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1. Introduction

Differential equations with dependence on the past state have various applications in
physics, biology, economics, and so forth, and have also attracted many researchers as in
the introduction and reference of [1–4]. The neutral differential difference equation is
one of general classes. And one of important neutral differential difference equations is

d

dt

[
D(r,A)yt

]= f
(
t, yt

)
, (1.1)

where D(r,A) : C([−h;0],Rn)→Rn is linear continuous defined by

D(r,A)φ = φ(0)−
N∑

i=1

Aiφ
(− ri

)
, φ∈ C

(
[−h;0],Rn

)
; (1.2)

here each Ai is an n×n matrix, each ri is a constant satisfying ri > 0 and h=max{ri : i∈
N}, N = {1,2, . . . ,N}, and yt : [−h;0]→Rn is defined by yt(s) = y(t + s), s ∈ [−h;0]. To
get some properties of solution of (3.3), the stability of system (1.3) is required for the
homogeneous difference equation of the form D(r,A)yt = 0, t ≥ 0; see [2]. This equation
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can be rewritten as follows:

y(t)−
N∑

i=1

Aiy
(
t− ri

)= 0. (1.3)

We recall the definition in [2]: “the operator D(r,A) or the system (1.3) is called stable if the
zero solution of (1.3) with y0 ∈ CD(r,A)= {φ∈ C([−h,0],Rn) : D(r,A)φ = 0} is uniformly
asymptotically stable.”

Associated with the system (1.3), we define the quasipolynomial

H(s)= I −
N∑

k=1

e−srkAk. (1.4)

For s ∈ C, if detH(s) = 0, then s is called a characteristic root of the quasipolynomial
matrix (1.4). Then, a nonzero vector x ∈ Cn satisfying H(s)x = 0 is called an eigenvector
of H(·) corresponding to the characteristic root s. We set σ(H(·))= {λ∈ C : detH(λ)=
0}, the spectral set of (1.4), and aH = sup{Rλ : λ ∈ σ(H(·))}, the spectral abscissa of
(1.4) (noticing that we cannot replace sup by max). The following theorem is a well-
known result in [2].

Theorem 1.1. The system (1.3) is stable if and only if aH < 0.

Thus, studying the stability of the system (1.3) turns out considering the characteristics
of quasipolynomial (1.4). It is well known that the principal tool for the analysis of the
stability and robust stability of a positive system is the Perron-Frobenius theorem; see
[5–8]. In this work, we give an extension of the classical Perron-Frobenius theorem to
positive quasipolynomial matrices of the form (1.4). Then the result obtained is applied
to derive necessary and sufficient conditions for stability of positive systems of the form
(1.3). An outline of this paper is as follows. In the next section, we summarize some
notations and recall the classical Perron-Frobenius theorem which will be used in the
remainder. The main results will be addressed in Section 3, where we extend the classical
Perron-Frobenius theorem to positive quasipolynomial matrices. Finally, we apply the
obtained results to give necessary and sufficient conditions for the stability of the positive
systems of the form (1.3).

2. Preliminaries

We first introduce some notations. Let n, l, q be positive integers, a matrix P = [pi j] ∈
Rl×q is said to be nonnegative (P ≥ 0) if all its entries pi j are nonnegative. It is said to be
positive (P > 0) if all its entries pi j are positive. For P,Q∈Rl×q, P > Q means that P−Q >
0. The set of all nonnegative l× q-matrices is denoted by Rl×q. A similar notation will be
used for vectors. Let K= C or R, then for any x ∈Kn and P ∈Kl×q, we defined |x| ∈Rn

+

and |P| ∈Rl×q
+ by |x| = (|xi|), |P| = [|pi j|]. For any matrix A∈Kn×n the spectral radius

and the spectral abscissa of A are defined by r(A) = max{|λ| : λ ∈ σ(A)} and μ(A) =
max{Rλ : λ∈ σ(A)}, respectively, where σ(A) is the spectrum of A. We recall some useful
results; see [9].
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Theorem 2.1 (Perron-Frobenius). Suppose that A∈Rn×n
+ . Then,

(i) r(A) is an eigenvalue of A and there is a nonnegative eigenvector x ≥ 0, x �=0 such
that Ax = r(A)x;

(ii) if λ ∈ σ(A) and |λ| = r(A), then the algebraic multiplicity of λ is not greater than
the algebraic multiplicity of the eigenvalue r(A);

(iii) given α > 0, there exists a nonzero vector x ≥ 0 such that Ax ≥ αx if and only if
r(A)≥ α;

(iv) (tI −A)−1 exists and is nonnegative if and only if t > r(A).

Theorem 2.2. Let A∈Kn×n, B ∈Rn×n
+ . If |A| ≤ B, then

r(A)≤ r
(|A|)≤ r(B). (2.1)

3. Main results

In this section, we will extend to Perron-Frobenius for positive quasipolynomial matrices
of the form (1.4).

Theorem 3.1. if the quasipolynomial (1.4) is positive, that is, Ai is nonnegative matrix for
all i∈N = {1,2, . . . ,N}, then aH ∈ σ(H(·)).

Proof. Assume that (λm)m∈N is a sequence in σ(H(·)) such that limRλm = aH . Then, for
every m∈N, there exists xm ∈ Cn such that

xm =
N∑

k=1

e−λmrkAkxm. (3.1)

It follows that

∣
∣xm

∣
∣≤

( N∑

k=1

e−RλmrkAk

)
∣
∣xm

∣
∣. (3.2)

By Theorem 2.1,

r

( N∑

k=1

e−RλmrkAk

)

≥ 1. (3.3)

Now let us define the function f :R→R by setting

f (t)= r

( N∑

k=1

e−trkAk

)

, t ∈R. (3.4)

It is clear that f (·) is continuous and strictly decreasing onR and lim t→+∞r(t)= 0. More-
over, from (3.3) we have f (Rλm) ≥ 1. Thus, from the continuity of f (·), there exists
αm ≥Rλm satisfying r(

∑N
k=1e

−αmrkAk)= 1 which implies αm ∈ σ(H(·)).
Briefly, we have constructed a real sequence (αm) that has the following properties:

αm ∈ σ(H(·)) and αm ≥Rλm, for allm∈N. This follows from limαm = aH . Furthermore,
σ(H(·)) is closed. Thus, aH ∈ σ(H(·)). The proof is complete. �
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Theorem 3.2. Let quasipolynomial (1.4) be positive. Then,
(i) aH is a characteristic root of H(aH) and there is a nonnegative eigenvector x ≥

0, x �=0 such that H(aH)x = 0;
(ii) given α > 0, there exists a nonzero vector x ≥ 0 such that (

∑N
k=1e

−αrkAk)x ≥ x if and
only if aH ≥ α;

(iii) for t ∈R, then one has

H(t)−1 ≥ 0⇐⇒ t > aH. (3.5)

Proof. (i) First, we recall that in the proof of Theorem 3.1, we have constructed a real
sequence (αn) that has the following properties: αn ∈ σ(H(·)), for all n ∈ N, limαn =
aH , and r(

∑N
k=1e

−αnrkAk) = 1. Thus, this implies r(
∑N

k=1e
−aHrkAk) = 1. By Theorem 2.1,

there exists a nonnegative eigenvector x ≥ 0, x �=0 such that (
∑N

k=1e
−aHrkAk)x = x, or [I −

(
∑N

k=1e
−aHrkAk)]x = 0, then we get (i).

(ii) Assume that there exists a nonzero vector x ≥ 0 such that (
∑N

k=1e
−αrkAk)x ≥ x. It

follows that f (α) = r(
∑N

k=1e
−αrkAk) ≥ 1. By similar argument in the proof of Theorem

3.1, there exists α ≥ α such that f (α) = r(
∑N

k=1e
−αrkAk) = 1. Thus, by definition of aH ,

aH ≥ α≥ α. Conversely, if aH ≥ α, then r(
∑N

k=1e
−αrkAk)= f (α)=≥ f (aH)= 1. Therefore,

applying Theorem 2.1 for positive matrix
∑N

k=1e
−αrkAk, we get (ii).

(iii) For t > aH , and the decrease of f (·), f (t) < f (aH) = 1. Again applying Theo-
rem 2.1(iii), we obtain H(t)−1 ≥ 0. Conversely, assume that t ∈ R and H(t)−1 ≥ 0. By
Theorem 2.1(iii), f (aH) = 1 > r(

∑N
k=1e

−trkAk) = f (t). Thus, t > aH . The proof is com-
plete. �

Remark 3.3. From Theorem 3.2, it is easy to see that under the positivity assumption, the
spectral abscissa, aH , is continuous with respect to the delay parameters. This is not the
case if the positivity assumption is dropped; see [1, 3].

4. Application to positive homogeneous difference equation

We now apply the results obtained in the previous section to derive some necessary and
sufficient conditions for the stability of the positive homogeneous difference equation of
the form (1.3). The following results are obtained by applying directly Theorems 3.1 and
3.2.

Theorem 4.1. Let quasipolynomial (1.4) be positive. The homogeneous difference equation
(1.3) is stable if and only if all characteristic roots of H(·) lie inside a half plane C− = {λ∈
C : Rλ < 0}.
Theorem 4.2. Let quasipolynomial (1.4) be positive. The homogeneous difference equation
(1.3) is stable if and only if r(

∑N
i=1Ai) < 1.

Proof. Assume that (1.3) is stable and positive. By (iii) in Theorem 3.2, from aH < 0, we
obtain H−1(0)= (I −∑N

i=1Ai)≥ 0. Applying Theorem 2.1, r(
∑N

i=1Ai) < 1.
Inversely, if r(

∑N
i=1Ai) < 1, H−1(0)= (I −∑N

i=1Ai)≥ 0. By (iii) in Theorem 3.2, aH < 0.
This completes the proof. �
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Remark 4.3. (i) The stability of positive systems do not depend on delay parameters.
(ii) It is clear that in the positive system, applying Theorem 4.2 to check the existing

stability for delay-difference equations is much more simpler and easier than the general
results in [2–4].

Next, we address some remarks about the relationship between independent-delay sta-
bility and stability of the system (1.3).

Definition 4.4. The system (1.3) is stable globally in the delays if it is stable for each
(ri)i∈N ∈RN

+ .

The concept of global stability, which is sometimes called independent-delay stability,
has interested many researchers as in [2, 4, 10] and references therein. In fact, if the system
is globally stable, then it is stable, but the conversion is not true. However, in the case
of positive system, both concepts are the same. This is stated in implications following
corollary of Theorem 4.2.

Corollary 4.5. Let Ai be all nonnegative matrices for all i∈N . Then, the following state-
ments are equivalent:

(i) the system (1.3) is stable;
(ii) equation (1.3) is independent-delay stable;

(iii) r(A1 + ··· +AN ) < 1.

Now we consider some simple examples to illustrate the results obtained.

Example 4.6. Consider the system

y(t)= A1y(t− r) +A2y(t− s), (4.1)

where

A1 =
(

0.121 0.231
0.431 0.386

)

, A2 =
(

0.236 0.521
0.267 0.431

)

. (4.2)

Since r(A1 +A2) = 1.347128936 > 1, by Corollary 4.5, the system (4.1) is neither stable
nor independent-delay stable.

Example 4.7. Consider the following system:

y(t)= A1y(t− r) +A2y(t− s) +A3y(t−h), (4.3)

where

A1 =
(

0.121 0.231
0.131 0.116

)

, A2 =
(

0.231 0.221
0.127 0.331

)

, A3 =
(

0.131 0.126
0.112 0.132

)

. (4.4)

Since r(A1 +A2)= .9959344040 < 1, by Corollary 4.5, the system (4.3) is both stable and
independent-delay stable.
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