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1. Introduction

We are concernedwith the following even-order three-point boundary value problem on time
scales T:

(−1)nyΔ2n
(t) = f

(
yσ(t)

)
, t ∈ [a, b] ⊂ T,

αi+1y
Δ2i(

η
)
+ βi+1y

Δ2i+1
(a) = yΔ2i

(a), γi+1y
Δ2i(

η
)
= yΔ2i

(σ(b)), 0 ≤ i ≤ n − 1,
(1.1)

(−1)nyΔ2n
(t) = f

(
t, yσ(t)

)
, t ∈ [a, b] ⊂ T,

αi+1y
Δ2i(

η
)
+ βi+1y

Δ2i+1
(a) = yΔ2i

(a), γi+1y
Δ2i(

η
)
= yΔ2i

(σ(b)), 0 ≤ i ≤ n − 1,
(1.2)

n ≥ 1, a < η < σ(b); we assume that σ(b) is right dense so that σj(b) = σ(b) for j ≥ 1 and that
for each 1 ≤ i ≤ n, αi, βi, γi coefficients satisfy the following condition:

(H) 0 ≤ αi <
σ(b) − γiη +

(
γi − 1

)(
a − βi

)

σ(b) − η
, βi ≥ 0, 0 < γi <

σ(b) − a + βi
η − a + βi

. (1.3)
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Throughout this paper, we let T be any time scale and let [a, b] be a subset of T such
that [a, b] = {t ∈ T : a ≤ t ≤ b}. Some preliminary definitions and theorems on time scales can
be found in [1–5] which are excellent references for the calculus of time scales.

In recent years, there is much attention paid to the existence of positive solution
for second-order multipoint and higher-order two-point boundary value problems on time
scales; for details, see [6–16] and references therein. However, to the best of our knowledge,
there are not many results concerning multipoint boundary value problems of higher-order
on time scales; we refer the readers to [17–20] for some recent results.

We would like to mention some results of Anderson and Avery [17], Anderson and
Karaca [18], Han and Liu [19], and Yaslan [20]. In [17], Anderson and Avery studied the
following even-order three-point BVP:

(−1)nx(Δ∇)n(t) = λh(t)f(x(t)), t ∈ [a, c] ⊂ T,

x(Δ∇)i(a) = 0, x(Δ∇)i(c) = βx(Δ∇)i(b), 0 ≤ i ≤ n − 1.
(1.4)

They have studied the existence of at least one positive solution to the BVP (1.4) using the
functional-type cone expansion-compression fixed point theorem.

In [18], Anderson and Karaca were concerned with the dynamic three-point boundary
value problem (1.2) and the eigenvalue problem (−1)nyΔ2n

(t) = λf(t, yσ(t)) with the same
boundary conditions where λ is a positive parameter. Existence results of bounded solutions
of a noneigenvalue problem were first established as a result of the Schauder fixed point
theorem. Second, the monotone method was discussed to ensure the existence of solutions
of the BVP (1.2). Third, they established criteria for the existence of at least one positive
solution of the eigenvalue problem by using the Krasnosel’skii fixed point theorem. Later,
they investigated the existence of at least two positive solutions of the BVP (1.2) by using the
Avery-Henderson fixed point theorem.

In [19], Han and Liu studied the existence and uniqueness of nontrivial solution for
the following third-order p-Laplacian m-point eigenvalue problems on time scales:

(
φp

(
uΔ∇

))∇
+ λf

(
t, u(t), uΔ(t)

)
= 0, t ∈ (0, T),

αu(0) − βuΔ(0) = 0, u(T) =
m−2∑

i=1

aiu(ξi), uΔ∇(0) = 0,
(1.5)

where φp(s) is p-Laplacian operator, that is, φp(s) = |s|p−2s, p > 1, λ > 0 is a parameter, and
0 < ξ1 < · · · < ξm−2 < ρ(T). They obtained several sufficient conditions of the existence and
uniqueness of nontrivial solution of the BVP (1.5)when λ is in some interval. Their approach
was based on the Leray-Schauder nonlinear alternative.

Very recently, Yaslan [20] investigated the existence of solutions to the nonlinear even-
order three-point boundary value problem on time scales T:

(−1)nyΔ2n
(t) = f

(
t, y(σ(t))

)
, t ∈ [t1, t3] ⊂ T,

yΔ2i+1
(t1) = 0, αyΔ2i

(σ(t3)) + βyΔ2i+1
(σ(t3)) = yΔ2i+1

(t2)
(1.6)



Abstract and Applied Analysis 3

for 0 ≤ i ≤ n − 1, where α > 0 and β > 1 are given constants. On the one hand, the author
established criteria for the existence of at least one solution and of at least one positive
solution for the BVP (1.6) by using the Schauder fixed point theorem and Krasnosel’skii
fixed point theorem, respectively. On the other hand, the author investigated the existence of
multiple positive solutions to the BVP (1.6) by using Avery-Henderson fixed point theorem
and Leggett-Williams fixed point theorem.

In this paper, motivated by [21], firstly, a new existence result for (1.1) is obtained by
using a fixed point theorem, which is due to KrasnoseÍskı̆ and Zabreı̆ko [22]. Particularly,
f may not be sublinear. Secondly, some simple criteria for the existence of a nonnegative
solution of the BVP (1.2) are established by using Leray-Schauder nonlinear alternative.
Thirdly, we investigate the existence of a nontrivial solution of the BVP (1.2); our approach
is also based on the application of Leray-Schauder nonlinear alternative. Particularly, we do
not require any monotonicity and nonnegativity on f . Our conditions imposed on f are all
very easy to verify; our method is motivated by [1, 21, 23, 24].

2. Preliminaries

To state and prove the main results of this paper, we need the following lemmas.

Lemma 2.1 (see [18]). For 1 ≤ i ≤ n, let Gi(t, s) be Green’s function for the following boundary
value problem:

−yΔ2
(t) = 0, t ∈ [a, b] ⊂ T,

αiy
(
η
)
+ βiy

Δ(a) = y(a), γiy
(
η
)
= y(σ(b)),

(2.1)

and let di = (γi − 1)(a − βi) + (1 − αi)σ(b) + η(αi − γi). Then, for 1 ≤ i ≤ n,

Gi(t, s) =

⎧
⎨

⎩

Gi1(t, s), a ≤ s ≤ η,

Gi2(t, s), η < s ≤ b,
(2.2)

where

Gi1(t, s) =
1
di

⎧
⎨

⎩

[
γi
(
t − η

)
+ σ(b) − t

](
σ(s) + βi − a

)
, σ(s) ≤ t,

[
γi
(
σ(s) − η

)
+ σ(b) − σ(s)

](
t + βi − a

)
+ αi

(
η − σ(b)

)
(t − σ(s)), t ≤ s,

Gi2(t, s) =
1
di

⎧
⎨

⎩

[
σ(s)(1 − αi) + αiη + βi − a

]
(σ(b) − t) + γi

(
η − a + βi

)
(t − σ(s)), σ(s) ≤ t,

[
t(1 − αi) + αiη + βi − a

]
(σ(b) − σ(s)), t ≤ s.

(2.3)

Lemma 2.2 (see [18]). Under condition (H), for 1 ≤ i ≤ n, Green’s function Gi(t, s) in (2.2)
possesses the following property:

Gi(t, s) > 0, (t, s) ∈ (a, σ(b)) × (a, b). (2.4)
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Lemma 2.3 (see [18]). Assume that (H) holds. Then, for 1 ≤ i ≤ n, Green’s function Gi(t, s) in
(2.2) satisfies

Gi(t, s) ≤ max
{
Gi(a, s), Gi(σ(s), s),

1
di

(
η−a+βi

)
(σ(b)−σ(s))

}
,

t, s ∈ [a, σ(b)]×[a, b], 0<γi≤1,

Gi(t, s) ≤ max{Gi(σ(b), s), Gi(σ(s), s)}, t, s ∈ [a, σ(b)] × [a, b], 1 < γi <
σ(b) − a + βi
η − a + βi

.

(2.5)

Lemma 2.4 (see [18]). Assume that condition (H) is satisfied. For G as in (2.2), take H1(t, s) :=
G1(t, s) and recursively define

Hj(t, s) =
∫σ(b)

a

Hj−1(t, r)Gj(r, s)Δr (2.6)

for 2 ≤ j ≤ n. Then Hn(t, s) is Green’s function for the homogeneous problem:

(−1)nyΔ2n
(t) = 0, t ∈ [a, b] ⊂ T,

αi+1y
Δ2i(

η
)
+ βi+1y

Δ2i+1
(a) = yΔ2i

(a), γi+1y
Δ2i(

η
)
= yΔ2i

(σ(b)), 0 ≤ i ≤ n − 1.
(2.7)

Lemma 2.5 (see [18]). Assume that (H) holds. If one definesK =
∏n−1

j=1Kj , then the Green function
Hn(t, s) in Lemma 2.4 satisfies the following inequalities:

0 ≤ Hn(t, s) ≤ K‖Gn(·, s)‖, (t, s) ∈ [a, σ(b)] × [a, b], (2.8)

where

Kj =
∫σ(b)

a

∥∥Gj(·, s)
∥∥Δs > 0, 1 ≤ j ≤ n. (2.9)

Lemma 2.6 (see [22]). LetX be a Banach space and let F : X → X be completely continuous. If
there exists a bounded and linear operator A : X → X such that 1 is not an eigenvalue of A and

lim
‖u‖→∞

‖F(u) −A(u)‖
‖u‖ = 0, (2.10)

then F has a fixed point in X.

Lemma 2.7 (see [25]). Let X be a real Banach space, let Ω be a bounded open subset of X, 0 ∈ Ω,
and let F : Ω → X be a completely continuous operator. Then either there exist x ∈ ∂Ω, λ > 1 such
that F(x) = λx or there exists a fixed point x∗ ∈ Ω.



Abstract and Applied Analysis 5

Suppose that B denotes the Banach space C[a, σ(b)] with the norm ‖y‖ =
supt∈[a,σ(b)]|y(t)|.

3. Existence Results

In this section, we apply Lemmas 2.6 and 2.7 to establish some existence criteria for (1.1) and
(1.2).

Theorem 3.1. Suppose that condition (H) holds, and f : R → R is continuous with
lims→∞(f(s)/s) = m. If

|m| < d =

⎡

⎣
n∏

j=1

Kj

⎤

⎦

−1

, (3.1)

then the BVP (1.1) has a solution y∗, and y∗ /= 0 when f(0)/= 0.

Proof. Define the integral operator F : B → B by

Fy(t) =
∫σ(b)

a

Hn(t, s)f
(
yσ(s)

)
Δs (3.2)

for t ∈ [a, σ(b)]. Obviously, the solutions of the BVP (1.1) are the fixed points of operator F.
From the proof of Theorem 3.1 of [18], we can know that F : B → B is completely continuous.

In order to apply Lemma 2.6, we consider the following BVP:

(−1)nyΔ2n
(t) = myσ(t), t ∈ [a, b] ⊂ T,

αi+1y
Δ2i(

η
)
+ βi+1y

Δ2i+1
(a) = yΔ2i

(a), γi+1y
Δ2i(

η
)
= yΔ2i

(σ(b)), 0 ≤ i ≤ n − 1.
(3.3)

Define the integral operator A : B → B by

Ay(t) = m

∫σ(b)

a

Hn(t, s)yσ(s)Δs (3.4)

for t ∈ [a, σ(b)]. Then it is easy to check that A : B → B is completely continuous (so
bounded) linear operator and that solutions of the BVP (3.3) are the fixed points of operator
A and conversely.

First, we claim that 1 is not an eigenvalue of A.
In fact, ifm = 0, then it is obvious that the BVP (3.3) has no nontrivial solution.
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Ifm/= 0 and the BVP (3.3) has a nontrivial solution y, then ‖y‖ > 0, and so

∥
∥y

∥
∥ =

∥
∥Ay

∥
∥

= sup
t∈[a,σ(b)]

∣
∣
∣
∣
∣
m

∫σ(b)

a

Hn(t, s)yσ(s)Δs

∣
∣
∣
∣
∣

= |m| sup
t∈[a,σ(b)]

∣
∣
∣
∣
∣

∫σ(b)

a

Hn(t, s)yσ(s)Δs

∣
∣
∣
∣
∣

≤ |m|
∫σ(b)

a

K‖Gn(·, s)‖
∣
∣yσ(s)

∣
∣Δs

≤ |m|
⎛

⎝
n∏

j=1

Kj

⎞

⎠
∥
∥y

∥
∥

< d · 1
d

∥∥y
∥∥ =

∥∥y
∥∥,

(3.5)

which is impossible. So, 1 is not an eigenvalue of A.
Next, we will show that

lim
‖y‖→∞

∥∥F
(
y
) −A

(
y
)∥∥

∥∥y
∥∥ = 0. (3.6)

In fact, for any ε > 0, since lims→∞(f(s)/s) = m, there must exist a number Y1 > 0 such that

∣∣f(s) −ms
∣∣ < ε|s|, |s| > Y1. (3.7)

Let

M = max
|s|≤Y1

∣∣f(s)
∣∣. (3.8)

Then for any y ∈ B and ‖y‖ > Y (Y > 0), we distinguish the following two cases.

Case 1 (Y < Y1). In this case, choose Y such that

M + |m|Y1

Y
< ε. (3.9)

Thus, when s ∈ [a, σ(b)] and |yσ(s)| ≤ Y1, we have

∣∣f
(
yσ(s)

) −myσ(s)
∣∣ ≤ ∣∣f

(
yσ(s)

)∣∣ + |m|∣∣yσ(s)
∣∣ ≤ M + |m|Y1 < εY < ε

∥∥y
∥∥, (3.10)
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which together with (3.7) implies that

∣
∣f
(
yσ(s)

) −myσ(s)
∣
∣ < ε

∥
∥y

∥
∥,

∥
∥y

∥
∥ > Y. (3.11)

Case 2 (Y ≥ Y1). In this case, when s ∈ [a, σ(b)], from (3.7), we see that

∣
∣f
(
yσ(s)

) −myσ(s)
∣
∣ < ε

∣
∣yσ(s)

∣
∣ ≤ ε

∥
∥y

∥
∥. (3.12)

Thus, we can deduce from (3.11) and (3.12) that for any y ∈ B and ‖y‖ > Y

∣
∣f
(
yσ(s)

) −myσ(s)
∣
∣ < ε

∥
∥y

∥
∥, ∀s ∈ [a, σ(b)]. (3.13)

From (3.13), we have

∥∥F
(
y
) −A

(
y
)∥∥ = sup

t∈[a,σ(b)]

∣∣∣∣∣

∫σ(b)

a

Hn(t, s)
[
f
(
yσ(s)

) −myσ(s)
]
Δs

∣∣∣∣∣

≤ sup
t∈[a,σ(b)]

∫σ(b)

a

Hn(t, s)
∣∣f
(
yσ(s)

) −myσ(s)
∣∣Δs

≤ ε
∥∥y

∥∥

⎛

⎝
n∏

j=1

Kj

⎞

⎠

=
ε

d

∥∥y
∥∥.

(3.14)

that is to say,

lim
‖y‖→∞

∥
∥F

(
y
) −A

(
y
)∥∥

∥∥y
∥∥ = 0. (3.15)

Then, it follows from Lemma 2.6 that F has a fixed point y∗ ∈ B. In other words, y∗ is a
solution of the BVP (1.1). Moreover, we can assert that y∗ is nontrivial when f(0)/= 0. In fact,
if f(0)/= 0, then

(−1)n(0)Δ2n
= 0/= f(0), (3.16)

that is, 0 is not a solution of the BVP (1.1).

Corollary 3.2. Assume that condition (H) holds, and f : [0,+∞) → [0,+∞) is continuous with
lims→+∞(f(s)/s) = 0. Then the BVP (1.1) has a nonnegative solution.
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Proof. Let

f∗(s) =

⎧
⎨

⎩

f(s), s ≥ 0,

f(−s), s < 0,
(3.17)

then f∗ : R → [0,+∞) is continuous, and from lims→+∞(f(s)/s) = 0, we know that

lim
s→+∞

f∗(s)
s

= 0. (3.18)

Consider the following BVP:

(−1)nyΔ2n
(t) = f∗(yσ(t)

)
, t ∈ [a, b] ⊂ T,

αi+1y
Δ2i(

η
)
+ βi+1y

Δ2i+1
(a) = yΔ2i

(a), γi+1y
Δ2i(

η
)
= yΔ2i

(σ(b)), 0 ≤ i ≤ n − 1.
(3.19)

It follows from Theorem 3.1 that the BVP (3.19) has a solution y∗, that is,

(−1)n(y∗)Δ2n

(t) = f∗((y∗)σ(t)
)
, t ∈ [a, b] ⊂ T,

αi+1
(
y∗)Δ2i(

η
)
+ βi+1

(
y∗)Δ2i+1

(a) =
(
y∗)Δ2i

(a), γi+1
(
y∗)Δ2i(

η
)
=
(
y∗)Δ2i

(σ(b)), 0 ≤ i ≤ n − 1.
(3.20)

SinceHn(t, s) and f∗ are nonnegative, we can get that y∗ ≥ 0 on [a, σ(b)]. Consequently, from
the definition of f∗, we have

(−1)n(y∗)Δ2n

(t) = f
((
y∗)σ(t)

)
, t ∈ [a, b] ⊂ T. (3.21)

It follows from the boundary conditions of (3.20) and (3.21) that y∗ is a nonnegative solution
of the BVP (1.1).

Remark 3.3. In Corollary 3.2, we only need that lims→+∞(f(s)/s) = 0. Thus, f may not be
sublinear.

Theorem 3.4. Assume that condition (H) holds, and

f : [a, σ(b)] × [0,+∞) −→ [0,+∞) is continuous with

f(t, u) > 0 for (t, u) ∈ [a, σ(b)] × (0,+∞),
(3.22)

f(t, u) ≤ ϕ(t)g(u) on [a, σ(b)] × [0,+∞) with g ≥ 0 continuous,

and nondecreasing on [0,+∞) and ϕ : [a, σ(b)] → (0,∞) continuous
(3.23)

∃r > 0 with r > g(‖r‖)
∫σ(b)

a

ϕ(s)K‖Gn(·, s)‖Δs, (3.24)
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where K and Gn(·, s) are defined in Lemmas 2.5 and 2.1, respectively. Then the BVP (1.2) has a
nonnegative solution y1 with ‖y1‖ < r.

Proof. We consider the following boundary value problem:

(−1)nyΔ2n
(t) = λf∗(t, yσ(t)

)
, t ∈ [a, b] ⊂ T,

αi+1y
Δ2i(

η
)
+ βi+1y

Δ2i+1
(a) = yΔ2i

(a), γi+1y
Δ2i(

η
)
= yΔ2i

(σ(b)), 0 ≤ i ≤ n − 1.
(3.25)

where 0 < λ < 1, and

f∗(t, u) =

⎧
⎨

⎩

f(t, u), u ≥ 0,

f(t, 0), u < 0.
(3.26)

Let y be any solution of (3.25). Then

y(t) = λ

∫σ(b)

a

Hn(t, s)f∗(s, yσ(s)
)
Δs (3.27)

for t ∈ [a, σ(b)]. We note that y(t) ≥ 0 for t ∈ [a, σ(b)]. It follows from condition (3.23) in
Theorem 3.4 that for t ∈ [a, σ(b)]

y(t) ≤
∫σ(b)

a

Hn(t, s)ϕ(s)g
(∣∣yσ(s)

∣∣)Δs

≤ g
(∥∥y

∥∥)
∫σ(b)

a

ϕ(s)K‖Gn(·, s)‖Δs.

(3.28)

Consequently,

∥∥y
∥∥ ≤ g

(∥∥y
∥∥)

∫σ(b)

a

ϕ(s)K‖Gn(·, s)‖Δs, (3.29)

which together with the condition (3.24) in Theorem 3.4 implies that ‖y‖/= r.
Let N : B → B be given by

Ny(t) =
∫σ(b)

a

Hn(t, s)f∗(s, yσ(s)
)
Δs. (3.30)
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It is easy to show that N : B → B is completely continuous.
Let

U = {u ∈ B : ‖u‖ < r}. (3.31)

Since ‖y‖/= r, any solution y ∈ ∂U of y = λNy with 0 < λ < 1 cannot occur. Lemma 2.7
guarantees that N has a fixed point y1 in U. In other words, the BVP (1.2) has a solution
y1 ∈ B with ‖y1‖ < r.

Theorem 3.5. Assume that condition (H) is satisfied. Suppose that f(t, 0)/≡ 0, t ∈ [a, σ(b)], f :
[a, σ(b)] × R → R is continuous, and there exist nonnegative integrable functions k, h such that

∣∣f
(
t, y

)∣∣ ≤ k(t)
∣∣y
∣∣ + h(t),

(
t, y

) ∈ [a, σ(b)] × R,

K

∫σ(b)

a

‖Gn(·, s)‖k(s)Δs < 1.
(3.32)

Then, the BVP (1.2) has at least one nontrivial solution y∗ ∈ B.

Proof. Let

A = K

∫σ(b)

a

‖Gn(·, s)‖h(s)Δs,

B = K

∫σ(b)

a

‖Gn(·, s)‖k(s)Δs.

(3.33)

By hypothesis B < 1. Since f(t, 0)/≡ 0, there exists [m,n] ⊂ [a, σ(b)] such that
mint∈[m,n]|f(t, 0)| > 0. On the other hand, from the condition h(t) ≥ |f(t, 0)|, a.e. t ∈ [a, σ(b)],
we know that A > 0.

Let d = A(1 − B)−1, Ωd = {y ∈ B : ‖y‖ < d}. For t ∈ [a, σ(b)], the operator T is defined
by

Ty(t) =
∫σ(b)

a

Hn(t, s)f
(
s, yσ(s)

)
Δs, (3.34)

from the proof of Theorems 3.1 and 3.4, we have known that T : B → B is a completely
continuous operator, and the BVP (1.2) has at least one nontrivial solution y∗ ∈ B if and only
if y∗ is a fixed point of T in B.



Abstract and Applied Analysis 11

Suppose y ∈ ∂Ωd, λ > 1 such that Ty = λy, then

λd = λ
∥
∥y

∥
∥ =

∥
∥Ty

∥
∥ = sup

t∈[a,σ(b)]

∣
∣Ty(t)

∣
∣

= sup
t∈[a,σ(b)]

∣
∣
∣
∣
∣

∫σ(b)

a

Hn(t, s)f
(
s, yσ(s)

)
Δs

∣
∣
∣
∣
∣

≤ K

∫σ(b)

a

‖Gn(·, s)‖
∣
∣f
(
s, yσ(s)

)∣∣Δs

≤ K

∫σ(b)

a

‖Gn(·, s)‖
[
k(s)

∣
∣yσ(s)

∣
∣ + h(s)

]
Δs

= K

∫σ(b)

a

‖Gn(·, s)‖k(s)
∣∣yσ(s)

∣∣Δs +K

∫σ(b)

a

‖Gn(·, s)‖h(s)Δs

≤ B
∥∥y

∥∥ +A = Bd +A.

(3.35)

Therefore

(λ − 1)d ≤ A − (1 − B)d = A −A = 0, (3.36)

which contradicts λ > 1. By Lemma 2.7, T has a fixed point y∗ ∈ Ωd. Noting f(t, 0)/≡ 0, the
BVP (1.2) has at least one nontrivial solution y∗ ∈ B. This completes the proof.

Corollary 3.6. Assume that condition (H) is satisfied. Suppose that f(t, 0)/≡ 0, t ∈ [a, σ(b)], f :
[a, σ(b)] × R → R is continuous, and there exist nonnegative integrable functions k, h such that

∣∣f
(
t, y

)∣∣ ≤ k(t)
∣∣y
∣∣ + h(t),

(
t, y

) ∈ [a, σ(b)] × R,

k(t) < e =

⎡

⎣
n∏

j=1

Kj

⎤

⎦

−1

, t ∈ [a, σ(b)].
(3.37)

Then, the BVP (1.2) has at least one nontrivial solution y∗ ∈ B.

Proof. In this case, we have

K

∫σ(b)

a

‖Gn(·, s)‖k(s)Δs < Ke

∫σ(b)

a

‖Gn(·, s)‖Δs = K

⎡

⎣
n∏

j=1

Kj

⎤

⎦

−1∫σ(b)

a

‖Gn(·, s)‖Δs = 1. (3.38)

By Theorem 3.5, this completes the proof.
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Corollary 3.7. Assume that condition (H) is satisfied. Suppose that f(t, 0)/≡ 0, t ∈ [a, σ(b)], f :
[a, σ(b)] × R → R is continuous, and there exist nonnegative integrable functions k, h such that

∣
∣f
(
t, y

)∣∣ ≤ k(t)
∣
∣y
∣
∣ + h(t),

(
t, y

) ∈ [a, σ(b)] × R,

lim
|l|→∞

max
t∈[a,σ(b)]

∣
∣
∣
∣
f(t, l)

l

∣
∣
∣
∣ <

[
n∏

j=1
Kj

]−1
.

(3.39)

Then, the BVP (1.2) has at least one nontrivial solution y∗ ∈ B.

Proof. Let

ε1 =
1
2

⎡

⎢
⎣

⎛

⎝
n∏

j=1

Kj

⎞

⎠

−1

− lim
|l|→∞

max
t∈[a,σ(b)]

∣
∣
∣∣
f(t, l)

l

∣
∣
∣∣

⎤

⎥
⎦, (3.40)

then, there exists c > 0 such that

∣∣f(t, l)
∣∣ ≤

⎡

⎢
⎣

⎛

⎝
n∏

j=1

Kj

⎞

⎠

−1

− ε1

⎤

⎥
⎦|l|, (t, l) ∈ [a, σ(b)] × R \ (−c, c). (3.41)

Set

M̃ = max
{
f(t, l) | (t, l) ∈ [a, σ(b)] × [−c, c]}, (3.42)

and it follows from (3.41) and (3.42) that

∣∣f(t, l)
∣∣ ≤

⎡

⎢
⎣

⎛

⎝
n∏

j=1

Kj

⎞

⎠

−1

− ε1

⎤

⎥
⎦|l| + M̃, (t, l) ∈ [a, σ(b)] × R. (3.43)

By Corollary 3.6, we can deduce that Corollary 3.7 is true.

4. Two Examples

In the section, we present two examples to explain our results.

Example 4.1. Let T = R[0, 1) ∪ {1, 2, 3, 4, 5} ∪ [6, 7], and consider the following BVP:

−yΔ2
(t) = f

(
yσ(t)

)
, t ∈ [0, 5] ⊂ T,

3
5
y

(
2
3

)
+
2
3
yΔ(0) = y(0),

1
6
y

(
2
3

)
= y(σ(5)),

(4.1)
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where f(y) = (17737/89902)y + 1/101. It is easy to check that

0 <
3
5
= α1 <

σ(b) − γ1η +
(
γ1 − 1

)(
a − β1

)

σ(b) − η
=

6 − (1/6) · (2/3) + (1/6 − 1)(0 − 2/3)
6 − 2/3

=
29
24

,

β1 =
2
3
> 0, 0 <

1
6
= γ1 <

σ(b) − a + β1
η − a + β1

=
6 − 1 + (2/3)
2/3 − 0 + 2/3

= 5,

(4.2)

and therefore, the condition (H) is satisfied. By computation, we can get that

d1 =
(
γ1 − 1

)(
a − β1

)
+ (1 − α1)σ(b) + η

(
α1 − γ1

)
=

146
45

,

G1(t, s) =

⎧
⎪⎨

⎪⎩

G11(t, s), 0 ≤ s ≤ 2
3
,

G12(t, s),
2
3
< s ≤ 5,

(4.3)

where

G11(t, s) =
45
146

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
1
6

(
t − 2

3

)
+ σ(5) − t

](
σ(s) +

2
3

)
, σ(s) ≤ t,

[
1
6

(
σ(s) − 2

3

)
+ 6 − σ(s)

](
t +

2
3

)
+
3
5

(
2
3
− 6

)
(t − σ(s)), t ≤ s,

G12(t, s) =
45
146

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
σ(s)

(
1 − 3

5

)
+
3
5
× 2
3
+
2
3

]
(6 − t) +

1
6

(
2
3
+
2
3

)
(t − σ(s)), σ(s) ≤ t,

[
t

(
1 − 3

5

)
+
3
5
× 2
3
+
2
3

]
(6 − σ(s)), t ≤ s.

(4.4)

From the proof of Lemma 2.5 in [18], we can get that

‖G1(·, s)‖ = max
{
G1(0, s), G1(σ(s), s),

1
d1

(
η − a + β1

)
(σ(b) − σ(s))

}
= G1(σ(s), s), (4.5)

and for γ1 = 1/6 ∈ (0, 1] and α1 = 3/5 ∈ (0, 1), we have

K1 =
45
146

∫2/3

0

[
1
6

(
s − 2

3

)
+6−s

](
s+

2
3
−0

)
ds+

45
146

∫1

2/3

[
s

(
1− 3

5

)
+
3
5
× 2
3
+
2
3
−0

]
(6−s)ds

+
5∑

s=1

45
146

[
(s + 1)

(
1 − 3

5

)
+
3
5
× 2
3
+
2
3

]
[6 − (s + 1)]

=
89902
17739

.

(4.6)
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Thus, we can obtain that

lim
y→∞

f
(
y
)

y
= lim

y→∞
(17737/89902)y + 1/101

y
=

17737
89902

< d = K−1
1 =

17739
89902

. (4.7)

By Theorem 3.1, it is easy to get that the BVP (4.1) has a solution y∗.

Example 4.2. Let us introduce an example to illustrate the usage of Theorem 3.5. Let n = 2,T =
{(2/3)n : n ∈ N0} ∪ {0} ∪ [1, 2], a = 8/27, η = 4/9, b = 2/3, α1 = 1/2, β1 = 1/9, α2 =
1/10, β2 = 7/27, γ1 = 3/2, and γ2 = 2. Then condition (H) is satisfied. Green’s function
G1(t, s) in Lemma 2.1 is

G1(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G11(t, s),
8
27

≤ s ≤ 4
9
,

G12(t, s),
4
9
< s ≤ 2

3
,

(4.8)

where

G11(t, s) =
27
4

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
3
2

(
t − 4

9

)
+ 1 − t

][
3
2
s +

1
9
− 8
27

]
,

3
2
s ≤ t,

[
3
2

(
3
2
s − 4

9

)
+ 1 − 3

2
s

](
t +

1
9
− 8
27

)
+
1
2

(
4
9
− 1

)(
t − 3

2
s

)
, t ≤ s,

G12(t, s) =
27
4

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
3
2
s

(
1− 1

2

)
+
1
2
× 4
9
+
1
9
− 8
27

]
(1−t)+ 3

2

(
4
9
− 8
27

+
1
9

)(
t− 3

2
s

)
,

3
2
s≤ t,

[
t

(
1 − 1

2

)
+
1
2
× 4
9
+
1
9
− 8
27

](
1 − 3

2
s

)
, t ≤ s.

(4.9)

Green’s function G2(t, s) in Lemma 2.1 is

G2(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G21(t, s),
8
27

≤ s ≤ 4
9
,

G22(t, s),
4
9
< s ≤ 2

3
,

(4.10)
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where

G21(t, s) =
54
5

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
2
(
t − 4

9

)
+ 1 − t

][
3
2
s +

7
27

− 8
27

]
,

3
2
s ≤ t,

[
2
(
3
2
s − 4

9

)
+ 1 − 3

2
s

](
t +

7
27

− 8
27

)
+

1
10

(
4
9
− 1

)(
t − 3

2
s

)
, t ≤ s,

G22(t, s) =
54
4

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
3
2
s

(
1 − 1

10

)
+

1
10

× 4
9
+

7
27

− 8
27

]
(1−t)+2

(
4
9
− 8
27

+
7
27

)(
t− 3

2
s

)
,

3
2
s≤ t,

[
t

(
1 − 1

10

)
+

1
10

× 4
9
+

7
27

− 8
27

](
1 − 3

2
s

)
, t ≤ s.

(4.11)

Since s ∈ [a, (γ1(η − a + β1) − α1η − β1 + a)/(1 − α1)) = [8/27, 19/27), by using the cases in the
proof of Lemma 2.5 of [18], we can know that ‖G1(·, s)‖ = G1(σ(2/3), s). Therefore, we have
K1 = 133/324.

Set f(t, y) = t|y| sin y + t3 − 2 sin t, k(t) = t, and h(t) = t3 + 2 sin t. Then it is easy to
prove that

f
(
t, y

) ≤ k(t)
∣∣y
∣∣ + h(t),

(
t, y

) ∈ [a, σ(b)] × R. (4.12)

On the other hand, since s ∈ [a, (γ2(η − a + β2) − α2η − β2 + a)/(1 − α2)) = [8/27, 218/243),
we can know that ‖G2(·, s)‖ = G2(1, s) by using the cases in the proof of Lemma 2.5 of [18].
Therefore, we have

∫σ(b)

a

‖G2(·, s)‖k(s)Δs =
6 · 11 · 16 · 47

5 · 273 . (4.13)

Thus

K

∫σ(b)

a

‖G2(·, s)‖k(s)Δs =

⎛

⎝
2−1∏

j=1

Kj

⎞

⎠
∫σ(b)

a

‖G2(·, s)‖k(s)Δs =
133
324

· 6 · 11 · 16 · 47
5 · 273 < 1.

(4.14)

Hence, by Theorem 3.5, the BVP (1.2) has at least one nontrivial solution y∗.
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