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1. Preliminaries and notations

An open set D ⊂ Rn is a star-like Lipschitz domain centered at the origin with charac-
ter M if, letting Sn−1 = {x ∈ Rn : |x| = 1}, there is a function ϕ : Sn−1 → R with |ϕ(t)−
ϕ(s)| ≤M|t− s| and ϕ(t)≥ δ > 0, and such that in polar coordinates D = {(ρ,s) : 0≤ ρ ≤
ϕ(s), s ∈ Sn−1}. The surface measure of ∂D is denoted by σ . For N > 0 set ND = {(ρ,s) :
0≤ ρ ≤Nϕ(s)}, for Q∈ ∂D, Q = ϕ(s0), we let NQ ∈ND be the point NQ = (Nϕ(s0),s0),
and for r > 0, define Ar(Q)= (ϕ(s0)− r,s0).

The surface cubes are defined by Δr(Q) = Br(Q)∩ ∂D, where the Euclidian balls in
Rn are denoted by Br(Q) = {X ∈ Rn : |Q−X| < r}. The Carleson regions are defined as
Ψr(Q)= {(ρ,s)∈D : s∈ Δr(Q), ϕ(s)− r < ρ < ϕ(s)}.

Let L be the operator defined as

Lu=
∑

i, j

ai, j(X)
∂2u

∂xixj
(1.1)
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in a Lipschitz domain D ⊂ Rn. The matrix A= (ai, j) of coefficients is assumed to satisfy
the ellipticity condition

|ξ|2
λ
≤
∑

i, j

ai, j(X)ξiξ j ≤ λ|ξ|2 (1.2)

for every ξ = (ξ1, . . . ,ξn) ∈ Rn and every X ∈ Rn and the coefficients are assumed to be
smooth, although the estimates depend at most on λ, n, the Lipschitz character and the
diameter of D. It is also assumed that A coincides with the identity matrix for |X| suffi-
ciently large. When all of these conditions hold we write L∈�.

When L has smooth coefficients, it is well known that for each continuous function
f : ∂D→R there exists a unique function u f smooth in D and continuous in D, and such
that

Lu f = 0 on D,

u f |∂D = f .
(1.3)

This implies the existence of the elliptic measure associated to L ∈ �. This is the unique
probability Borel measure ω(X ;·) defined on ∂D that represents the solution u f in (1.3)
in the following sense:

u f (X)=
∫

∂D
f (Y)dω(X ,Y), (1.4)

by Riesz representation theorem and the maximum principle. We denote by ω(·) the

measure ω(�0,·), which by Harnack’s inequality are mutually absolutely continuous.
Let g(X ,Y) denote the Green’s function for L onD (see, e.g., [1]), andG(Y)≡G(X0,Y)

the Green’s function for L on 20D, with X0 ∈ ∂10D. Finally, let g̃(X ,Y)= g(X ,Y)/G(Y).
To shorten the notation we often write G(E) = ∫

E G(Y)dY for any Borel set E ⊂ Rn.
For X ∈ D we let d(X) = inf{|X −Q| : Q ∈ ∂D}, and B(X) = Bd(X)(X). Also d(X ,Y) =
|X −Y | denotes the distance from X to Y . The connection between elliptic measure and
Green’s function is given by the following identity:

v(X)=
∫

∂D
v(Y)dω(X ,Y)−

∫

D
g(X ,Y)Lv(Y)dY , (1.5)

which holds for every X ∈D, and every v sufficiently smooth in D.
Given two Borel measures μ1 and μ2 defined on ∂D, we say that μ1 belongs to the class

A∞(μ2) if there exist constants C,θ > 0 such that for every Δ⊂ ∂D and any Borel set E ⊆ Δ
we have

μ1(E)
μ1(Δ)

≤ C
(
μ2(E)
μ2(Δ)

)θ
. (1.6)

Define for a positive solution to Lu= 0 the measure

dμu(X)=
∣∣∇u(X)

∣∣2

∣∣u(X)
∣∣2 dX. (1.7)
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Using an idea from [2] combined with the definition in [3], we define for P ∈ ∂D the
multiplicative square function of u as

�αu(P)=
(∫

Γα(P)

d(X)2

G
(
B(X)

)G(X)dμu(X)
)1/2

. (1.8)

Similarly, the nontangential maximal function of logu is

Nα logu(P)= sup
X∈Γα(P)

| logu|. (1.9)

The nontangential approach region Γα(P) is the cone with vertex at P, aperture α > 0, with
principal axis in the radial direction and truncated at the origin. We denote by Γrα(P) =
Γα(P)∩{X ∈ D : |X −P| < r the truncated cone at height r > 0}. The superscript will be
added to either � or N when we substitute cones by truncated cones.

The motivation for using the logarithm of u, as well as the explanation of the term
multiplicative square function, can be found in [2], where the analogues of our main the-
orems are proved for harmonic functions. In turn, the definition in [2] follows the idea
of the area function for subharmonic functions (see, e.g., [4] and references therein).

For many basic facts about solutions and adjoint solutions associated to L we refer the
reader to [5] and references therein. More recent works include [3, 6, 7] and we will use
and quote results from those works.

For easy reference though, we quote a substitute of a well-known comparison theorem,
to point out the inclusion of an adjoint solution (in this case G(Y)) as a weight that
appears in this and related estimates.

Proposition 1.1 (comparison between Green’s functions and the elliptic measures
[3, Lemma 2]). There exists r0 depending on the Lipschitz character of D, such that for
every Q ∈ ∂D, r < r0 and Y ∈ ∂Br(Q)∩Γ1(Q) and X �∈Ψ4r(Q) we have

g̃(X ,Y)
G
(
B(Y)

)

d(Y)2
≈ ω(X ,Δr(Q)

)
, (1.10)

whenever Δ2r(Q)⊂ ∂D.

In the next section we will focus on the results related to estimates for the multiplica-
tive square function (Theorems 2.1, 2.4) that may have an independent interest. On the
other hand, it is of special interest the problem of describing operators L ∈ � for which
ω ∈ A∞(σ), and to our knowledge there are no complete characterizations. In Section 3,
we will state and prove the results related to the singularity and mutual absolute conti-
nuity for harmonic measure and Borel measures defined in ∂D (Theorems 3.1 and 3.2),
which represent steps towards a better understanding of this problem, and which are ap-
plications of the results in Section 2.

2. Distributional inequalities

Our first distributional inequality is based on techniques of [4], as developed in [3]. We
observe that the exponential decay in the right-hand side of (2.1) is in certain way sharp,
as observed for instance in [8] for harmonic functions.
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Theorem 2.1. Suppose μ∈ A∞(dσ). If 0 < α < β <∞, then there exist constants C1,C2 > 0
such that for all λ > 0 and γ ≥ C1,

μ
({
Q ∈ ∂D : �αu(Q) > γλ, Nβ logu(Q)≤ λ})≤ e−cγ2λ2

μ
({
Q∈ ∂D : �2αu > λ

})
.

(2.1)

Fix 0 < α < β <∞ and let u be any strictly positive solution to Lu= 0. We describe the
proof, where we assume λ= 1. Define

Eu =
{
Q ∈ ∂D :Nβ logu(Q)≤ 1

}
, Γu ≡ Γα

(
Eu
)=

⋃

Q∈Eu
Γα(Q). (2.2)

For a Borel set F ⊂D we define

νu(F)=
∫

Γu∩F
g(�0,Y)

∣∣∇u(Y)
∣∣2

∣∣u(Y)
∣∣2 dY. (2.3)

Lemma 2.2. The measure νu is a Carleson measure with respect to ω, that is,

sup
Q∈∂D
r>0

νu
(
Ψr(Q)

)

ω
(
Δr(Q)

) <∞. (2.4)

Proof. The proof of [3, Lemma 5] can be easily adapted. Accordingly, if we define Dε =
{X ∈ D : d(X) > ε}, it suffices to prove that νu(Ψr(Q)∩Dε) � ω(Δr(Q)) independent of
ε. One observes first that by Harnack’s principle and Caccioppoli’s inequality

νu
(
Ψr(Q)∩Dε

)
�
∫

W0

d−2(X)g(�0,X)dX , (2.5)

where W0 ⊂D is exactly the same set of [3, page 282]. The proof in that paper can now
be followed verbatim. �

Once we have proved this proposition, setting

�(X ,Q)= ϕ(X)ψ
( |X −Q|

d(X)

)
d(X)2

G
(
B(X)

) 1

g̃(�0,X)
(2.6)

for X ∈D and Q∈ ∂D, it is proved in [3, Lemma 7] that

�ν(Q)=
∫

D
�(X ,Q)dν(Q) (2.7)

is in BMO(dσ) with BMO norm controlled by the Carleson norm of ν. To finish the
proof we observe that for γ � 1, by Harnack’s inequality, Caccioppoli’s inequality, and
the argument in [3, page 285],

{
Q ∈ ∂D : �αu > γ, Nβ logu≤ 1

}⊆
{
Q ∈ ∂D : �̃αu >

γ

2
, Nβ logu≤ 1

}
, (2.8)
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where

�̃αu=
(∫

Γα(P)

d(X)2

G
(
B(X)

)G(X)ϕ(X)dμu(X)
)1/2

, (2.9)

and where ϕ(X) ∈ C∞0 with ϕ ≡ 1 on D \Dr0/10 and ϕ ≡ 0 on Dr0/5. This already suffices
to conclude the proof of Theorem 2.1 (see details in [3, page 285]).

The second main result is again a distributional inequality. As stated below the decay
of the constant in the right-hand side of (2.15) is far from being sharp. However, in the
next section we will describe how one can obtain a better decay as in (2.1).

The proof follows the lines of well-known techniques (see, e.g., [9]), and that is the
reason why in the statement we stated only local estimates on balls arising from certain
Whitney decompositions, and use local operators. For its proof we also have a use for the
following Poincaré-type inequality for logu.

Proposition 2.3. Let u be a positive solution of Lu= 0 on B2r ≡ B2r(X0)⊂D. Then

sup
X∈Br (X0)

∣∣ logu(X)− logu
(
X0
)∣∣� r2

G
(
B2r

(
X0
))
∫

B2r (X0)

∣∣∇u(X)
∣∣2

∣∣u(X)
∣∣2 G(X)dX. (2.10)

Proof. By (1.5) applied to v(X)= logu(X)− logu(X0) with X = X0 we have
∫

∂B2r

[
logu(Q)− logu

(
X0
)]
dω2r

(
X0,Q

)=
∫

B2r

g2r
(
X0,Y

)
L
(

logu(Y)
)
dY , (2.11)

where g2r and ω2r denote the Green’s function and the elliptic measure for L in B2r . On
the other hand, if X ∈ Br(X0) and again by (1.5),

logu(X)− logu
(
X0
)=

∫

∂B2r

[
logu(Q)− logu

(
X0
)]
dω2r(X ,Q)

−
∫

B2r

g2r
(
X0,Y

)
L
(

logu(Y)
)
dY.

(2.12)

Therefore, since |L(logu(Y))| � |∇u(Y)|2/|u(Y)|2 and dω2r(X0,·)/dω2r(X ,·) is essen-
tially bounded by 1,

∣∣ logu(X)− logu
(
X0
)∣∣≤

∫

B2r

g2r
(
X0,Y

)
∣∣∇u(Y)

∣∣2

∣∣u(Y)
∣∣2 dY. (2.13)

Applying Harnack’s inequality to u, and using an integral estimate in [3, page 286] we
obtain

∣∣ logu(X)− logu
(
X0
)∣∣≤ 1

[
infB2r u(Y)

]2

∫

B2r

g2r
(
X0,Y

)∣∣∇u(Y)
∣∣2
dY

� 1
[

supB2r
u(Y)

]2
r2

G
(
B2r

)
∫

B2r

∣∣∇u(Y)
∣∣2
G(Y)dY

� r2

G
(
B2r

(
X0
))
∫

B2r (X0)

∣∣∇u(Y)
∣∣2

∣∣u(Y)
∣∣2 G(Y)dY.

(2.14)

�



6 Abstract and Applied Analysis

Theorem 2.4. Suppose u is a positive solution to Lu= 0 in D, Δ≡ Δr(P0) is a surface ball
in ∂D, 0 < α < β, μ∈ A∞(ω). Assume that for some λ > 0, Nα logu(P1) < λ for some P1 ∈ S
with d(P1;Δ)≈ r. Then given γ > 1 there exist ε > 0 and 0 < δ < 1/2 (depending only on the
A∞ property of μ, the Lipschitz character of D, the ellipticity of L, α, β, and n) such that

μ
{
P ∈ Δ :Nr

α logu(P) > γλ,
[
�r

βu(P)
]2 ≤ ελ, Mμ

(
χGελ

)≤ δ}≤ Cγ−θμ(Δ), (2.15)

whereGλ = {P ∈ Δ : [�r
βu(P)]2 > λ}, and where C is a constant depending on γ and the A∞

property of μ.

Proof of Theorem 2.4. Let E be the set in the left-hand side of (2.15) and let W =
Γ(α+β)/2(E)∩D, denote its sawtooth region. It is well known that there is a point X0 ∈W
with the property that d(X0,∂W)≈ r. Define for, Q ∈ E,

�̃ logu(Q)= sup
X∈Γrα(Q)∩W

∣∣ logu(X)− logu
(
X0
)∣∣. (2.16)

Observe that �̃ logu ≤ CNα logu on ∂D. In particular, �̃ satisfies the well-known weak-
(1,1) boundedness property, by Hardy-Littlewood’s maximal theorem.

The following lemma follows from the doubling property of ω, as in the “Main
Lemma” of [9] (see also [3, page 282]). �

Lemma 2.5. Let ν be the harmonic measure of W with pole at X0, and let F ⊂ 2Δ≡ Δ2r(P0)
a Borel set. Define

ν̃(F)= ν(E∩F) +
∑

j

ω
(
F ∩ I j

)

ω
(
I j ∩ S

) ν
(
Ĩ j ∩ (∂W ∩D)

)
, (2.17)

where {I j} is a Whitney decomposition of 2Δ \E, and Ĩ j is the projection of I j on W . Then
there exists θ,C > 0 such that

ω(F)
ω(Δ′)

≤ C
(

ν̃(F)
ν̃(Δ′)

)θ
, (2.18)

where Δ′ ⊂ Δ any surface ball.

The projection used above is a function mapping any point P ∈ D to the point P̃ ∈
W in the radial direction of P. Observe that in particular one has d(I j ; Ĩ j) ≈ d(I j ;E) ≈
diamI j ≡ r j . The “Main Lemma” mentioned above states that, with the notation of the
previous lemma, we actually have

(
ω(F)
ω(Δ)

)θ
≤ Cν(F). (2.19)

On the other hand, using that [�r
β logu(P1)]2 < ελ and (2.10) one may proceed as in

[9, page 104], to obtain E ⊂ {P : �̃ logu(P)≥ γλ}.
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To prove (2.15), since μ ∈ A∞(ω), it suffices to prove that if ξ = γλ, then, for some
θ > 0,

ω
({
Q ∈ Δ : �̃ logu(Q) > ξ

})≤ Cξ−θω(Δ). (2.20)

Proof of (2.20). Let Hξ = {Q ∈ Δ : �̃ logu(Q) > ξ}. By (2.19), it will be enough to prove

ν̃
(
Hξ

)≤ Cξ−θ (2.21)

for ξ� 1. We give the proof (2.21) in three steps. Observe first that by Chebyshev’s in-
equality

ν̃
(
Hξ

)≤ 1
ξ

∫

E
(�̃ logu)dν +

∑

j

ω
(
Hξ ∩ I j

)

ω
(
I j ∩ S

) ν
(
Ĩ j ∩ (∂W ∩D)

)
. (2.22)

Step 1. We prove first that ω(Hξ ∩ I j)≈ ω(I j ∩ S).
For Q ∈ Hξ ∩ I j one has d(Q,E) ≈ diamI j ; also, if P ∈ E satisfies d(Q;P) ≈ diamI j ,

then there exists X ∈ Γα(Q) ∩ Γ(α+β)/2(P) with d(X;∂D) ≈ diamI j , and such that
| logu(X)− logu(X0)| > ξ. So one may choose β as a large multiple of α, and for a con-

stant ρ one has �̃ logu > ξ on the set Δρdiam I j (Q). The doubling property of ω implies the
first claim.

Step 2. Next we prove that

ν̃
(
Hξ

)
ξ ≤ C

∫

W
g0
(
X0,Y

)
∣∣∇u(Y)

∣∣2

∣∣u(Y)
∣∣2 dY , (2.23)

where g0 is the Green’s function of L in W .
For Z ∈ Ĩ j ∩ (∂W ∩D), by (2.10) and the choice of X,

∣∣ logu(Z)− logu(X)
∣∣≤ (

�αu(P)
)2
< ελ. (2.24)

Hence, for ε > 0 small, | logu(Z)− logu(X0)| > C. Therefore,

ν̃
(
Hξ

)
ξ ≤ C

[∫

E
(�̃ logu)dν +

∑

j

∫

Ĩ j

∣∣ logu(Q)− logu
(
X0
)∣∣dν

]
. (2.25)

Since there is only a finite overlapping, we may use weak (1,1) estimates theorem to obtain
with a different constant C,

ν̃
(
Hξ

)
ξ ≤ C

∫

∂W

∣∣ logu(Q)− logu
(
X0
)∣∣dν. (2.26)

By (1.5) applied to logu(X)− logu(X0) with respect to ν,

ν̃
(
Hξ

)
ξ ≤

∫

W
g0
(
X0,Y

)
L logu(Y)dY �

∫

W
g0
(
X0,Y

)
∣∣∇u(Y)

∣∣2

∣∣u(Y)
∣∣2 dY. (2.27)
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Step 3. We finally prove that

∫

W
g0
(
X0,Y

)
∣∣∇u(Y)

∣∣2

∣∣u(Y)
∣∣2 dY ≤ C. (2.28)

Set Wr = {X ∈W : d(X ;∂D)≤ τr} so that we can split the integral over W in the part
away from the boundary and the one close to the boundary. Observe that by Harnack’s
inequality

∫

W\Wr
g0
(
X0,Y

)
∣∣∇u(Y)

∣∣2

∣∣u(Y)
∣∣2 dY ≤ 1

infW\Wr u2

∫

W\Wr
g0
(
X0,Y

)∣∣∇u(Y)
∣∣2
dY. (2.29)

Observe now that, applying (1.5),

∫

W\Wr
g0
(
X0,Y

)|∇u|2dY �
∫

W\Wr
g0
(
X0,Y

)〈A∇u,∇u〉dY

�
∫

W\Wr
g0
(
X0,Y

)
Lu2(Y)dY � sup

X∈W\Wr/2

∣∣u(X)
∣∣2
.

(2.30)

By Harnack’s inequality again

∫

W\Wr
g0
(
X0,Y

)
∣∣∇u(Y)

∣∣2

∣∣u(Y)
∣∣2 dY ≤ C. (2.31)

To handle the part close to the boundary observe that

C ≥
∫

∂D\Gελ

[
�r

βu(Q)
]2
dω(Q)≥

∫

W

∣∣∇u(Y)
∣∣2

∣∣u(Y)
∣∣2 G(Y)

d(Y)2

G
(
B(Y)

)ψ(Y)dY , (2.32)

where ψ(Y) = ω(X0;{P ∈ ∂D \Gελ : Y ∈ Γrβ(P)}), and Gελ is as in the statement of the
theorem.

Observe also that for Y ∈Wr there exists Ỹ ∈ E ⊂ ∂D \Gελ such that ‖Y − Ỹ‖ ≈ d(Y)
and Y ∈ Γβ(Ỹ). Hence, setting Δ̃≡ Δγd(Y)(Ỹ) we have Δ̃∩ ∂D \Gελ ⊂ {P ∈ ∂D \Gελ : Y ∈
Γrβ(P)} and consequently, by (1.10) and Harnack’s inequality,

ψ(Y)≥ ω(X0; Δ̃∩ ∂D \Gελ
)= ω

(
X0; Δ̃∩ ∂D \Gελ

)

ω
(
X0; Δ̃

) ω
(
X0; Δ̃

)

≈ ω
(
Δ̃∩ ∂D \Gελ

)

ω(Δ̃)
ω
(
X0; Δ̃

)≈
(
ω
(
Δ̃∩ ∂D \Gελ

)

ω(Δ̃)

)(
g̃
(
X0,Y

)
G
(
B(Y)

)

d2(Y)

)
.

(2.33)

By the definition of E, since Ỹ ∈ E, then μ(Δ̃∩ ∂D \Gελ)/μ(Δ̃) > ελ, and by the A∞ prop-
erty of μ,

ψ(Y)≥ g̃
(
X0,Y

)
G
(
B(Y)

)

d2(Y)
. (2.34)
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Thus by (2.32)

∫

Wr
g0
(
X0,Y

)
∣∣∇u(Y)

∣∣2

∣∣u(Y)
∣∣2 dY ≤

∫

W
g
(
X0,Y

)
∣∣∇u(Y)

∣∣2

∣∣u(Y)
∣∣2 dY ≤ C, (2.35)

which completes the proof of (2.21). �

3. Applications to harmonic measure

The operators L∈� for which their harmonic measures are in A∞(dσ) are not well char-
acterized. The preservation of the A∞ property under small perturbations of the main
coefficients of L was proved in [10], and more recently in [11] a class of operators for
which the harmonic measure is in A∞(dσ) is described. To have some criteria to deter-
mine absolute continuity or singularity with respect to harmonic measure may therefore
be of interest, and the results in this section go in this direction.

Given a Borel measure ν defined on ∂D, we define

u(X)=
∫

∂D
K(X ,Q)dν(Q), (3.1)

where K(X ,Q)= (dωX/dω)(Q) is the kernel function associated to L (see [12]).

Theorem 3.1. Fix α > 0 and for a positive Borel measure ν let u be the solution given by
(3.1). Then ν is singular with respect to ω if and only if �αu(Q)=∞ for ω-almost every Q.

The proof is a direct application of Theorems 2.1 and 2.4, by proving that the sets

A=
⎧
⎪⎨
⎪⎩
P ∈ ∂D : lim

X→P
X∈Γ(P)

u(X) > 0

⎫
⎪⎬
⎪⎭

, B = {
P ∈ ∂D : �αu(P) <∞} (3.2)

only differ in a set of null ω measure. However, there is an alternative proof based on
sawtooth region techniques, independent from the arguments to prove Theorems 2.1 and
2.4. This was observed originally in [2] for the case of harmonic functions, and the proof
that we include for its simplicity and for completeness is based in that original argument.

Proof. We divide the proof in two claims.

Claim 1. ω-almost every point of A is in B.

Divide ∂D into surface balls of finite overlapping Δi ≡ Δri(Pi) with ri = r0/2, where r0

is the constant of (1.10). Let E ⊂ Δi∩A be a closed set and ε > 0 such that

1
ε
> lim
X→P, X∈Γ(P)

u(X) > ε (3.3)

for every P ∈ E. Let Γ(E)=⋃
P∈E Γα(P) and recall that there exists X0 ∈ Γ(E) whose dis-

tance to ∂Γ(E) is proportional to ri. We denote by ωΓ the harmonic measure of Γ(E) with
pole at X0.

Using (2.19) we can conclude that ωΓ(F)= 0 implies ω(F)= 0 whenever F ⊂ Δi, and
so we will prove that ωΓ-almost every element in A is also in B. By Harnack’s inequality,
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renormalizing u, we may assume that for every P ∈ E,

inf
X∈Γ̃(P)

u(X) > ε, sup
X∈Γ̃(P)

u(X) <
1
ε

, (3.4)

where Γ̃(P) has a slightly bigger aperture than Γ(P). Thus we have ε < u(X) < 1/ε for
X ∈ Γ(E).

By Fubini’s theorem

∫

E
�αu(P)dωΓ(P)≤

∫

E

∫

Γ(P)

∣∣∇u(X)
∣∣2

∣∣u(X)
∣∣2

d2(X)
G
(
B(X)

)G(X)dX dωΓ(P)

≤
∫

Γ(E)
Ψ(X)

∣∣∇u(X)
∣∣2

∣∣u(X)
∣∣2

d2(X)
G
(
B(X)

)G(X)dX ,

(3.5)

where Ψ(X) = ωΓ(Δαd(X)(X̃)) and X̃ is the radial projection of X onto ∂Γ(E). By (1.10)
the last quantity is controlled by

∫

Γ(E)

∣∣∇u(X)
∣∣2

∣∣u(X)
∣∣2 gΓ

(
X0,X

)
dX <

1
ε

∫

Γ(E)

∣∣∇u(X)
∣∣2
gΓ
(
X0,X

)
dX , (3.6)

where gΓ denotes the Green’s function for L on Γ(E). Since for any constant k one has
L[(u− k)2]= 2〈A∇u,∇u〉, we conclude by Green’s identity (1.5) and Harnack’s inequal-
ity that

∫

E
�αu(P)dωΓ(P) � 1

ε

(
sup

X∈∂Γ(E)\E

∣∣u(X)−u(X0)
∣∣2
)
<

1/ε2

ε
. (3.7)

This implies �αu(P) <∞ for ωΓ-almost every P ∈ E, which as observed above yields
the claim.

Claim 2. ω-almost every point of B is in A

Once again divide ∂D into the surface balls Δi ≡ Δri(Pi) as above, and let E ⊂ Δi be a
closed set of B, where u is nontangentially bounded and where �αu(P) ≤ 1 and
limX→P u(X) = 0 nontangentially. We define Γα(E) = ⋃

P∈E Γα(P) and use the same no-
tation used in the previous claim.

The proof is by contradiction, and so we assume that ωΓ(E) > 0. Applying once again
(1.5)

logu(�0) +
∫

Γ(E)
gΓ
(
X0,Y

)
L logu(Y)dY =

∫

∂Γ(E)
logu(P)dωΓ(P). (3.8)

The proof will finish if we prove that the second term in the left is finite, since the right-
hand side is unbounded, by the assumption ωΓ(E) > 0. The contradiction will prove the
claim.
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Note that |L logu|� |∇u|2/u2 and so we estimate that term as follows:

∫

Γ(E)
gΓ
(
X0,Y

)
L logu(Y)dY �

∫

Γα(E)

∣∣∇u(X)
∣∣2

u2(X)
gΓ
(
X0,X

)
dX

�
∫

Γα(E)

∣∣∇u(X)
∣∣2

u2(X)
ωΓ
(
Δαd(X)(X̃)

) d2(X)
G
(
B(X)

)G(X)dX

�
∫

E
�αu(P)dωΓ(P) <∞,

(3.9)

where in the second to last estimate we used (1.10), and in the last one Fubini’s theorem
is applied. �

The proof of the next theorem is also based on the argument given originally for har-
monic functions in [2, page 700]. We first record a consequence of the proof of Theorem
2.4 that we will explicitly use in the proof of the theorem, and that it was actually ob-
served in [3] for solutions to Lu = 0. Notice that (2.15) implies ‖Nα logu‖Lq(dω) � 1 for
some q > 0 (see [3, page 291]). This, along with the argument in [3, page 288], implies
Nα logu∈ BMO with BMO norm � 1, which suffices to prove the following improvement
of the decay in the right-hand side of (2.15): with the notations of Theorem 2.4, there are
constants c1, c2 such that for γ > c1 and λ > 0 one has

μ
{
P ∈ ∂D :Nα logu(P) > γλ,

[
�βu(P)

]2 ≤ λ}

≤ c1 exp
(− c2γλ

)
μ
{
P ∈ ∂D :Nα logu(P) > λ

}
.

(3.10)

Theorem 3.2. With the notation introduced above, there exists a constant C = C(n,λ) > 0
such that exp(C�2

αu)∈ L1(∂D,dω) implies that ω and ν are mutually absolutely continu-
ous.

Proof. Define

M(P)= sup

{
ν(Δ)
ω(Δ)

,

(
ν(Δ)
ω(Δ)

)−1}
, N(P)= sup

∣∣∣∣ log
ν(Δ)
ω(Δ)

∣∣∣∣, (3.11)

where in both cases the supremum is taken over dyadic surface balls Δ containing P ∈ ∂D.
It suffices then to prove that M∈ L1(∂D,dω), and since eN =M, we can just prove that
eN ∈ L1(∂D,dω). Now observe that by [12, Theorem I.2.5], if P ∈ ∂D and Δ is a surface
ball containing P, then

ν(Δ)
ω(Δ)

≈ u(PΔ
)≤Nu(P), (3.12)

where u(X) is as in (3.1), and PΔ is a point in D whose distance to P and to ∂D are both
proportional to the radius of Δ; in fact PΔ can be chosen so that PΔ ∈ Γα(P). This implies
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Nαu(P)≥N(P) and so we can conclude

∫

∂D

(
eN− 1

)
dω(P)= γ

∫∞

0
eγλω

({
P ∈ ∂D : N(P) > γλ

})
dλ

≤ γ
∫∞

0
eγλω

({
P ∈ ∂D :Nα(P) > γλ

})
dλ.

(3.13)

Then by (3.10), and with ε > 0 to be chosen,

∫

∂D

(
eN− 1

)
dω(P)≤ γ

∫∞

0
eγλω

({
P ∈ ∂D :Nα logu(P) > γλ,

[
�αu(X)

]2 ≤ ελ})dλ

+ γ
∫∞

0
eγλω

({
P ∈ ∂D :

[
�αu(P)

]2
> ελ

})
dλ

≤ γc1

∫∞

0
eγλe−c2γλ/εω

({
P ∈ ∂D :Nα logu(P) > ελ

})
dλ

+
∫

∂D

[
exp

(
γ�2(P)
ε

)
− 1

]
dω(P)

≤ γc1

ε

∫

∂D
Nα logu(P)dω(P) +

∫

∂D

[
exp

(
γ�2(P)
ε

)
− 1

]
dω(P),

(3.14)

where ε has been chosen sufficiently small so that 1− c2/ε ≤ 0. Now we bound the first
term in the right-hand side by

∫
∂D�αu(P)dω(P) and in conclusion,

∫

∂D
eNdω(P) �

∫

∂D
exp

(
γ�2(P)
ε

)
dω(P) <∞ (3.15)

and thus choosing C = γ/ε will prove the theorem. �
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[2] M. J. González and A. Nicolau, “Multiplicative square functions,” Revista Matemática Iberoamer-
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