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1. Introduction

In this paper, we consider the following reaction-diffusion system of equations:

∂S

∂t
−d1ΔS=Λ− λ(t) f (S,I)−μS in R+×Ω,

∂I

∂t
−d2ΔI = λ(t) f (S,I)− σI in R+×Ω,

(1.1)

with homogeneous Neuman boundary conditions

∂S

∂ν
= ∂I

∂ν
= 0 on R+× ∂Ω, (1.2)

and the nonnegative and bounded initial data

S(0,x)= S0(x), I(0,x)= I0(x) in Ω, (1.3)
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where Ω is an open bounded domain in Rn with smooth boundary ∂Ω and outer normal
ν(x). The constants d1, d2, Λ, μ are such that

d1 > 0, d2 > 0, μ > 0, σ > 0, Λ≥ 0. (1.4)

We assume that t �→ λ(t) is a nonnegative and bounded function in C(R+) with 0≤ λ(t)≤
̂λ and the nonlinearity f (ξ,η) is a nonnegative differentiable function in R+ ×R+ such
that there exist two increasing nonnegative functions ϕ and ψ in C1(R+) with

ξ ≥ 0, η ≥ 0=⇒ 0≤ f (ξ,η)≤ ψ(ξ)ϕ(η), (1.5)

ψ(0)= 0, ϕ(0)= 0, lim
η→+∞

ln
(

1 +ϕ(η)
)

η
= 0. (1.6)

The reaction-diffusion system (1.1)–(1.3) may be viewed as a diffusive epidemic model
where S and I represent the nondimensional population densities of susceptibles and in-
fectives, respectively. In other words, system (1.1)–(1.3) is a model describing the spread
of an infection disease (such as AIDS, e.g.) within a population assumed to be divided
into the susceptible and infective classes as precised (for further motivation, see, e.g., [1–
3], and the references therein).

A basic question arising in this context is the existence of global solutions in C(Ω)
as well as their uniform boundedness to system (1.1)–(1.3). When Λ = 0 (which corre-
sponds to the situation where there is no new supply in the susceptible class), a quite
similar question was studied by many authors (see [4–6]) and a positive answer was first
given by Haraux and Youkana [7] using the Lyapunov function techniques (see also [8])
and later on by Kanel (see, e.g., [9]) using useful properties inherent to the underlying
Green function.

However when Λ > 0, these studies, while directly leading to conclude a global ex-
istence of the solutions, do not seem of a direct application concerning the uniform
boundedness. To establish the uniform boundedness of the solutions in this case (i.e.,
when Λ > 0), it is worthwhile to mention the method developed by Morgan [10] which
can be successfully applied to our case provided that |ϕ(η)| ≤ cηβ, β > 0. Clearly the class
considered in this work of ϕ satisfying the limit

lim
η→+∞

ln
(

1 +ϕ(η)
)

η
= 0 (1.7)

as it handles nonlinearities of a weakly exponential growth is larger than that required in
[10] of nonlinearities of a polynomial growth. Indeed, it is easily observed for instance
that ϕ(η) = eη

α − 1, 0 < α < 1, satisfies this limit. Unfortunately for the nonlinearities ϕ
not of a polynomial growth and satisfying this limit, the method in [10] cannot be ap-
plied.

In this paper, we first consider this problem of uniform boundedness of the solutions
to system (1.1)–(1.3) by proving that the Lyapunov function argument proposed in [7]
(or in [8]) can be adapted to our situation. Interestingly, we show that the same Lyapunov
function is not necessarily nonincreasing as established in [7, 8] but rather it satisfies a
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differential inequality from which the uniform boundedness of the solutions is readily
deduced.

Then we deal with the long-time behavior of the solutions as the time goes to +∞
where in particular we are concerned with reasonable conditions allowing to assure that
(S,I) goes to the infection-free state (Λ/μ,0) of system (1.1)–(1.3) as t→ +∞ in the sense

lim
t→+∞

∥

∥I(t,·)∥∥∞ = lim
t→+∞

∥

∥

∥

∥
S(t,·)− Λ

μ

∥

∥

∥

∥

∞
= 0, (1.8)

which of course can fail for arbitrary λ in L∞(R+)∩C(R+). More precisely, we will show
that this property is valid if λ(t) satisfies either assumption (H.1) or assumption (H.2)
formulated in what follows.

(H.1) There exists a real number p ≥ 1 such that

∫ +∞

0

(

λ(s)
)p
ds < +∞. (1.9)

(H.2) The function η �→ ϕ(η)/η is increasing on ]0,+∞[ and λ(t)≡ ̂λ > 0 is a positive
constant independent of t such that

̂λ

σ

ϕ(N)
N

ψ
(

Λ

μ

)

< 1, (1.10)

where N > 0 is a positive constant independent of t of which the expression will be ex-
plicitly given in Lemma 2.3 in the next section.

2. Boundedness of the solutions

The basic existence theory for abstract semilinear differential equations directly leads to
conclude a local existence result to system (1.1)–(1.3) (see, e.g., Henry [11] or Pazy [12]).
Thus for nonnegative S0, I0 in the class L∞(Ω), there exists a unique local nonnegative
solution (S,I) of class C(Ω) of system (1.1)–(1.3) on ]0,T∗[, where T∗ is the eventual
blowing-up time in L∞(Ω).

On the other hand, using the comparison principle, one may also show that

0≤ S(t,x)≤max
(

∥

∥S0
∥

∥∞,
Λ

μ

)

=: K ∀(t,x)∈ ]0,T∗
[×Ω, (2.1)

from which it follows that the solutions S and I of system (1.1)–(1.3) are global and
uniformly bounded as soon as we can show that I is uniformly bounded in ]0,T∗[.

Following Haraux and Youkana [7], let us consider the function

L(t)=
∫

Ω

(

1 + δ
(

S+ S2))eεIdx (2.2)
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defined on ]0,T∗[, where δ and ε are positive constants satisfying

0 < δ ≤min

(

σ

2Λ(1 + 2K)
,

8d1d2

(1 + 2K)2
(

d1 +d2
)2

)

,

0 < ε ≤ δ

1 + δ
(

K +K2
) .

(2.3)

The main result of the paper can be stated as follows.

Theorem 2.1. For the solution (S,I) of system (1.1)–(1.3) in ]0,T∗[, let L(t) be the function
defined by (2.2) with δ and ε satisfying (2.3). Then there exists a nonnegative constant a such
that

d

dt
L(t)≤−σ

2
L(t) + a. (2.4)

Proof. Let (S,I) be the solution of system (1.1)–(1.3) in ]0,T∗[. Differentiating L(t) de-
fined by (2.2) with respect to t and using Green’s formula, one obtains

d

dt
L(t)=G+H , (2.5)

where

G=−2d1δ
∫

Ω
eεI(∇S)2dx

− (d1 +d2
)

εδ
∫

Ω
(1 + 2S)eεI∇I∇Sdx

−d2ε
2
∫

Ω

(

1 + δ
(

S+ S2))eεI(∇I)2dx,

H =
∫

Ω

(

Λ
δ(1 + 2S)

1 + δ
(

S+ S2
) −μS δ(1 + 2S)

1 + δ
(

S+ S2
)

)

(

1 + δ
(

S+ S2))eεIdx

+
∫

Ω
λ(t)

(

ε− δ(1 + 2S)
1 + δ

(

S+ S2
)

)

f (S,I)
(

1 + δ
(

S+ S2))eεIdx

−
∫

Ω
εσI

(

1 + δ
(

S+ S2))eεIdx.

(2.6)

We observe that G involves a quadratic form with respect to∇S and∇I ,
Q = 2d1δe

εI(∇S)2 +
(

d1 +d2
)

εδ(1 + 2S)eεI∇I∇S+d2ε
2(1 + δ

(

S+ S2))eεI(∇I)2, (2.7)

which is nonnegative since the constants δ and ε satisfying (2.3) are chosen in such a way
that the discriminant

[(

d1 +d2
)

εδ(1 + 2S)eεI
]2− 4

[

2d1δe
εI
][

d2ε
2(1 + δ

(

S+ S2))eεI
]

(2.8)

is ≤ 0 so that one concludes that G ≤ 0 a.e. on ]0,T∗[ (see [7]). On the other hand, H
may be written as follows:

H =H1 +H2 +H3, (2.9)
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such that

H1 =
∫

Ω

(

Λ
δ(1 + 2S)

1 + δ
(

S+ S2
) −μS δ(1 + 2S)

1 + δ
(

S+ S2
) − σ

)

(

1 + δ
(

S+ S2))eεIdx,

H2 =
∫

Ω
λ(t)

(

ε− δ(1 + 2S)
1 + δ

(

S+ S2
)

)

f (S,I)
(

1 + δS+ δS2)eεIdx,

H3 =
∫

Ω
σ(1− εI)eεI(1 + δS+ δS2)dx.

(2.10)

Again from (2.3) where now

0 < δ ≤ σ

2Λ(1 + 2K)
, 0 < ε ≤ δ

1 + δ
(

K +K2
) , (2.11)

one checks that

Λ
δ(1 + 2S)

1 + δ
(

S+ S2
) −μS δ(1 + 2S)

1 + δ
(

S+ S2
) − σ ≤Λδ(1 + 2K)− σ ≤−σ

2
,

ε− δ(1 + 2S)
1 + δ

(

S+ S2
) ≤ ε− δ

1 + δ
(

K +K2
) ≤ 0,

(2.12)

from which it is obviously deduced that H2 ≤ 0 and

H1 ≤−σ2L(t). (2.13)

Concerning H3, one observes that the function

π : η �−→ (1− εη)eεη (2.14)

is bounded on R+. Indeed, one has

dπ

dη
(η)=−ε2ηeεη ≤ 0, (2.15)

so that π is nonincreasing in [0,+∞[ and

max
η≥0

(1− εη)eεη = 1. (2.16)

Let now

a := σ(1 + δ
(

K +K2))|Ω| (2.17)

be chosen on purpose in such a way that H3 ≤ a. To sum up, one has

d

dt
L(t)=G+H =G+H1 +H2 +H3 ≤−σ2L(t) + a (2.18)

exactly as the theorem claimed. �
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We are now ready to establish the global existence and uniform boundedness of the
solutions of (1.1)–(1.3).

Theorem 2.2. If f satisfies conditions (1.5) and (1.6), the solutions S and I of system (1.1)–
(1.3) with nonnegative and bounded initial data S0, I0 are global and uniformly bounded on
[0,+∞[.

Proof. Let (S,I) be the solution of system (1.1)–(1.3) in ]0,T∗[. Multiplying inequality
(2.4) by e(σ/2)t and then integrating over [0, t], we deduce that there exists a positive con-
stant C > 0 independent of t such that

L(t)≤ 2
(

1 + δ
(

K +K2))|Ω|+Ce−(σ/2)t on ]0,T∗[. (2.19)

In this proof, we will make use of the result established in [13] from which the uniform
boundedness of I is derived once,

∥

∥λ(t) f (S,I)− σI∥∥p ≤ C1(p), (2.20)

(where C1(p) is a positive constant independent of t) for some p > n/2. In this direction,
we observe that

∥

∥λ(t) f (S,I)− σI∥∥p ≤
∥

∥λ(t) f (S,I)
∥

∥

p + σ‖I‖p ≤ ̂λψ(K)
∥

∥ϕ(I)
∥

∥

p + σ‖I‖p, (2.21)

and both ϕ(η) and η satisfy

lim
η→+∞

ln
(

1 +ϕ(η)
)

η
= lim

η→+∞
ln(1 +η)

η
= 0, (2.22)

so that it is quite sufficient to establish that

∥

∥ϕ(I)
∥

∥

p ≤ C2(p), (2.23)

(where C2(p) is a positive constant independent of t) for some p > n/2.
To that purpose, let δ > 0 and ε > 0 be two positive numbers satisfying (2.3). It is readily

seen from (1.6) that there exists η0 ≥ 0 such that

η ≥ η0 =⇒max
(

η,ϕ(η)
)≤ e(ε/n)η, (2.24)

from which one gets the following estimates:

∥

∥ϕ(I)
∥

∥

n
n =

∫

I≤η0

(

ϕ(I)
)n
dx+

∫

I≥η0

(

ϕ(I)
)n
dx

≤ (ϕ(η0
))n|Ω|+

∫

Ω
eεIdx ≤ (ϕ(η0

))n|Ω|+L(t)

≤ (ϕ(η0
))n|Ω|+ 2

(

1 + δ
(

K +K2))|Ω|+Ce−(σ/2)t .

(2.25)
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Hence, one merely lets

C2(n)= n
√

(

ϕ
(

η0
))n|Ω|+ 2

(

1 + δ
(

K +K2
))|Ω|+C (2.26)

in order to obtain (2.23) and thereby (2.20). As precised, the result established in [13]
permits to deduce the uniform boundedness of the solutions of (1.1)–(1.3) and the the-
orem is completely proved. �

In order to make assumption (H.2) stated in the introduction meaningful, we expose
the following result where we establish the expression defining the positive constant N
introduced in (H.2) as well as the property it enjoys. It will be soon observed that N de-
pends on positive constantsM(r,n) andC(r,n) issued from known embedding theorems.
To be more precise, we refer the reader to the appendix where the existence of M(r,n) is
shown in (P.2) of Lemma A.1 and that of C(r,n) is claimed in Lemma A.2.

We merely say here that these constants M(r,n) and C(r,n) are supposed to be avail-
able in the following lemma.

Lemma 2.3. Let

N = C
(

3
4

,n
)

M
(

3
4

,n
)

(

1 + 6
(

̂λψ(K) + σ
)){([

ϕ
(

η0
)]n

+ 2
[

1 + δ
(

K +K2)])|Ω|}1/n
,

(2.27)

where K , δ, and η0 are the constants defined by (2.1), (2.3), and (2.24), respectively. Then
for all (t,x)∈R+×Ω,

I(t,x)≤N +C · e−(σ/2)t, (2.28)

where C is a positive constant.

To keep the flow of the main objectives of this work, we postpone to the appendix the
proof of this lemma which is rather technical and somewhat long.

3. Asymptotic behavior of the solutions

In this section, we deal with the large-time behavior of the solutions S and I of system
(1.1)–(1.3) as t→ +∞. Before stating the results, let us expose some notations and simple
facts concluded from the results of the previous section. First, thanks to Theorem 2.2, let
R > 0 be a positive constant independent of t such that

I(t,x)≤ R on R+×Ω, (3.1)

and set

θq = sup
0≤ζ≤η≤R

(

ϕ′(ζ
)q
ηq−1) (3.2)
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for q ≥ 1 so that using the mean value theorem, one checks that for all (t,x) ∈ R+ ×Ω
and q ≥ 1,

ϕ(I)q ≤ θqI. (3.3)

On the other hand, let us observe that the application of the maximum principle di-
rectly implies that

0≤ S(t,x)≤ Λ

μ

(

1− e−μt)+
∥

∥S0
∥

∥∞e
−μt (3.4)

so that if we set

J = Λ

μ

(

1− e−μt)+
∥

∥S0
∥

∥∞e
−μt − S, (3.5)

one obtains

∂J

∂t
−d1ΔJ = λ(t) f (S,I)−μJ in R+×Ω,

J(0,x)= J0(x)= ∥∥S0
∥

∥∞ − S0(x) in Ω,

∂J

∂ν
= 0 on R+× ∂Ω,

(3.6)

and 0≤ J(t,x)≤ (Λ/μ)(1− e−μt) +‖S0‖∞e−μt. We observe that both I and J satisfy a par-
abolic equation of the same kind, namely

∂V

∂t
−dΔV = λ(t) f (S,I)− ρV in R+×Ω,

V(0,x)=V0(x) in Ω,

∂V

∂ν
= 0 on R+× ∂Ω,

(3.7)

with

V =
⎧

⎨

⎩

I if d = d2, ρ = σ , V0 = I0,

J if d = d1, ρ = μ, V0 = J0.
(3.8)

The results of this section are based on the preliminary lemma below.

Lemma 3.1. Suppose that
∫ +∞

0

∫

Ω I dxds < +∞, where (S,I) is the global and bounded solu-
tion to system (1.1)–(1.3). Then as t→ +∞,

∥

∥

∥

∥
S(t,·)− Λ

μ

∥

∥

∥

∥

∞
−→ 0, (3.9)

∥

∥I(t,·)‖∞ −→ 0. (3.10)
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Proof. Let us multiply by V the parabolic equation (3.7)-(3.8) satisfied by V , integrate
over Ω, and use Green’s formula so that

1
2
∂

∂t

∫

Ω
V 2dx+d

∫

Ω
(∇V)2dx

= λ(t)
∫

Ω
V f (S,I)dx− ρ

∫

Ω
V 2dx ≤ ̂λ

(∫

Ω
V f (S,I)dx

)

− ρ
∫

Ω
V 2dx.

(3.11)

As a consequence, letting R∗ =max(K ,R),

E(V)= 1
2

∫

Ω
V(t,x)2dx+d

∫ t

0

∫

Ω
(∇V)2dxds+ ρ

∫ t

0

∫

Ω
V 2dxds, (3.12)

using (2.1), (3.1), (3.3), (3.6), and integrating over (0, t),

E(V)≤ ̂λ
∫ t

0

∫

Ω
V f (S,I)dxds+

1
2

∫

Ω
V(0,x)2dx

≤ ̂λR∗ψ(K)θ1

∫ t

0

∫

Ω
I dxds+

1
2

∫

Ω
V(0,x)2dx,

(3.13)

from which one obviously deduces that

V(t,·)∈ L2(Ω),
∫ +∞

0

∫

Ω
(∇V)2dxdt < +∞,

∫ +∞

0

∫

Ω
V 2dxdt < +∞, (3.14)

so that Barbalate’s lemma (see [14, Lemma 1.2.2]) permits to conclude that

lim
t→+∞

∥

∥V(t,·)∥∥2 = 0. (3.15)

On the other hand, since the orbit {V(t,·)/t ≥ 0} of the equation verified by V is (on
account of the uniform boundedness of S and I) relatively compact (see, e.g., [13]), it
readily follows that

lim
t→+∞

∥

∥V(t,·)∥∥∞ = 0. (3.16)

Hence limit (3.9) is verified. Since

∥

∥

∥

∥
S(t,·)− Λ

μ

∥

∥

∥

∥

∞
=
∥

∥

∥

∥

Λ

μ

(

1− e−μt)+
∥

∥S0
∥

∥∞e
−μt − S+ e−μt

(

Λ

μ
−∥∥S0

∥

∥∞

)∥

∥

∥

∥

∞

≤ ∥∥J(t,·)∥∥∞ + e−μt
∣

∣

∣

∣

Λ

μ
−∥∥S0

∥

∥∞

∣

∣

∣

∣
,

(3.17)

limit (3.10) is also valid and the lemma is proved. �

Our first result of this section regarding the asymptotic behavior can be stated as
follows.
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Theorem 3.2. Let assumption (H.1) hold and let (S,I) be the solution of (1.1)–(1.3) in
[0,+∞[. Then as t→ +∞,

∥

∥

∥

∥
S(t,·)− Λ

μ

∥

∥

∥

∥

∞
−→ 0,

∥

∥I(t,·)∥∥∞ −→ 0.
(3.18)

Proof. According to assumption (H.1), there exists p ≥ 1 such that

∫ +∞

0

(

λ(t)
)p
dt = α < +∞. (3.19)

Let q > 1 be the dual number of p, that is

1
p

+
1
q
= 1. (3.20)

We assume for simplicity that p > 1 and q < +∞ since the cases p = 1 and q = +∞ can
be treated similarly. Integrating the parabolic equation satisfied by I over Ω and using
Holder’s inequality and (3.3), we get

∂

∂t

∫

Ω
I dx = λ(t)

∫

Ω
f (S,I)dx− σ

∫

Ω
I dx

≤ λ(t)ψ(K)
∫

Ω
ϕ(I)dx− σ

∫

Ω
I dx

≤ λ(t)ψ(K)|Ω|1/p
(∫

Ω

(

ϕ(I)
)q
dx
)1/q

− σ
∫

Ω
I dx

≤ λ(t)θ
1/q
q ψ(K)|Ω|1/p

(∫

Ω
Idx

)1/q

− σ
∫

Ω
I dx.

(3.21)

Therefore integrating over [0, t] and using again Holder’s inequality, we obtain

∫

Ω
I dx+ σ

∫ t

0

∫

Ω
I dxds≤ θ1/q

q ψ(K)|Ω|1/p
∫ t

0
λ(s)

(∫

Ω
I dx

)1/q

ds+
∫

Ω
I0dx

≤ θ1/q
q ψ(K)|Ω|1/p

(∫ t

0

(

λ(s)
)p
ds
)1/p(∫ t

0

∫

Ω
I dxds

)1/q

+
∥

∥I0
∥

∥∞|Ω|.
(3.22)

Let B(t)= (
∫ t

0

∫

Ω I dxds)
1/q so that

σB(t)q− θ1/q
q ψ(K)

(

α|Ω|)1/p
B(t)−∥∥I0

∥

∥∞|Ω| ≤ 0, (3.23)

and consequently

(∫ t

0

∫

Ω
I dxds

)1/q

≤ ω, (3.24)
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where ω is the unique positive root of

σXq−Aqψ(K)
(

α|Ω|)1/p
X −∥∥I0

∥

∥∞|Ω| (3.25)

in R+. We directly deduce that

∫ +∞

0

∫

Ω
I dxds < +∞. (3.26)

By virtue of Lemma 3.1, limits (3.9) and (3.10) are satisfied and Theorem 3.2 is com-
pletely proved. �

The second result of this section concerns also the large-time behavior of the solutions
and can be stated as follows.

Theorem 3.3. Let assumption (H.2) hold with N defined by expression (2.27) introduced
in Lemma 2.3. Then as t→ +∞,

∥

∥

∥

∥
S(t,·)− Λ

μ

∥

∥

∥

∥

∞
−→ 0,

∥

∥I(t,·)∥∥∞ −→ 0.

(3.27)

Proof. Let us consider the parabolic equation below satisfied by I :

∂I

∂t
−d2ΔI = λ(t) f (S,I)− σI in R+×Ω,

I(0,x)= I0(x) in Ω,

∂I

∂ν
= 0 on R+× ∂Ω.

(3.28)

Therefore, thanks to Lemma 2.3, we obtain

∂I

∂t
−d2ΔI ≤ ̂λϕ(I)ψ(S)− σI ≤

(

̂λ
ϕ
(

N +Ce−(σ/2)t
)

N +Ce−(σ/2)t
ψ(J + S)− σ

)

I (3.29)

since, owing to assumption (H.2), ϕ(I) ≤ (ϕ(N +Ce−(σ/2)t)/(N +Ce−(σ/2)t)I). On the
other hand, one has

lim
t→+∞

ϕ
(

N +Ce−(σ/2)t
)

N +Ce−(σ/2)t
= ϕ(N)

N
,

lim
t→+∞ψ

(

J(t,x) + S(t,x)
)= ψ

(

Λ

μ

)

.

(3.30)

As a consequence by applying assumption (H.2) once more where ϕ(N)/N < σ/
̂λψ(Λ/μ), it follows that there exist T ≥ 1 and κ > 0 such that

t ≥ T =⇒ ̂λ
ϕ
(

N +Ce−(σ/2)t
)

N +Ce−(σ/2)t
ψ(J + S)− σ ≤−κ < 0. (3.31)
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The application of the maximum principle directly yields

t ≥ T , x ∈Ω=⇒ 0≤ I(t,x)≤ e−κ(t−T)
∥

∥I(T ,·)∥∥∞, (3.32)

from which it follows that

∥

∥I(t,·)∥∥∞ −→ 0 as t −→ +∞. (3.33)

More importantly, the integral over R+×Ω,

∫ +∞

0

∫

Ω
I dxds=

∫ T

0

∫

Ω
I dxds+

∫ +∞

T

∫

Ω
I dxds

≤
∫ T

0

∫

Ω
I dxds+

1
κ
M|Ω| < +∞,

(3.34)

is finite so that by virtue of Lemma 3.1, limits (3.9) and (3.10) are valid and Theorem 3.3
is completely proved. �

Remark 3.4. In the light of the proof of Theorem 3.3, it is clear that the constant N de-
fined by (2.27) and required in assumption (H.2) might be replaced by any other positive
constant, say N ′, such that for all (t,x)∈R+×Ω,

I(t,x)≤N ′ + ε(t), (3.35)

where ε(t) is a nonnegative function with limt→0 ε(t)= 0.

Appendix

A. Proof of Lemma 2.3

The positive constant N , defined by (2.27) and satisfying the estimate I(t,x) ≤ N +C ·
e−(σ/2)t with C a positive constant, is constructed by applying variation of constants and
by introducing fractional powers. In this respect, this appendix is logically divided into
two subsections A.1 and A.2. While in the second subsection we proceed to the effective
proof of Lemma 2.3, the first one is devoted to brief statements of some known aspects
on the semigroup formulation and the fractional powers.

Preliminary estimates. Let us recall some classical facts about the semigroup formulation
and the fractional powers by following [6]. For p > 1, let us define the operator A on
Lp(Ω) by

Apu= d2Δu for u∈D(A),

D
(

Ap
)=

{

u∈W2,p(Ω)
/

∂u

∂ν
= 0 on ∂Ω

}

,
(A.1)

where W2,p(Ω) is the usual Sobolev space. It is well known that A generates a compact
analytic semigroup

�p=
{

etAp
/

t ≥ 0
}

(A.2)
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of bounded linear operators on Lp(Ω) and that

∥

∥etApu
∥

∥

p ≤ ‖u‖p for t ≥ 0, u∈ Lp(Ω), (A.3)

where

‖u‖p =
(∫

Ω

∣

∣u(x)
∣

∣

p
dx
)1/p

. (A.4)

It is also a well-known fact that for r > 0, the fractional powers (I −Ap)−r exist and are
injective bounded linear operators on Lp(Ω) (see, e.g., [12]).

For r > 0, let Brp = ((I −Ap)−r)−1 and recall that D(Brp) is a Banach space with the
graph norm |‖u‖|r,p = ‖Brpu‖p and that if r > s ≥ 0 (where conventionally Lp(Ω) =
D(B0

p)), then D(Brp) is a dense space of D(Bsp) with the inclusion D(Brp) ⊂ D(Bsp) com-
pact (see, e.g., [12]). Here we will make use of the following two lemmas.

Lemma A.1. For the semigroup �p and the fractional powers Brp just considered, one has

t > 0, u∈ Lp(Ω)=⇒ etApu∈D(Brp
)

, (P.1)

t > 0, u∈ Lp(Ω)=⇒ ∥

∥Brpe
tApu

∥

∥

p ≤M(r, p)t−r‖u‖p, (P.2)

t > 0, u∈ Lp(Ω)=⇒ Brpe
tApu= etApBrpu, (P.3)

where M(r, p) > 0 is a positive constant independent of t.

Proof. For the proof of this lemma, we refer the reader to Pazy [12, page 74, Theorem
6.13]. �

Lemma A.2. Suppose that a fractional power Brp (defined above) is such that r > n/2p. Then
D(Brp)⊂ L∞(Ω) and

‖u‖∞ ≤ C(r, p)
∥

∥Brpu
∥

∥

p, (A.5)

where C(r, p) > 0 is a positive constant.

Proof. The proof of this lemma can be readily deduced by applying Theorem 1.6.1 ex-
posed in [11, page 39]. �

Construction of the constant N . In the sequel, we assume that C > 0 is a generic positive
constant changing values from line to line. In the proof of Theorem 2.2, we have in fact
shown because of (2.24) that

∥

∥I(t)
∥

∥

n,
∥

∥ϕ
(

I(t)
)∥

∥

n ≤
{[

ϕ
(

η0
)]n|Ω|+ 2

[

1 + δ
(

K +K2)]|Ω|+Ce−(σ/2)t}1/n

≤ {[ϕ(η0
)]n|Ω|+ 2

[

1 + δ
(

K +K2)]|Ω|}1/n
+Ce−(σ/2)t,

(A.6)

where I(t)(x)= I(t,x) and ϕ(I(t))(x)= ϕ(I(t,x)). Accordingly, let

G(t)(x)= λ(t) f
(

S(t,x),I(t,x)
)− σI(t,x). (A.7)
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Applying variation of constants, one can write for t0 ≥ 0 and r > 0 that

I(t)= e(t−t0)AnI
(

t0
)

+
∫ t

t0
e(t−τ)AnG(τ)dτ,

BrnI(t)= Brne(t−t0)AnI
(

t0
)

+
∫ t

t0
Brne

(t−τ)AnG(τ)dτ,

(A.8)

and using Lemma A.1,

∥

∥BrnI(t)‖n ≤
∥

∥Brne
(t−t0)AnI

(

t0
)∥

∥

n +
∫ t

t0

∥

∥Brne
(t−τ)AnG(τ)

∥

∥

ndτ

≤M(r,n)
[

(

t− t0
)−r∥
∥I
(

t0
)∥

∥

n +
∫ t

t0
(t− τ)−r

∥

∥G(τ)
∥

∥

ndτ
]

≤M(r,n)γ
[

(

t− t0
)−r

+
(

̂λψ(K) + σ
)

∫ t

t0
(t− τ)−rdτ

]

+C
∫ t

t0
(t− τ)−re−(σ/2)τdτ

(A.9)

with the constant M(r,n) > 0 given in Lemma A.1 and

γ = {([ϕ(η0
)]n

+ 2
[

1 + δ
(

K +K2)])|Ω|}1/n
. (A.10)

Set t0 = �t�− 1, where �t� denotes the floor of t (i.e., the largest integer less than or equal
t). We have for t ≥ 1 that

∥

∥BrnI(t)
∥

∥

n ≤M(r,n)γ
(

1 +

(

̂λψ(K) + σ
)

1− r
(

t− t0
)1−r

)

+Ce−(σ/2)t

≤M(r,n)γ
(

1 +

(

̂λψ(K) + σ
)

1− r 21−r
)

+Ce−(σ/2)t .

(A.11)

Now, we set r = 3/4 > n/2n so that by virtue of Lemma A.2 with the positive constant
C(3/4,n) > 0 introduced therein, one claims that

I(t,x)≤N +Ce−(σ/2)t ∀t ≥ 1, x ∈Ω, (A.12)

where

N = C
(

3
4

,n
)

M
(

3
4

,n
)

(

1 + 6
(

̂λψ(K) + σ
)){([

ϕ
(

η0
)]n

+ 2
[

1 + δ
(

K +K2)])|Ω|}1/n
.

(A.13)

Hence Lemma 2.3 is proved.
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