ there exist
at least three nontrivial solutions of problem (1.4), two of them having opposite constant sign
and the third one being sign-changing (or nodal). More precisely, we demonstrate that under
suitable assumptions there exist a smallest positive solution, a greatest negative solution, and
a sign-changing solution between them, whereas the notions smallest and greatest refer to the
underlying natural partial ordering of functions. This continues the works of Jin [25] (where
p = 2 and f(x, s, λ) is Hölder continuous with respect to (x, s) ∈ Ω × R for every fixed λ) and
of Motreanu-Motreanu-Papageogiou [26]. In these cited works one obtains three nontrivial
solutions, two of which being of opposite constant sign, but without knowing that the third
one changes sign. Here we derive the new information of having, in addition, a sign-changing
solution by strengthening the unilateral condition for the right-hand side of the equation in
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(1.4) at zero. Furthermore, under additional hypotheses, we demonstrate that one can obtain
two sign-changing solutions.

2.1. Hypotheses and Example

Let Lq(Ω)+, 1 ≤ q ≤ +∞, denote the positive cone of Lq(Ω) given by

Lq(Ω)+ = {v ∈ Lq(Ω) : v(x) ≥ 0 for a.a. x ∈ Ω}. (2.1)

We impose the following hypotheses on the nonlinearity f(x, s, λ) in problem (1.4).

H(f) f : Ω×R×(0, λ) → R, with λ > 0, is a function such that f(x, 0, λ) = 0 for a.a. x ∈ Ω,
whenever λ ∈ (0, λ), and one has the following.

(i) For all λ ∈ (0, λ), f(·, ·, λ) is Carathéodory (i.e., f(·, s, λ) is measurable for all s ∈ R

and f(x, ·, λ) is continuous for almost all x ∈ Ω).

(ii) There are constants c > 0, r > p − 1, and functions a(·, λ) ∈ L∞(Ω)+ (λ ∈ (0, λ)) with
‖a(·, λ)‖∞ → 0 as λ ↓ 0 such that

∣∣f(x, s, λ)∣∣ ≤ a(x, λ) + c|s|r for a.a. x ∈ Ω ∀(s, λ) ∈ R ×
(

0, λ
)
. (2.2)

(iii) For all λ ∈ (0, λ) there exist constants μ0 = μ0(λ) > λ2, ν0 = ν0(λ) > μ0 and a set
Ωλ ⊂ Ω with Ω \Ωλ of Lebesgue measure zero such that

μ0 < lim inf
s→ 0

f(x, s, λ)

|s|p−2s
≤ lim sup

s→ 0

f(x, s, λ)

|s|p−2s
≤ ν0 (2.3)

uniformly with respect to x ∈ Ωλ.

In H(f)(iii), λ2 denotes the second eigenvalue of (−Δp, V0). As mentioned in the
Introduction, the strengthening with respect to [26] (see also [25]) of the unilateral condition
for the right-hand side f in (1.4), which enables us to obtain, in addition, sign-changing
solutions, consists in adding the part involving the limit superior in H(f)(iii).

Let us provide an example where all the assumptions formulated in H(f) are fulfilled.

Example 2.1. For the sake of simplicity we drop the x dependence for the function f in the
right-hand side of (1.4). The function f : R × (0,+∞) → R given by

f(s, λ) = λ arctan
(
λ + λ2

λ
|s|p−2s

)
+ c|s|r−1s ∀(s, λ) ∈ R × (0,+∞), (2.4)



International Journal of Differential Equations 5

with c > 0 and r > p − 1, satisfies hypotheses H(f). Next we give an example of function
f : R × (0,+∞) → R verifying assumptions H(f) which is generally not odd with respect to
s:

f(s, λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ arctan
(
a1
λ + λ2

λ
|s|p−2s

)
+ c1|s|r1−1s if s ≤ 0,

λ arctan
(
a2
λ + λ2

λ
sp−1

)
+ c2s

r2 if s > 0,

(2.5)

with λ > 0, a1 ≥ 1, a2 ≥ 1, c1 > 0, c2 > 0, r1 > p − 1, r2 > p − 1.

2.2. Constant-Sign Solutions

The operator −Δp : V0 → V ∗
0 is maximal monotone and coercive; therefore there exists a

unique solution e ∈ V0 of the Dirichlet problem

e ∈ V0 : −Δpe = 1 in V ∗
0 . (2.6)

With s− = max{−s, 0} for s ∈ R, and using −e− ∈ V0 as a test function, we see that

∥∥∇e−∥∥pp = 〈−Δpe,−e−
〉
= −

∫
Ω
e−(x)dx ≤ 0, (2.7)

which implies that e ≥ 0. From the nonlinear regularity theory (cf., e.g., [27, Theorem 1.5.6])
we have e ∈ C1

0(Ω). Then from the nonlinear strong maximum principle (see [28]) we infer
that e ∈ int(C1

0(Ω)+). Here int(C1
0(Ω)+) denotes the interior of the positive coneC1

0(Ω)+ = {u ∈
C1

0(Ω) : u(x) ≥ 0, ∀x ∈ Ω} in the Banach space C1
0(Ω) = {u ∈ C1(Ω) : u(x) = 0, ∀x ∈ ∂Ω},

given by

int
(
C1

0

(
Ω
)
+

)
=

{
u ∈ C1

0

(
Ω
)

: u(x) > 0, ∀x ∈ Ω, and
∂u

∂n
(x) < 0, ∀x ∈ ∂Ω

}
, (2.8)

where n = n(x) is the outer unit normal at x ∈ ∂Ω.

Lemma 2.2. Let the data c, r, and a(·, λ) be as in H(f)(ii). Then for every constant θ > 0 there is
λ0 ∈ (0, λ) with the property that if λ ∈ (0, λ0), one can choose ξ0 = ξ0(λ) ∈ (0, θ) such that

c(ξ0‖e‖∞)r + ‖a(·, λ)‖∞ < ξ
p−1
0 . (2.9)

Proof. On the contrary there would exist a constant θ > 0 and a sequence λn ↓ 0 as n → ∞
such that

c(ξ‖e‖∞)r + ‖a(·, λn)‖∞ ≥ ξp−1 ∀n ∈ N, ξ ∈ (0, θ). (2.10)
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Letting n → ∞ we get c‖e‖r∞ξr−p+1 ≥ 1 for all ξ ∈ (0, θ) because we have ‖a(·, λ)‖∞ → 0 as
λ ↓ 0. Since r > p − 1, a contradiction is achieved as ξ ↓ 0. Therefore (2.9) holds true.

We denote by λ1 the first eigenvalue of (−Δp, V0) and by ϕ1 the eigenfunction of
(−Δp, V0) corresponding to λ1 satisfying

ϕ1 ∈ int
(
C1

0

(
Ω
)
+

)
,

∥∥ϕ1
∥∥
p = 1. (2.11)

Lemma 2.3. Assume H(f)(i) and (ii) and the following weaker form of hypothesis H(f)(iii): for all
λ ∈ (0, λ) there exist μ0 = μ0(λ) > λ1 and Ωλ ⊂ Ω with Ω \Ωλ of Lebesgue measure zero such that

μ0 < lim inf
s→ 0

f(x, s, λ)

|s|p−2s
(2.12)

uniformly with respect to x ∈ Ωλ.

Fix a constant θ > 0 and consider the corresponding number λ0 ∈ (0, λ) obtained in
Lemma 2.2. Then for any λ ∈ (0, λ0) the function u = ξ0e ∈ int(C1

0(Ω)+), with ξ0 ∈ (0, θ) given
by Lemma 2.2, is a supersolution for problem (1.4), and the function u = εϕ1 ∈ int(C1

0(Ω)+) is a
subsolution of problem (1.4) provided that the number ε > 0 is sufficiently small.

Proof. For a fixed λ ∈ (0, λ0), from (2.9) and H(f)(ii) we derive

−Δpu = ξp−1
0 > ‖a(·, λ)‖∞ + c‖u‖r∞ ≥ f(·, u(·), λ), (2.13)

which says that u = ξ0e is a supersolution for problem (1.4).
On the other hand, by hypothesis we can find μ = μ(λ) > λ1 and δ = δ(λ) > 0 such that

μ <
f(x, s, λ)

|s|p−2s
for a.a. x ∈ Ω ∀0 < |s| ≤ δ. (2.14)

Choose ε ∈ (0, δ/‖ϕ1‖∞). Then by (2.14) we have

−Δp

(
εϕ1

)
= λ1ε

p−1ϕ
p−1
1 < μεp−1ϕ

p−1
1 < f

(
x, εϕ1(x), λ

)
for a.a. x ∈ Ω, (2.15)

which ensures that u = εϕ1 is a subsolution of problem (1.4).

The following result which asserts the existence of two solutions of problem (1.4)
having opposite constant sign and being extremal plays an important role in the proof of
the existence of sign-changing solutions.

Theorem 2.4. Assume H(f)(i) and (ii) and the following weaker form of H(f)(iii): for all λ ∈ (0, λ)
there exist constants μ0 = μ0(λ) > λ1, ν0 = ν0(λ) > μ0 and a set Ωλ ⊂ Ω with Ω \ Ωλ of Lebesgue
measure zero such that

μ0 < lim inf
s→ 0

f(x, s, λ)

|s|p−2s
≤ lim sup

s→ 0

f(x, s, λ)

|s|p−2s
≤ ν0 (2.16)
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uniformly with respect to x ∈ Ωλ. Then for all b > 0 there exists a number λ0 ∈ (0, λ) with the
property that if λ ∈ (0, λ0), then there is a constant ξ0 = ξ0(λ) ∈ (0, b/‖e‖∞) such that problem (1.4)
has a least positive solution u+ = u+(λ) ∈ int (C1

0(Ω)+) in the order interval [0, ξ0e] and a greatest
negative solution u− = u−(λ) ∈ − int(C1

0(Ω)+) in the order interval [−ξ0e, 0].

Proof. Since the proof of the existence of the greatest negative solution follows the same lines,
we only provide the arguments for the existence of the least positive solution.

Applying Lemma 2.3 for θ = b/‖e‖∞ we find λ0 ∈ (0, λ) as therein. Fix λ ∈ (0, λ0).
Lemma 2.3 ensures that u = ξ0e ∈ int(C1

0(Ω)+) is a supersolution for problem (1.4), with ξ0 ∈
(0, b/‖e‖∞) given by Lemma 2.2, and u = εϕ1 ∈ int(C1

0(Ω)+) is a subsolution for problem (1.4)
if ε > 0 is small enough. Passing eventually to a smaller ε > 0, we may assume that εϕ1 ≤ ξ0e.
Then by the method of sub-supersolution we know that in the order interval [εϕ1, ξ0e] there
is a least (i.e., smallest) solution uε = uε(λ) ∈ int(C1

0(Ω)+) of problem (1.4) (see [29]).
We thus obtain that for every positive integer n sufficiently large there is a least

solution un ∈ int(C1
0(Ω)+) of problem (1.4) in the order interval [(1/n)ϕ1, ξ0e]. Clearly, we

have

un ↓ u+ pointwise, (2.17)

with some function u+ : Ω → R satisfying 0 ≤ u+ ≤ ξ0e. First we claim that

u+ is a solution of problem (1.4). (2.18)

Taking into account that un solves (1.4), and the fact that un belongs to the order interval
[0, ξ0e], from H(f)(ii) we see that

‖∇un‖pp =
∫
Ω
f(x, un(x), λ)un(x)dx ≤

∫
Ω

(
a(x, λ) + cξr0e(x)

r)ξ0e(x)dx, (2.19)

which implies the boundedness of the sequence (un) in V0. Then due to (2.17) we have that
u+ ∈ V0 as well as

un ⇀ u+ in V0, un −→ u+ in Lp(Ω) and a.e. in Ω. (2.20)

Since un solves problem (1.4), one has

〈−Δpun, ϕ
〉
=

∫
Ω
f(x, un(x), λ)ϕ(x)dx, ∀ϕ ∈ V0. (2.21)

Setting ϕ = un − u+ in (2.21) gives

〈−Δpun, un − u+
〉
=

∫
Ω
f(x, un(x), λ)(un(x) − u+(x))dx. (2.22)
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As already noticed that the sequence (f(·, un(·), λ) is uniformly bounded on Ω, so (2.20) and
(2.22) yield

lim
n→∞

〈−Δpun, un − u+
〉
= 0. (2.23)

The S+-property of −Δp on V0 implies

un −→ u+ in V0 as n −→ ∞. (2.24)

The strong convergence in (2.24) and Lebesgue’s dominated convergence theorem permit to
pass to the limit in (2.21) that results in (2.18).

By (2.18) and the nonlinear regularity theory (cf., e.g., Theorem 1.5.6 in [27]) it turns
out u+ ∈ C1

0(Ω). The choice of ξ0 guarantees that

0 ≤ u+(x) ≤ ξ0e(x) ≤ b for a.e. x ∈ Ω. (2.25)

Thus, from (2.18), assumptions H(f)(ii) and (iii), and the boundedness of u+, we get

−Δpu+(x) = f(x, u+(x), λ) ≥ −ĉu+(x)p−1 for a.a. x ∈ Ω, (2.26)

with a constant ĉ > 0. Applying the nonlinear strong maximum principle (cf. [28]) we
conclude that either u+ = 0 or u+ ∈ int(C1

0(Ω)+).
We claim that

u+ ∈ int
(
C1

0

(
Ω
)
+

)
. (2.27)

Assume on the contrary that u+ = 0. Then (2.17) becomes

un(x) ↓ 0 ∀x ∈ Ω. (2.28)

Since un ≥ (1/n)ϕ1, we may consider

ũn =
un

‖∇un‖p
∀n. (2.29)

Along a relabelled subsequence we may suppose

ũn ⇀ ũ in V0, ũn −→ ũ in Lp(Ω) and a.e. in Ω (2.30)

for some ũ ∈ V0. Moreover, one can find a function w ∈ Lp(Ω)+ such that |ũn(x)| ≤ w(x) for
almost all x ∈ Ω. Relation (2.21) reads

〈−Δpũn, ϕ
〉
=

∫
Ω

f(x, un(x), λ)

‖∇un‖p−1
p

ϕ dx, ∀ϕ ∈ V0. (2.31)
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Setting ϕ = ũn − ũ leads to

〈−Δpũn, ũn − ũ
〉
=

∫
Ω

f(x, un(x), λ)

‖∇un‖p−1
p

(ũn − ũ)dx. (2.32)

By H(f)(iii) we know that there exist constants c0 = c0(λ) > λ1 and α = α(λ) > 0 such that

∣∣f(x, s, λ)∣∣ ≤ c0|s|p−1 for a.a. x ∈ Ω, ∀|s| < α, (2.33)

while H(f)(ii) entails

∣∣f(x, s, λ)∣∣ ≤ a(x, λ) + c|s|r ≤
(‖a(·, λ)‖∞

αr
+ c

)
|s|r (2.34)

for a.a. x ∈ Ω and for all |s| ≥ α. Combining the two estimates gives

∣∣f(x, s, λ)∣∣ ≤ c0|s|p−1 + c1|s|r for a.a. x ∈ Ω, ∀s ∈ R (2.35)

with a constant c1 = c1(λ) > 0. Since un ∈ [(1/n)ϕ1, ξ0e], r > p−1 and (2.35) holds, there exists
a constant C > 0 such that

∣∣f(x, un(x), λ)∣∣
un(x)p−1

≤ C for a.a. x ∈ Ω, ∀n. (2.36)

We see from (2.36) that

∣∣f(x, un(x), λ)∣∣
‖∇un‖p−1

p

|ũn(x) − ũ(x)| ≤ Cw(x)p−1(w(x) + |ũ(x)|) for a.a. x ∈ Ω. (2.37)

Then, because the right-hand side of the above inequality is in L1(Ω), by means of (2.30) and
(2.36) we can apply Lebesgue’s dominated convergence theorem to get

lim
n→∞

∫
Ω

f(x, un(x), λ)

‖∇un‖p−1
p

(ũn − ũ) dx = 0. (2.38)

Consequently, from (2.32) we obtain

lim
n→∞

〈−Δpũn, ũn − ũ
〉
= 0. (2.39)

The S+-property of −Δp on V0 implies

ũn −→ ũ in V0 as n −→ ∞. (2.40)
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On the basis of (2.31) and (2.40) it follows

〈−Δpũ, ϕ
〉
= lim

n→∞

∫
Ω

f(x, un(x), λ)

‖∇un‖p−1
p

ϕ dx, ∀ϕ ∈ V0. (2.41)

Notice from (2.36) that

∣∣f(x, un(x), λ)∣∣
‖∇un‖p−1

p

∣∣ϕ(x)∣∣ ≤ Cw(x)p−1∣∣ϕ(x)∣∣ (2.42)

for a.a. x ∈ Ω and for all ϕ ∈ V0. We are thus allowed to apply Fatou’s lemma which in
conjunction with (2.28), (2.30), and (2.16) ensures

lim
n→∞

∫
Ω

f(x, un(x), λ)

‖∇un‖p−1
p

ϕ(x)dx = lim
n→∞

∫
Ω

f(x, un(x), λ)

un(x)p−1
ũn(x)p−1ϕ(x) dx

≥
∫
Ω

lim inf
n→∞

(
f(x, un(x), λ)

un(x)p−1
ũn(x)p−1ϕ(x)

)
dx

≥ μ0

∫
Ω
ũ(x)p−1ϕ(x)dx

(2.43)

for all ϕ ∈ V0,+ := V0 ∩ Lp(Ω)+. Thanks to (2.41) we obtain

〈−Δpũ, ϕ
〉 ≥ μ0

∫
Ω
ũ(x)p−1ϕ(x)dx, ∀ϕ ∈ V0,+. (2.44)

Owing to (2.42) we may once again use Fatou’s lemma; so according to (2.28), (2.30), and the
last part of (2.16), we find

lim
n→∞

∫
Ω

f(x, un(x), λ)

‖∇un‖p−1
p

ϕ(x)dx = lim
n→∞

∫
Ω

f(x, un(x), λ)

un(x)p−1
ũn(x)p−1ϕ(x)dx

≤
∫
Ω

lim sup
n→∞

(
f(x, un(x), λ)

un(x)p−1
ũn(x)p−1ϕ(x)

)
dx

≤ ν0

∫
Ω
ũ(x)p−1ϕ(x)dx

(2.45)

for all ϕ ∈ V0,+. Then (2.41) ensures

〈−Δpũ, ϕ
〉 ≤ ν0

∫
Ω
ũ(x)p−1ϕ(x)dx, ∀ϕ ∈ V0,+. (2.46)
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Combining (2.44) and (2.46) results in

μ0ũ
p−1 ≤ −Δpũ ≤ ν0ũ

p−1 a.e. in Ω, (2.47)

which guarantees to have ũ ∈ L∞(Ω) (see [27, Theorem 1.5.5]). Since by (2.47) we know
that Δpũ ∈ L∞(Ω), we are in a position to address Theorem 1.5.6 in [27], which provides
ũ ∈ C1,β(Ω) with some β ∈ (0, 1). This regularity up to the boundary and the fact that ũ ≥ 0
a.e. in Ω and (2.47) enable us to refer to the strong maximum principle (see Theorem 5 of
Vázquez [28]). Recalling that ũ does not vanish identically on Ω (because ‖∇ũ‖p = 1) we
deduce that ũ(x) > 0 for all x ∈ Ω and (∂ũ/∂n)(x) < 0 for all x ∈ ∂Ω which amounts to
saying ũ ∈ int(C1

0(Ω)+). Consequently, there exist constants k0 > 0 and k1 > 0 such that

k0ϕ1 ≤ ũ < k1ϕ1 a.e. in Ω. (2.48)

Following [30] let us denote

I(u, v) =
〈
−Δpu,

up − vp
up−1

〉
−
〈
−Δpv,

up − vp
vp−1

〉
(2.49)

whenever (u, v) ∈ DI , where

DI =

{
(w1, w2) ∈ (V0)2 : wi ≥ 0,

wi

wj
∈ L∞(Ω) for i, j ∈ {1, 2}

}
. (2.50)

Relation (2.48) justifies that (k1ϕ1, ũ) ∈ DI . Then Proposition 1 of Anane [30] implies
I(k1ϕ1, ũ) ≥ 0. On the other hand a direct computation based on (2.48) and (2.47) shows

I
(
k1ϕ1, ũ

)
=

〈
−Δp

(
k1ϕ1

)
,

(
k1ϕ1

)p − ũp(
k1ϕ1

)p−1

〉
−
〈
−Δpũ,

(
k1ϕ1

)p − ũp
ũp−1

〉

≤ (
λ1 − μ0

)∫
Ω

((
k1ϕ1

)p − ũp)dx < 0.

(2.51)

This contradiction proves that the claim in (2.27) holds true.
In view of (2.18) it remains to establish that u+ is the smallest positive solution of

problem (1.4) in the interval [0, u]. Let u ∈ V0 be a positive solution to (1.4) in [0, u]. Since
u ∈ L∞(Ω), then (1.4) and H(f)(ii) allow to deduce that −Δpu ∈ L∞(Ω). Using Theorem 1.5.6
of [27] leads to u ∈ C1

0(Ω). Then, as u is a solution to (1.4) and u ∈ [0, u], with ‖u‖∞ < b, by
means of hypotheses H(f)(ii) and (iii), we are able to apply the strong maximum principle.
So we get u ∈ int(C1

0(Ω)+), hence u ∈ [(1/n)ϕ1, u] for n sufficiently large. The fact that un is
the least solution of (1.4) in [(1/n)ϕ1, u] ensures un ≤ u. Taking into account (2.17), we obtain
u+ ≤ u. This completes the proof.
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2.3. Sign-Changing Solution

The main result of this section is as follows.

Theorem 2.5. Under hypotheses H(f), for all b > 0, there exists a number λ0 ∈ (0, λ) with the
property that if λ ∈ (0, λ0), then problem (1.4) has a (positive) solution u+ = u+(λ) ∈ int(C1

0(Ω)+),
a (negative) solution u− = u−(λ) ∈ − int(C1

0(Ω)+), and a nontrivial sign-changing solution u0 =
u0(λ) ∈ C1

0(Ω) satisfying ‖u+‖∞ < b, ‖u−‖∞ < b, ‖u0‖∞ < b.

Proof. Let b > 0. Consider the positive number λ0 given by Theorem 2.4 and fix λ ∈ (0, λ0).
Let u+ ∈ int (C1

0(Ω)+) and u− ∈ − int(C1
0(Ω)+) be the two extremal solutions determined in

Theorem 2.4. We introduce on Ω × R the truncation functions

τ+(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if s ≤ 0,

s if 0 < s < u+(x),

u+(x) if s ≥ u+(x),

τ−(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u−(x) if s ≤ u−(x),
s if u−(x) < s < 0,

0 if s ≥ 0,

τ0(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u−(x) if s ≤ u−(x),
s if u−(x) < s < u+(x),

u+(x) if s ≥ u+(x)

(2.52)

and then define the following associated functionals:

E+(u) =
1
p

‖∇u‖pp −
∫
Ω

∫u(x)

0
f(x, τ+(x, s), λ)ds dx, ∀u ∈ V0,

E−(u) =
1
p

‖∇u‖pp −
∫
Ω

∫u(x)

0
f(x, τ−(x, s), λ)ds dx, ∀u ∈ V0,

E0(u) =
1
p

‖∇u‖pp −
∫
Ω

∫u(x)

0
f(x, τ0(x, s), λ)ds dx, ∀u ∈ V0.

(2.53)

It is clear that E+, E−, E0 ∈ C1(V0).
We observe that if v is a critical point of E+, then

〈−Δp v + Δp u+, (v − u+)+
〉
=

∫
Ω

(
f(x, τ+(x, v(x)), λ) − f(x, u+(x), λ)

)
(v − u+)+dx = 0 (2.54)
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which implies v ≤ u+. Similarly, it follows that v ≥ 0. This leads to

v is a critical point of E+ =⇒ 0 ≤ v(x) ≤ u+(x) for a.a. x ∈ Ω. (2.55)

Since the function E+ is coercive and weakly lower semicontinuous, there exists a
global minimizer z+ ∈ V0 of it. Using (2.14), it is seen that

E+(z+) = inf
V0

E+ < 0, (2.56)

and so z+ /= 0. Relation (2.55) shows that z+ is a nontrivial solution of problem (1.4) belonging
to the order interval [0, u+]. Via assumptions H(f)(ii) and (iii) and the boundedness of z+,
we may apply the strong maximum principle which ensures z+ > 0 on Ω. In view of the
minimality property of u+ as stated in Theorem 2.4, it follows that z+ = u+. In fact, u+ is the
unique global minimizer of E+.

Since u+ ∈ int(C1
0(Ω)+), there exists a neighborhood U of u+ in the space C1

0(Ω) such
that U ⊂ C1

0(Ω)+. Therefore E0 = E+ on U, which guarantees that u+ is a local minimizer of
E0 on C1

0(Ω). It results that u+ is also a local minimizer of E0 on the space V0 (see [27], pages
655-656 ). Employing the functional E− and proceeding as in the case of u+, we establish that
u− is a local minimizer of E0 on V0.

As in the case of (2.55), we verify that every critical point of E0 belongs to the set
{u ∈ V0 : u−(x) ≤ u(x) ≤ u+(x) a.e. x ∈ Ω}, which implies that every critical point of E0

is a solution to problem (1.4). The functional E0 is coercive, weakly lower semicontinuous,
with infV0E0 < 0. Thus E0 has a global minimizer y0 ∈ V0 with y0 /= 0. The above properties
ensure that y0 is a nontrivial solution of problem (1.4) belonging to the order interval [u−, u+].
Assume y0 /=u+ and y0 /=u−. We claim that y0 changes sign. Indeed, if not, y0 would have
constant sign, for instance y0 ≥ 0 a.e. on Ω. Using assumptions H(f)(ii) and (iii) and the
boundedness of y0, we may apply the strong maximum principle which leads to y0 > 0
on Ω. This is impossible because it contradicts the minimality property of the solution u+
as given by Theorem 2.4. According to the claim, we obtain the conclusion of the theorem
setting u0 = y0.

Thus, the proof reduces to consider the cases y0 = u+ or y0 = u−. To make a choice,
suppose y0 = u+. We may also admit that u− is a strict local minimizer of E0. This is true
since on the contrary we would find (infinitely many) critical points x0 of E0 belonging to
the order interval [u−, u+] which are different from 0, u−, u+, and if x0 does not change sign,
taking into account the strong maximum principle, the extremality properties of the solutions
u−, u+ given in Theorem 2.4 will be contradicted. A straightforward argument allows then to
find ρ ∈ (0, ‖u+ − u−‖) such that

E0(u+) ≤ E0(u−) < inf
{
E0(u) : u ∈ ∂Bρ(u−)

}
, (2.57)

where ∂Bρ(u−) = {u ∈ V0 : ‖u − u−‖ = ρ}. Relation (2.57) in conjunction with the Palais-
Smale condition (which holds for E0 due to its coercivity) enables us to apply the mountain
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pass theorem to the functional E0 (see, e.g., [31]). In this way we get u0 ∈ V0 satisfying
E′0(u0) = 0 and

inf
{
E0(u) : u ∈ ∂Bρ(u−)

} ≤ E0(u0) = inf
γ∈Γ

max
t∈[−1,1]

E0
(
γ(t)

)
, (2.58)

where

Γ =
{
γ ∈ C([−1, 1], V0) : γ(−1) = u−, γ(1) = u+

}
. (2.59)

We infer from (2.57) and (2.58) that u0 /=u− and u0 /=u+.
The next step in the proof is to show that

E0(u0) < 0. (2.60)

By the equality in (2.58), it suffices to produce a path γ̂ ∈ Γ such that

E0
(
γ̂(t)

)
< 0 ∀t ∈ [−1, 1]. (2.61)

Let S = V0 ∩∂BL
p(Ω)

1 , where ∂BL
p(Ω)

1 = {u ∈ Lp(Ω) : ‖u‖p = 1}, and SC = S∩C1
0(Ω) be endowed

with the topologies induced by V0 and C1
0(Ω), respectively. We set

Γ0,C =
{
γ ∈ C([−1, 1], SC) : γ(−1) = −ϕ1, γ(1) = ϕ1

}
. (2.62)

Making use of the first inequality in assumption H(f) (iii), we fix numbers μ > λ2 and δ >
0 such that (2.14) holds, and then let ρ0 ∈ (0, μ − λ2). We recall the following variational
expression for λ2 given by Cuesta et al. [32]:

λ2 = inf
γ∈Γ0

max
u∈γ([−1,1])

‖∇u‖pp, (2.63)

where

Γ0 =
{
γ ∈ C([−1, 1], S) : γ(−1) = −ϕ1, γ(1) = ϕ1

}
. (2.64)

By (2.63) there exists γ ∈ Γ0 such that

max
t∈[−1,1]

∥∥∇γ(t)∥∥pp < λ2 +
ρ0

2
. (2.65)
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Choose some number r with 0 < r ≤ (λ2+ρ0)
1/p−(λ2+ρ0/2)1/p. The density of SC in S implies

that Γ0,C is dense in Γ0; so there is γ0 ∈ Γ0,C satisfying

max
t∈[−1,1]

∥∥∇γ(t) − ∇γ0(t)
∥∥
p < r. (2.66)

Then the choice of r establishes

max
t∈[−1,1]

∥∥∇γ0(t)
∥∥p
p < λ2 + ρ0. (2.67)

The boundedness of the set γ0([−1, 1])(Ω) in R ensures the existence of some ε1 > 0 such that

ε1|u(x)| ≤ δ ∀x ∈ Ω ∀u ∈ γ0([−1, 1]). (2.68)

Since u+,−u− ∈ int (C1
0(Ω)+) (see Theorem 2.4), for every u ∈ γ0([−1, 1]) and any bounded

neighborhood Vu of u in C1
0(Ω) there exist positive numbers hu and ju such that

u+ − 1
h
v ∈ int

(
C1

0

(
Ω
)
+

)
, −u− + 1

j
v ∈ int

(
C1

0

(
Ω
)
+

)
, (2.69)

whenever h ≥ hu, j ≥ ju, and v ∈ Vu. This fact and the compactness of γ0([−1, 1]) in C1
0(Ω)

allow to determine a number ε0 > 0 for which one has

u−(x) ≤ εu(x) ≤ u+(x) ∀x ∈ Ω, u ∈ γ0([−1, 1]), ε ∈ (0, ε0). (2.70)

We now focus on the continuous path εγ0 in C1
0(Ω) joining −εϕ1 and εϕ1 with a fixed constant

ε satisfying 0 < ε < min{ε0, ε1}. By (2.70), (2.67), (2.68), (2.14) with μ > λ2, and taking into
account the choice of ρ0 as well as γ0([−1, 1]) ⊂ ∂BLp(Ω)

1 we obtain

E0
(
εγ0(t)

)
=
εp

p

∥∥∇γ0(t)
∥∥p
p −

∫
Ω

∫ εγ0(t)(x)

0
f(x, τ0(x, s), λ)ds dx

=
εp

p

∥∥∇γ0(t)
∥∥p
p −

∫
Ω

∫ εγ0(t)(x)

0
f(x, s, λ)ds dx

≤ εp

p

(
λ2 + ρ0 − μ

)
< 0 ∀t ∈ [−1, 1].

(2.71)

At this point we apply the second deformation lemma (see, e.g., [27, page 366]) to the
C1 functional E+ : V0 → R. Towards this let us denote

c+ = c+(λ) = E+
(
εϕ1

)
, m+ = m+(λ) = E+(u+),

Ec++ = {u ∈ V0 : E+(u) ≤ c+}.
(2.72)
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It was already shown that u+ is the unique global minimizer of E+, and so we have m+ < c+.
Taking into account (2.55), E+ has no critical values in the interval (m+, c+] (for, otherwise,
the minimality of the positive solution u+ of (1.4) would be contradicted). Using also that
the functional E+ satisfies the Palais-Smale condition (because it is coercive), the second
deformation lemma can be applied to E+ yielding a continuous mapping η ∈ C([0, 1] ×
Ec++ , E

c+
+ ) such that η(0, u) = u and η(1, u) = u+ for all u ∈ Ec++ , as well as E+(η(t, u)) ≤ E+(u)

whenever t ∈ [0, 1] and u ∈ Ec++ . Introducing γ+ : [0, 1] → V0 by

γ+(t) :=
(
η
(
t, εϕ1

))+ := max
{
η
(
t, εϕ1

)
, 0

}
(2.73)

for all t ∈ [0, 1], it is seen that γ+ is a continuous path in V0 joining εϕ1 and u+. (Note the
mapping w �→ w+ is continuous from V0 into itself.) The properties of the deformation η
imply

E0
(
γ+(t)

)
= E+

(
γ+(t)

) ≤ E+
(
η
(
t, εϕ1

))
= E+

(
εϕ1

)
= E0

(
εϕ1

)
< 0 (2.74)

for all t ∈ [0, 1]. Similarly, applying the second deformation lemma to the functional E−, we
construct a continuous path γ− : [0, 1] → V0 joining u− and −εϕ1 such that

E0
(
γ−(t)

)
< 0 ∀t ∈ [0, 1]. (2.75)

The union of the curves γ−, εγ0, and γ+ gives rise to a path γ̂ ∈ Γ. We see from (2.75), (2.71),
and (2.74) that (2.61) is satisfied. Hence (2.60) holds, and so u0 /= 0. Recalling that the critical
points of E0 are in the order interval {u ∈ V0 : u−(x) ≤ u(x) ≤ u+(x) a.e. x ∈ Ω} we
derive that u0 is a nontrivial solution of (1.4) distinct from u− and u+, with u− ≤ u0 ≤ u+. By
the nonlinear regularity theory we have that u0 ∈ C1

0(Ω). The extremality properties of the
constant sign solutions u− and u+ as described in Theorem 2.4 force u0 to be sign-changing.
This completes the proof.

2.4. Two Sign-Changing Solutions

The goal of this section is to show that under hypotheses stronger than those in Theorem 2.5,
problem (1.4) possesses at least two sign-changing solutions.

The new hypotheses on the nonlinearity f(x, s, λ) in problem (1.4) are the following.

H′(f) f : Ω×R×(0, λ) → R, with λ > 0, is a function such that f(x, 0, λ) = 0 for a.a. x ∈ Ω,
whenever λ ∈ (0, λ).

(i) For all λ ∈ (0, λ), f(·, ·, λ) ∈ C(Ω × R).

(ii) There are constants c > 0, r ∈ (p − 1, p∗ − 1), and functions a(·, λ) ∈ L∞(Ω)+ (λ ∈
(0, λ)) with ‖a(·, λ)‖∞ → 0 as λ ↓ 0 such that

∣∣f(x, s, λ)∣∣ ≤ a(x, λ) + c|s|r for a.a. x ∈ Ω ∀(s, λ) ∈ R ×
(

0, λ
)
. (2.76)
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(iii) For all λ ∈ (0, λ) there exist constants μ0 = μ0(λ) > λ2, ν0 = ν0(λ) > μ0 and a set
Ωλ ⊂ Ω with Ω \Ωλ of Lebesgue measure zero such that

μ0 < lim inf
s→ 0

f(x, s, λ)

|s|p−2s
≤ lim sup

s→ 0

f(x, s, λ)

|s|p−2s
≤ ν0 (2.77)

uniformly with respect to x ∈ Ωλ.

(iv) There exist constants b− < 0 < b+ such that for all λ ∈ (0, λ) we have

f(x, b−, λ) = 0 = f(x, b+, λ) ∀x ∈ Ω,

f(x, s, λ) < 0 ∀x ∈ Ω, all s ∈ (b−, 0),

f(x, s, λ) > 0 ∀x ∈ Ω, all s ∈ (0, b+).

(2.78)

(v) For every λ ∈ (0, λ), there exist M =M(λ) > 0 and μ = μ(λ) > p such that

0 < μF(x, s, λ) ≤ f(x, s, λ)s ∀x ∈ Ω, all |s| ≥M. (2.79)

We notice that hypotheses H’(f) are stronger than H(f). In particular, for every λ ∈
(0, λ), we added the Ambrosetti-Rabinowitz condition for f(·, ·, λ) (see hypothesis H’(f)(v)).

We state now the main result of this section, which produces two sign-changing
solutions for problem (1.4).

Theorem 2.6. Assume that hypotheses H’(f) are fulfilled. Then there exists a number λ0 ∈ (0, λ)
with the property that if λ ∈ (0, λ0), then problem (1.4) has a minimal (positive) solution u+ = u+(λ) ∈
int(C1

0(Ω)+) , a maximal (negative) solution u− = u−(λ) ∈ − int(C1
0(Ω)+), and two nontrivial sign-

changing solutions u0 = u0(λ), w0 = w0(λ) ∈ C1
0(Ω) satisfying ‖u+‖∞ < b, ‖u−‖∞ < b, u− ≤ u0 ≤

u+ a.e. in Ω (so ‖u0‖∞ < b) and ‖w0‖∞ ≥ b, where b := min{b+, |b−|}.

Proof. Since hypotheses H’(f) are stronger than H(f), we can apply Theorem 2.5 with b =
min{b+, |b−|}, which ensures the existence of a number λ0 ∈ (0, λ) such that for every λ ∈
(0, λ0), problem (1.4) possesses a positive solution u+ = u+(λ) ∈ int(C1

0(Ω)+), a negative
solution u− = u−(λ) ∈ − int(C1

0(Ω)+), and a sign-changing solution u0 = u0(λ) ∈ C1
0(Ω) with

−b < u− ≤ u0 ≤ u+ < b. The proof of Theorem 2.5 shows that u+ and u− can be chosen to be the
minimal positive solution and the maximal negative solution, respectively.

On the other hand, hypotheses H’(f) enable us to apply Theorem 1.1 of Bartsch et al.
[33]. It follows that there exists a sign-changing solution w0 = w0(λ) ∈ C1

0(Ω) (by the
nonlinear regularity theory) with maxΩw0 ≥ b+ and minΩw0 ≤ b−. Therefore, we have
‖w0‖∞ ≥ b, which shows that the sign-changing solutions u0 and w0 are different. This
completes the proof.

Remark 2.7. In fact, under hypotheses H’(f), for λ ∈ (0, λ0), problem (1.4) admits at least six
nontrivial solutions: two positive solutions, two negative solutions, and two sign-changing
solutions, as seen in Theorem 5 in [34].
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3. Problem (1.7) for Parameters a and b being Large

The main goal of this section is to provide a detailed multiplicity analysis of the nonsmooth
elliptic problem (1.7) in dependence of the two parameters a and b. Conditions in terms of
the Fučik spectrum are formulated that ensure the existence of sign-changing solutions. As
for the precise formulation of this result we recall the Fučik spectrum, see, for example, [13].

The set Σp of those points (μ1, μ2) ∈ R
2 for which the problem

u ∈ V0 : −Δp u = μ1 (u+)p−1 − μ2 (u−)p−1 in V ∗
0 (3.1)

has a nontrivial solution is called the Fučik spectrum of the negative p-Laplacian on Ω.
Hence, Σp clearly contains the two lines λ1 × R and R × λ1 with λ1 being the first Dirichlet
eigenvalue of −Δp. In addition, the spectrum σ(−Δp) of the negative p-Laplacian has an
unbounded sequence of variational eigenvalues (λl), l ∈ N, satisfying a standard min-max
characterization, and Σp contains the corresponding sequence of points (λl, λl), l ∈ N. A first
nontrivial curve C in Σp through (λ2, λ2) asymptotic to λ1 × R and R × λ1 at infinity was
constructed and variationally characterized by a mountain-pass procedure by Cuesta et al.
[32] (see Figure 1), which implies the existence of a continuous path in {u ∈ V0 : I(a,b)(u) <
0, ‖u‖p = 1} joining −ϕ1 and ϕ1 provided (a, b) is above the curve C. Here the functional I(a,b)

on V0 is given by

I(a,b)(u) =
∫
Ω

(|∇u|p − a(u+)p − b(u−)p)dx. (3.2)

The hypothesis on the parameters a and b that will finally ensure the existence of sign-
changing solutions is as follows.

(H) Let (a, b) ∈ R
2
+ be above the curve C of the Fučik spectrum constructed in [32]; see

Figure 1.

3.1. Hypotheses, Definitions, and Preliminaries

We impose the following hypotheses on the nonlinearity g : Ω × R → R whose primitive is
G of problem (1.7)

(g1) (x, s) �→ g(x, s) is measurable in each variable separately.

(g2) There exists c > 0, and q ∈ [p, p∗) such that

∣∣g(x, s)∣∣ ≤ c(1 + |s|q−1
)

(3.3)

for a.a. x ∈ Ω and for all s ∈ R, where p∗ denotes the critical Sobolev exponent
which is p∗ =Np/(N − p) if p < N, and p∗ = +∞ if p ≥N.

(g3) One has

lim
s→ 0

g(x, s)

|s|p−2s
= 0 uniformly with respect to a.a. x ∈ Ω. (3.4)
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Figure 1: Fučik Spectrum.

(g4) One has

lim
|s|→∞

g(x, s)

|s|p−2s
= +∞ uniformly with respect to a.a. x ∈ Ω. (3.5)

In view of assumptions (g1) and (g2) the function s �→ G(x, s) is locally Lipschitz and
the functional G : Lq(Ω) → R defined by

G(u) :=
∫
Ω
G(x, u(x))dx, u ∈ Lq(Ω) (3.6)

is well defined and locally Lipschitz continuous as well. The generalized gradients ∂G(x, ·)
and ∂G can be characterized as follows: Define for every (x, t) ∈ Ω × R,

g1(x, t) := lim
δ→ 0+

ess inf
|τ−t|<δ

g(x, τ), g2(x, t) := lim
δ→ 0+

ess sup
|τ−t|<δ

g(x, τ). (3.7)

Proposition 1.7 in [35] ensures that

∂G(x, ξ) =
[
g1(x, ξ), g2(x, ξ)

]
, (3.8)

while Theorem 4.5.19 of [36] implies

∂G(u) ⊆
{
w ∈ Lq′(Ω) : g1(x, u(x)) ≤ w(x) ≤ g2(x, u(x)) a.e. in Ω

}
(3.9)

with q′ := q/(q − 1). The next result is an immediate consequence of [37, Proposition 2.1.5].
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Lemma 3.1. Suppose un → u in V0, wn ⇀ w in Lq′(Ω), and wn ∈ ∂G(un) for all n ∈ N. Then
w ∈ ∂G(u).

Definition 3.2. A function u ∈ V0 is called a solution of (1.7) if there is an η ∈ Lq′(Ω) such that

η(x) ∈ ∂G(x, u(x)) for a.a. x ∈ Ω,
∫
Ω
|∇u|p−2∇u∇ϕ dx +

∫
Ω

(
η − a(u+)p−1 + b

(
u−

)p−1
)
ϕ dx = 0, ∀ϕ ∈ V0.

(3.10)

Remark 3.3. Due to assumption (g3) we have g1(x, 0) ≤ 0 ≤ g2(x, 0) for almost all x ∈ Ω.
Hence, in view of (3.8), problem (1.7) always possesses the trivial solution.

Definition 3.4. A function u ∈ V := W1,p(Ω) is called a subsolution of (1.7) if u|∂Ω ≤ 0, and if
there is an η ∈ Lq′(Ω) such that

η(x) ∈ ∂G(
x, u(x)

)
for a.a. x ∈ Ω,

∫
Ω

∣∣∇u∣∣p−2∇u∇ϕ dx +
∫
Ω

(
η − a(u+)p−1 + b

(
u−

)p−1
)
ϕ dx ≤ 0, ∀ϕ ∈ V0 ∩ Lp(Ω)+.

(3.11)

Similarly, we define a supersolution as follows.

Definition 3.5. A function u ∈ V is called a supersolution of (1.7) if u|∂Ω ≥ 0, and if there is an
η ∈ Lq′(Ω) such that

η(x) ∈ ∂G(x, u(x)) for a.a. x ∈ Ω,
∫
Ω
|∇u|p−2∇u∇ϕ dx +

∫
Ω

(
η − a(u+)p−1 + b

(
u−

)p−1
)
ϕ dx ≥ 0, ∀ϕ ∈ V0 ∩ Lp(Ω)+.

(3.12)

Lemma 3.6. Let e be the uniquely defined solution of (2.6). If a > λ1, then there exists a constant
αa > 0 such that for any b ∈ R the function αae is a positive supersolution of problem (1.7).

Proof. Let a > λ1. By (g4) there is sa > 0 such that

g(x, s)
sp−1

> a for a.a. x ∈ Ω ∀s > sa, (3.13)

and by (g2) we get

∣∣∣g(x, s) − asp−1
∣∣∣ ≤ ∣∣g(x, s)∣∣ + asp−1 ≤ ca, for a.a. x ∈ Ω ∀s ∈ [0, sa], (3.14)

which implies

g(x, s) ≥ asp−1 − ca for a.a. x ∈ Ω ∀s ≥ 0, (3.15)
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and thus in view of the definition of g2 we obtain

g2(x, s) ≥ asp−1 − ca for a.a. x ∈ Ω ∀s ≥ 0, (3.16)

Let u = αae, where αa is a positive constant to be specified. Then we get

−Δpu − a(u+)p−1 + b
(
u−

)p−1 + g2(x, u) = α
p−1
a − aαp−1

a ep−1 + g2(x, αae) ≥ αp−1
a − ca, (3.17)

which shows that for αa := c
1/(p−1)
a the function αae is in fact a supersolution of (1.7) with

η(x) = g2(x, u(x)).

In a similar way the following lemma on the existence of a negative subsolution can
be proved.

Lemma 3.7. Let e be the uniquely defined solution of (2.6). If b > λ1, then there exists a constant
βb > 0 such that for any a ∈ R the function −βbe is a negative subsolution of problem (1.7).

In the next lemma we demonstrate that small constant multiples of ϕ1 may be sub- and
supersolutions of (1.7). More precisely we have the following result.

Lemma 3.8. Let ϕ1 be the normalized positive eigenfunction corresponding to the first eigenvalue λ1

of (−Δp, V0). If a > λ1, then for ε > 0 sufficiently small and any b ∈ R the function εϕ1 is a positive
subsolution of problem (1.7). If b > λ1, then for ε > 0 sufficiently small and any a ∈ R the function
−εϕ1 is a negative supersolution of problem (1.7).

Proof. By (g3) there is a constant δa > 0 such that

∣∣g(x, s)∣∣
|s|p−1

< a − λ1 for a.a. x ∈ Ω ∀0 < |s| ≤ δa, (3.18)

which implies

∣∣g(x, s)∣∣ ≤ (a − λ1)sp−1 for a.a. x ∈ Ω, ∀s : 0 ≤ s ≤ δa. (3.19)

Define u = εϕ1 with ε > 0. Applying (3.19) and the definition of g1 we get

−Δpu − a(u+)p−1 + b
(
u−

)p−1 + g1
(
x, u

)
= λ1

(
εϕ1

)p−1 − a(εϕ1
)p−1 + g1

(
x, εϕ1

)

≤ (λ1 − a)
(
εϕ1

)p−1 + (a − λ1)
(
εϕ1

)p−1 = 0
(3.20)

provided 0 ≤ εϕ1 ≤ δa. The latter can be satisfied by choosing ε sufficiently small such that
ε ∈ (0, δa/‖ϕ1‖∞), where ‖ϕ1‖∞ stands for the supremum-norm of ϕ1. This proves that εϕ1 is
a subsolution if ε ∈ (0, δa/‖ϕ1‖∞). In a similar way one can show that for ε sufficiently small
the function −εϕ1 is a negative supersolution.
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Applying a recently obtained comparison result that holds for even more general
elliptic inclusions (see [38, Theorem 4.1, Corollary 4.1] we immediately obtain the following
theorem.

Theorem 3.9. Let hypotheses (g1)-(g2) be satisfied and assume the existence of a subsolution u and
supersolution u of (1.7) such that u ≤ u. Then there exist extremal solutions of (1.7) within [u, u].

3.2. Extremal Constant-Sign Solutions and
Their Variational Characterization

Combining the results of Lemmas 3.6, 3.7, and 3.8 and Theorem 3.9 we immediately deduce
the existence of nontrivial positive solutions of problem (1.7) provided the parameter a
satisfies a > λ1 that and the existence of negative solutions of problem (1.7) provided that
the parameter b satisfies b > λ1. Our main goal of this section is to show that problem
(1.7) has a smallest positive solution u+ ∈ int(C1

0(Ω)+) and a greatest negative solution
u− ∈ − int(C1

0(Ω)+). More precisely the following result will be shown.

Theorem 3.10. Let hypotheses (g1)–(g4) be fulfilled. For every a > λ1 and b ∈ R there exists a
smallest positive solution u+ = u+(a) ∈ int(C1

0(Ω)+) of (1.7) within the order interval [0, αae] with
the constant αa > 0 as in Lemma 3.6. For every b > λ1 and a ∈ R there exists a greatest negative
solution u− = u−(b) ∈ − int(C1

0(Ω)+) of (1.7) within the order interval [−βb e, 0] with the constant
βb > 0 as in Lemma 3.7.

Proof. Let a > λ1. Lemmas 3.6 and 3.8 ensure that u = αae ∈ int(C1
0(Ω)+) is a supersolution

of problem (1.7) and u = εϕ1 ∈ int(C1
0(Ω)+) is a subsolution of problem (1.7) provided that

ε > 0 is sufficiently small. We may choose ε > 0 such that, in addition, εϕ1 ≤ αae. Thus by
Theorem 3.9 there exists a smallest and a greatest solution of (1.7) within the ordered interval
[εϕ1, αae]. Let us denote the smallest solution by uε. Moreover, the nonlinear regularity theory
for the p-Laplacian (cf., e.g., [27, Theorem 1.5.6]) and Vázquez’s strong maximum principle
[28] ensure that uε ∈ int(C1

0(Ω)+). Thus for every positive integer n sufficiently large there is
a smallest solution un ∈ int(C1

0(Ω)+) of problem (1.7) within [(1/n)ϕ1, αae]. In this way we
inductively construct a sequence (un) of smallest solutions which is monotone decreasing;
that is, we have

un ↓ u+ pointwise (3.21)

with some function u+ : Ω → R satisfying 0 ≤ u+ ≤ αae.

Claim 1. u+ is a solution of problem (1.7).

As un ∈ int(C1
0(Ω)+) and un are solutions of (1.7) we have

‖∇un‖pp =
∫
Ω

(
aun(x)p − ηn(x)

)
un(x)dx, (3.22)

where ηn ∈ Lq′(Ω) and ηn(x) ∈ ∂G(x, un(x)) for almost all x ∈ Ω. Since un ∈ [(1/n)ϕ1, αae],
the last equation together with (g2) implies that the sequence (un) is bounded in V0. Taking
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into account (3.21) we obtain that u+ ∈ V0 and

un ⇀ u+ in V0, un −→ u+ in Lp(Ω) and a.e. in Ω. (3.23)

The solution un of (1.7) satisfies

〈−Δpun, ϕ
〉
=

∫
Ω

(
au

p−1
n − ηn

)
ϕ dx, ∀ϕ ∈ V0, (3.24)

which yields with ϕ = un − u+ in (3.24) the equation

〈−Δpun, un − u+
〉
=

∫
Ω

(
au

p−1
n − ηn

)
(un − u+)dx. (3.25)

Using the convergence properties (3.23) of (un) and (g2) as well as the uniform boundedness
of the sequence (un), we get by applying Lebesgue’s dominated convergence theorem

lim
n→∞

〈−Δpun, un − u+
〉
= 0, (3.26)

which by the S+-property of −Δp on V0 implies

un −→ u+ in V0 as n −→ ∞. (3.27)

Since un are uniformly bounded, from (g2) we see that there exists a constant c > 0 such that

∣∣ηn(x)∣∣ ≤ c a.e. in Ω, ∀n ∈ N, (3.28)

and thus we get (for some subsequence if necessary) ηn ⇀ η+ in Lq′(Ω). By the strong
convergence (3.27), Lemma 3.1 can be applied to show that η+(x) ∈ ∂G(x, u+(x)) for almost
every x ∈ Ω. Passing to the limit in (3.24) (for some subsequence if necessary) proves Claim 1.

As u+ belongs, in particular, to L∞(Ω), Claim 1 and Assumption (g2) implies Δpu+ ∈
L∞(Ω). The nonlinear regularity theory (cf., e.g., Theorem 1.5.6 in [27]) ensures that u+ ∈
C1,γ(Ω) for some γ ∈ (0, 1), so u+ ∈ C1

0(Ω). In view of (g2) (g3) a constant c̃a > 0 can be found
such that

∣∣g(x, s)∣∣ ≤ c̃asp−1 for a.a. x ∈ Ω ∀0 ≤ s ≤ αa‖e‖∞, (3.29)

which yields in conjunction with Claim 1 that

Δpu+ ≤ c̃aup−1
+ . (3.30)

We now apply Vázquez’s strong maximum principle [28] where in its statement the function
β is chosen as β(s) = c̃asp−1 for all s > 0, which is possible because

∫
0+(1/(sβ(s))

1/p )ds = +∞.
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This result guarantees that if u+ /= 0, then u+ > 0 in Ω and ∂u+/∂n < 0 on ∂Ω which means
that u+ ∈ int(C1

0(Ω)+).

Claim 2. u+ ∈ int(C1
0(Ω)+).

Suppose that Claim 2 does not hold. Then by Vázquez’s strong maximum principle we must
have u+ = 0, and thus the sequence (un) satisfies

un(x) ↓ 0 ∀x ∈ Ω. (3.31)

Setting

ũn =
un

‖∇un‖p
∀n, (3.32)

we may suppose that along a relabelled subsequence one has

ũn ⇀ ũ in V0, ũn −→ ũ in Lp(Ω) and a.e in Ω (3.33)

with some ũ ∈ V0, and there is a function w ∈ Lp(Ω)+ such that

|ũn(x)| ≤ w(x) for almost all x ∈ Ω. (3.34)

Since un are positive solutions of (1.7), we get for ũn the following variational equation:

〈−Δpũn, ϕ
〉
= a

∫
Ω
ũ
p−1
n ϕ dx −

∫
Ω

ηn

u
p−1
n

ũ
p−1
n ϕ dx, ∀ϕ ∈ V0. (3.35)

With the special test function ϕ = ũn − ũ in (3.35) we obtain

〈−Δpũn, ũn − ũ
〉
= a

∫
Ω
ũ
p−1
n (ũn − ũ)dx −

∫
Ω

ηn

u
p−1
n

ũ
p−1
n (ũn − ũ)dx. (3.36)

From (3.29) and (3.34) we get the estimate

∣∣ηn(x)∣∣
un(x)p−1

ũ
p−1
n (x)|ũn(x) − ũ(x)| ≤ c̃aw(x)p−1(w(x) + |ũ(x)|) for a.a. x ∈ Ω. (3.37)
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As the right-hand side of the last inequality is in L1(Ω), we may apply Lebesgue’s dominated
convergence theorem, which in conjunction with (3.33) yields

lim
n→∞

∫
Ω

ηn

u
p−1
n

ũ
p−1
n (ũn − ũ)dx = 0. (3.38)

From (3.33) and (3.36) we conclude

lim
n→∞

〈−Δpũn, ũn − ũ
〉
= 0, (3.39)

which in view of the S+-property of −Δp on V0 results in

ũn −→ ũ in V0 as n −→ ∞, (3.40)

and therefore, in particular, ‖∇ũ‖p = 1. Taking into account (g3), (3.31), and (3.40), we may
pass to the limit in (3.35) which results in

〈−Δpũ, ϕ
〉
= a

∫
Ω
ũp−1ϕ dx, ∀ϕ ∈ V0. (3.41)

As ũ /= 0, relation (3.41) expresses the fact that ũ ≥ 0 is an eigenfunction of (−Δp, V0)
corresponding to the eigenvalue a. As a > λ1, this is impossible according to Anane [30],
because ũ must change sign. This contradiction proves that Claim 2 holds true. Note that
unlike in the proof of Theorem 2.4, here the contradiction is achieved by the sign-changing
property of eigenfunctions belonging to eigenvalues bigger than λ1.

Claim 3. u+ ∈ int(C1
0(Ω)+) is the smallest positive solution of (1.7) in [0, αae].

We already know that u+ ∈ [0, αae]. Assume that u ∈ V0 is any positive solution of (1.7)
belonging to [0, αae]. Since u ∈ L∞(Ω), then by (1.7) and (g3) we deduce Δpu ∈ L∞(Ω).
Using [27, Theorem 1.56] we derive u ∈ C1

0(Ω), and applying Vázquez’s strong maximum
principle [28] we infer u ∈ int(C1

0(Ω)+), which yields u ∈ [(1/n)ϕ1, αae] for n sufficiently
large. This in conjunction with the fact that un is the least solution of (1.7) in [(1/n)ϕ1, αae]
ensures un ≤ u if n is large enough. In view of (3.21), we obtain u+ ≤ u, which proves Claim 3.

The proof of the existence of the greatest negative solution u− = u−(b) ∈ − int(C1
0(Ω)+)

of (1.7) within the ordered interval [−βbe, 0] can be done in a similar way. This completes the
proof of the theorem.

Under hypotheses (g1)–(g4), Theorem 3.10 ensures the existence of extremal positive
and negative solutions of (1.7) for all a > λ1 and b > λ1 denoted by u+ = u+(a) ∈ int(C1

0(Ω)+)
and u− = u−(b) ∈ − int(C1

0(Ω)+), respectively. In what follows we are going to characterize
these extremal solutions as global (local) minimizers of certain locally Lipschitz functionals
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that are generated by truncation procedures. To this end let us introduce truncation functions
related to the extremal solutions u+ and u− as follows:

τ+(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if s < 0,

s if 0 ≤ s ≤ u+(x),
u+(x) if s > u+(x),

τ−(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u−(x) if s < u−(x),

s if u−(x) ≤ s ≤ 0,

0 if s > 0,

τ0(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u−(x) if s < u−(x),

s if u−(x) ≤ s ≤ u+(x),
u+(x) if s > u+(x).

(3.42)

The truncations τ+, τ−, τ0 : Ω × R → R are continuous, uniformly bounded, and Lipschitzian
with respect to s. The extremal positive and negative solutions u+ and u− of (1.7), respectively,
ensured by Theorem 3.10 satisfy

−Δpu+ = a(u+)p−1 − η+, −Δpu− = −b(u−)p−1 − η− in V ∗
0 , (3.43)

where η+, η− ∈ Lq′(Ω) and

η+(x) ∈ ∂G(x, u+(x)), η−(x) ∈ ∂G(x, u−(x)) (3.44)

for a.a. x ∈ Ω. By means of η+, η− we introduce the following truncations of the nonlinearity
g : Ω × R → R:

g+(x, s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if s < 0,

g(x, s) for 0 ≤ s ≤ u+(x),
η+(x) when s > u+(x),

g−(x, s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η−(x) if s < u−(x),

g(x, s) for u−(x) ≤ s ≤ 0,

0 when s > 0,

g0(x, s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η−(x) if s < u−(x),

g(x, s) for u−(x) ≤ s ≤ u+(x),
η+(x) when s > u+(x)

(3.45)
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and define functionals E+, E−, E0 by

E+(u) =
1
p

‖∇u‖pp −
∫
Ω

∫u(x)

0

(
aτ+(x, s)p−1 − g+(x, s)

)
ds dx,

E−(u) =
1
p

‖∇u‖pp +
∫
Ω

∫u(x)

0

(
b|τ−(x, s)|p−1 + g−(x, s)

)
ds dx,

E0(u) =
1
p

‖∇u‖pp −
∫
Ω

∫u(x)

0

(
aτ+(x, s)p−1 − b|τ−(x, s)|p−1 − g0(x, s)

)
ds dx.

(3.46)

Due to (g2) the functionals E+, E−, E0 : V0 → R are locally Lipschitz continuous. Moreover, in
view of the truncations involved these functionals are bounded below, coercive, and weakly
lower semicontinuous such that their global minimizers exist. The following lemma provides
a characterization of the critical points of these functionals.

Lemma 3.11. Let u+ and u− be the extremal constant-sign solutions of (1.7). Then the following
holds.

(i) A critical point v ∈ V0 of E+ is a (nonnegative) solution of (1.7) satisfying 0 ≤ v ≤ u+.
(ii) A critical point w ∈ V0 of E− is a (nonpositive) solution of (1.7) satisfying u− ≤ w ≤ 0.

(iii) A critical point z ∈ V0 of E0 is a solution of (1.7) satisfying u− ≤ z ≤ u+.

Proof. To prove (i) let v be a critical point of E+, that is, 0 ∈ ∂E+(v), which results in

v ∈ V0 : −Δpv = aτ+(x, v)p−1 −w in V ∗
0 (3.47)

for some w ∈ Lq′(Ω) and such that w(x) ∈ ∂G+(x, v(x)) almost everywhere in Ω, with

G+(x, ξ) :=
∫ ξ

0
g+(x, t)dt, (x, ξ) ∈ Ω × R. (3.48)

Let us show that v ≤ u+ holds. As u+ is a positive solution of (1.7), it satisfies the first equation
in (3.43), and by subtracting that equation from (3.47) and applying the special test function
ϕ = (v − u+)+ we get

∫
Ω

(
|∇v|p−2∇v − |∇u+|p−2∇u+

)
∇(v − u+)+dx

=
∫
Ω

[
a
(
τ+(x, v)p−1 − up−1

+

)
− (

w − η+
)]
(v − u+)+dx.

(3.49)

By the definition of the truncations introduced above we have τ+(x, v)
p−1(x)−up−1

+ (x) = 0 and
w(x) − η+(x) = 0 for a.a. x ∈ {v > u+}, and thus the right-hand side of (3.49) is zero which
leads to

∫
Ω

(
|∇v|p−2∇v − |∇u+|p−2∇u+

)
∇(v − u+)+dx = 0, (3.50)
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and hence it follows ∇(v − u+)+ = 0. Because (v − u+)+ ∈ V0, this implies (v − u+)+ = 0 which
proves v ≤ u+. To prove 0 ≤ v we test (3.47) with ϕ = v− = max{−v, 0} ∈ V0 and get

∫
Ω
|∇v|p−2∇v∇v−dx =

∫
Ω

(
aτ+(x, v)p−1 −w

)
v−dx = 0, (3.51)

which results in ‖∇v−‖pp = 0, and thus v− = 0, that is, 0 ≤ v. Thus the critical point v of
E+ which is a solution of the Dirichlet problem (3.47) satisfies 0 ≤ v ≤ u+, and therefore
τ+(x, v) = v. Because ∂G+(x, v(x)) ⊂ ∂G(x, v(x)), it follows w ∈ ∂G(x, v(x)), and therefore v
must be a solution of (1.7). This proves (i). In just the same way one can prove also (ii) and
(iii) which is omitted.

The following lemma provides a variational characterization of the extremal constant-
sign solutions u+ and u−.

Lemma 3.12. Let a > λ1 and b > λ1. Then the extremal positive solution u+ of (1.7) is the unique
global minimizer of the functional E+, and the extremal negative solution u− of (1.7) is the unique
global minimizer of the functional E−. Both u+ and u− are local minimizers of E0.

Proof. The functional E+ : V0 → R is bounded below, coercive, and weakly lower
semicontinuous. Thus there exists a global minimizer v+ ∈ V0 of E+, that is,

E+(v+) = inf
u∈V0

E+(u), (3.52)

As v+ is a critical point of E+, so by Lemma 3.11 it is a nonnegative solution of (1.7) satisfying
0 ≤ v+ ≤ u+. Since a − λ1 > 0, there is a νa > 0 such that a − λ1 − νa > 0. By (g3) we infer the
existence of a δ̃a > 0 such that

∣∣g(x, s)∣∣ ≤ (a − λ1 − νa) sp−1, ∀s : 0 < s ≤ δ̃a, (3.53)

and thus for ε > 0 sufficiently small such that

εϕ1 ≤ u+, ε
∥∥ϕ1

∥∥
L∞(Ω) ≤ δ̃a, (3.54)

we obtain (note ‖ϕ1‖p = 1)

E+(v+) ≤ E+
(
εϕ1

)
=
λ1

p
εp +

∫
Ω

∫ εϕ1(x)

0

(
−asp−1 + g(x, s)

)
ds dx

≤ λ1

p
εp +

∫
Ω

∫ εϕ1(x)

0
(−λ1 − νa) sp−1ds dx < 0.

(3.55)

Hence it follows that E+(v+) < 0, and thus v+ /= 0. Applying nonlinear regularity theory for
the p-Laplacian (cf., e.g., [27, Theorem 1.5.6]) and Vázquez’s strong maximum principle, we
see that v+ ∈ int(C1

0(Ω)+). As u+ is the smallest positive solution of (1.7) in [0, αae] and
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0 ≤ v+ ≤ u+, it follows v+ = u+, which shows that the global minimizer v+ must be unique
and equal to u+. By similar arguments one can show that the global minimizer v− of E− must
be unique and v− = u−. It remains to prove that u+ and u− are local minimizers of E0. Let us
show this last assertion for u+ only. By definition we have

E+(u) = E0(u) ∀u ∈ V0 with u ≥ 0. (3.56)

Since u+ is a global minimizer of E+ and u+ ∈ int(C1
0(Ω)+), it follows that u+ is a

local minimizer of E0 with respect to the C1 topology. Due to a result by Motreanu and
Papageorgiou in [39, Proposition 4], we conclude that u+ is also a local minimizer of E0 with
respect to the V0 topology. This completes the proof of the lemma.

Lemma 3.13. The functional E0 : V0 → R has a global minimizer v0 which is a nontrivial solution
of (1.7) satisfying u− ≤ v0 ≤ u+.

Proof. One easily verifies that E0 : V0 → R is coercive and weakly lower semicontinuous, and
thus a global minimizer v0 exists which is a critical point of E0. Apply Lemma 3.11(iii) and
note that, for example, E0(u+) = E+(u+) < 0, which shows that v0 /= 0.

3.3. Sign-Changing Solutions

Theorem 3.10 ensures the existence of a smallest positive solution u+ ∈ int(C1
0(Ω)+) in

[0, αa e] and a greatest negative solution u− ∈ − int(C1
0(Ω)+) of (1.7) in [−βbe, 0]. The idea to

show the existence of sign-changing solutions is to prove the existence of nontrivial solutions
u0 of (1.7) satisfying u− ≤ u0 ≤ u+ with u0 /=u− and u0 /=u+, which then must be sign-changing,
because u+ and u− are the extremal constant-sign solutions.

Theorem 3.14. Let hypotheses (g1)–(g4) and (H) be satisfied. Then problem (1.7) has a smallest
positive solution u+ ∈ int(C1

0(Ω)+) in [0, αa e], a greatest negative solution u− ∈ − int(C1
0(Ω)+) in

[−βbe, 0], and a nontrivial sign-changing solution u0 ∈ C1
0(Ω) with u− ≤ u0 ≤ u+.

Proof. Clearly the existence of the extremal positive and negative solution u+ and u− follows
from Theorem 3.10, because (H), in particular, implies that a > λ1 and b > λ1. As for the
existence of a sign-changing solution we first note that by Lemma 3.13 it follows that the
global minimizer v0 of E0 is a nontrivial solution of (1.7) satisfying u− ≤ v0 ≤ u+. Therefore,
if v0 /=u+ and v0 /=u−, then v0 = u0 must be a sign-changing solution as asserted, because u−
is the greatest negative and u+ is the smallest positive solution of (1.7). Thus, we still need to
prove the existence of sign-changing solutions in case that either v0 = u− or v0 = u+.

Let us consider the case v0 = u+ only, since the case v0 = u− can be treated quite
similarly. By Lemma 3.12, u− is a local minimizer of E0. Without loss of generality we may
even assume that u− is a strict local minimizer of E0, because on the contrary we would find
(infinitely many) critical points z of E0 that are sign-changing solutions thanks to u− ≤ z ≤
u+ and the extremality of the solutions u−, u+ obtained in Theorem 3.10 which proves the
assertion.
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Therefore, it remains to prove the existence of sign-changing solutions under the
assumptions that the global minimizer v0 of E0 is equal to u+, and u− is a strict local minimizer
of E0. This implies the existence of ρ ∈ (0, ‖u− − u+‖) such that

E0(u+) ≤ E0(u−) < inf
{
E0(u) : u ∈ ∂Bρ(u−)

}
, (3.57)

where ∂Bρ(u−) = {u ∈ V0 : ‖u − u−‖ = ρ}. The functional E0 satisfies the Palais-Smale
condition, because it is bounded below, locally Lipschitz continuous, and coercive; see, for
example, [40, Corollary 2.4]. Thus in view of (3.57) we may apply the nonsmooth version
of Ambrosetti-Rabinowitz’s Mountain-Pass Theorem (see, e.g., [41, Theorem 3.4]) which
ensures the existence of a critical point u0 ∈ V0 satisfying 0 ∈ ∂E0(u0) and

inf
{
E0(u) : u ∈ ∂Bρ(u−)

} ≤ E0(u0) = inf
γ∈Γ

max
t∈[−1,1]

E0
(
γ(t)

)
, (3.58)

where

Γ =
{
γ ∈ C([−1, 1], V0) : γ(−1) = u−, γ(1) = u+

}
. (3.59)

It is clear from (3.57) and (3.58) that u0 /=u− and u0 /=u+, and thus u0 is a sign-changing
solution provided u0 /= 0. To prove the latter we claim

E0(u0) < 0 (3.60)

for which it suffices to construct a path γ̂ ∈ Γ such that

E0
(
γ̂(t)

)
< 0 ∀t ∈ [−1, 1]. (3.61)

The construction of such a path γ̂ can be done by adopting an approach due to the authors in
[3] and applying the Second Deformation Lemma for locally Lipschitz functionals as it can
be found in [42, Theorem 2.10]. This completes the proof.

Remark 3.15. The multiplicity results and the existence of sign-changing solutions obtained in
this section generalize very recent results due to the authors obtained in [3, 4, 7]. Moreover,
if the function t �→ g(x, t) is continuous on R and a = b = λ, then ∂G(x, ξ) = {g(x, ξ)}, and
problem (1.7) reduces to

u ∈ V0 : −Δpu = λ|u|p−2u − g(x, u) in V ∗
0 . (3.62)

However, even in this setting the results obtained here are more general than obtained in [6,
Theorem 3.9], because we do not assume that g(x, t)t ≥ 0 for all t ∈ R.
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Remark 3.16. Theorem 3.14 improves also Corollary 3.2 of [8]. In fact, let p = 2, let u ∈ V0 be a
solution of (1.7) in case a = b = λ and g(x, t) ≡ g(t), (x, t) ∈ Ω × R with η ∈ Lq′(Ω) satisfying
η(x) ∈ ∂G(u(x)). By definition of Clarke’s gradient we have, for any ϕ ∈ V0,

η(x)ϕ(x) ≤ G0(u(x);ϕ(x)) a.e. in Ω. (3.63)

As u is a solution, the following holds: u ∈ V0 and (p = 2),

∫
Ω
∇u∇ϕ dx = λ

∫
Ω
uϕ dx −

∫
Ω
ηϕ dx, (3.64)

which yields

−
∫
Ω
∇u∇ϕ dx + λ

∫
Ω
uϕ dx =

∫
Ω
ηϕ dx ≤

∫
Ω
G0(u;ϕ

)
dx, ∀ϕ ∈ V0, (3.65)

That is, u turns out to be a solution of the hemivariational inequality studied in [8]. Since the
hypotheses of [8, Corollary 3.2] imply (g1)–(g4), the assertion follows.

Remark 3.17. Multiplicity results for a nonsmooth version of problem (1.4) in form of (1.2)
can be established under structure conditions for Clarke’s gradient ∂j similar to H(f ).

Multiplicity and sign-changing solutions results have been obtained recently in [43]
for the following nonlinear Neumann-type boundary value problem: find u ∈ V \ {0} and
parameters a, b ∈ R such that

−Δpu = f(x, u) − |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= a(u+)p−1 − b(u−)p−1 + g(x, u) on ∂Ω.

(3.66)

For problem (3.66) conditions on the parameters have been given in terms of the “Steklov-
Fučik” spectrum to ensure multiplicity results.
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[40] D. Motreanu, V. V. Motreanu, and D. Paşca, “A version of Zhong’s coercivity result for a general class
of nonsmooth functionals,” Abstract and Applied Analysis, vol. 7, no. 11, pp. 601–612, 2002.

[41] K. C. Chang, “Variational methods for nondifferentiable functionals and their applications to partial
differential equations,” Journal of Mathematical Analysis and Applications, vol. 80, no. 1, pp. 102–129,
1981.

[42] J.-N. Corvellec, “Morse theory for continuous functionals,” Journal of Mathematical Analysis and
Applications, vol. 196, no. 3, pp. 1050–1072, 1995.

[43] P. Winkert, Comparison principles and multiple solutions for nonlinear elliptic problems, Ph.D. thesis,
Institute of Mathematics, University of Halle, Halle, Germany, 2009.


