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Singular hermitian metrics on holomorphic
vector bundles

Hossein Raufi

Abstract. We introduce and study the notion of singular hermitian metrics on holomorphic

vector bundles, following Berndtsson and Păun. We define what it means for such a metric to be

positively and negatively curved in the sense of Griffiths and investigate the assumptions needed

in order to locally define the curvature Θh as a matrix of currents. We then proceed to show that

such metrics can be regularised in such a way that the corresponding curvature tensors converge

weakly to Θh. Finally we define what it means for h to be strictly negatively curved in the sense of

Nakano and show that it is possible to regularise such metrics with a sequence of smooth, strictly

Nakano negative metrics.

1. Introduction

Let E→X be a holomorphic vector bundle over a complex manifold X and let

h be a hermitian metric on E. In applying the methods of differential geometry to

the study of (E,X) the connection matrix and curvature associated with h play a

major role. In the classical setting these constructions assume that h is smooth as

a function from X to the space of non-negative hermitian forms on the fibres.

However in [5] Demailly introduced the notion of singular hermitian metrics

for line bundles, and in a series of papers he and others proceeded to investigate

these and prove that, generally speaking, they are a fundamental tool in interpreting

notions of complex algebraic geometry analytically.

In [2] and [3] two different notions of singular hermitian metrics on a holomor-

phic vector bundle were introduced. We will adopt the former definition, which is

the following (see Section 3 for a comparison and discussion of the quite different

definition used in [3]).
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Definition 1.1. Let E→X be a holomorphic vector bundle over a complex

manifold X . A singular hermitian metric h on E is a measurable map from the

base space X to the space of non-negative hermitian forms on the fibres.

On a holomorphic line bundle a hermitian metric h is just a scalar-valued

function so that θ=h−1∂h=∂ log h and Θ=∂∂ log h, and hence these objects are

well-defined as currents as long as log h∈L1
loc(X). But for holomorphic vector bun-

dles with rankE≥2 it is not clear what the appropriate notions of connection and

curvature associated with h are.

Although it is not immediate how to make sense of the curvature of a singular

hermitian metric h, it is nevertheless still possible to define what it means for h to

be positively and negatively curved in the sense of Griffiths. The definition that we

will adopt is the following.

Definition 1.2. Let E→X be a holomorphic vector bundle over a complex

manifold X and let h be a singular hermitian metric. We say that h is negatively

curved in the sense of Griffiths if ‖u‖2h is plurisubharmonic for any holomorphic

section u. Furthermore we say that h is positively curved in the sense of Griffiths

if the dual metric is negatively curved.

This is a very natural definition as these conditions both are well-known equiv-

alent properties for smooth metrics; see Section 2, where these facts are reviewed.

In fact this is almost identical to the definition adopted by Berndtsson–Păun ([2],

Definition 3.1), except that they require log ‖u‖2h to be plurisubharmonic, but one

can show that the two definitions are equivalent; see Section 2.

The main question that we are concerned with in this paper is:

Given these two definitions, is it possible to define θh and in particular

Θh, in a meaningful way ; for example as currents with measure coeffi-

cients?

This would be useful since we then would be able to define what it means for a sin-

gular hermitian metric to be strictly positively or negatively curved. Furthermore,

the utility would increase even more if we would also be able to regularise while

keeping positivity or negativity.

Now Definition 1.1 by itself is of course far too liberal to provide us with any

answer to this question. However, it turns out that the additional requirements in

Definition 1.2 rule out most of the possible pathological behaviour. The following

properties are more or less immediate consequences of Definition 1.2.



Singular hermitian metrics on holomorphic vector bundles 361

Proposition 1.3. Let h be a singular hermitian metric on a holomorphic vec-

tor bundle E, and assume that h is negatively curved in the sense of Griffiths as in

Definition 1.2.

(i) ([2], Proposition 3.1) If E is a trivial vector bundle over a polydisc, there

exists a sequence of smooth hermitian metrics {hν}∞ν=1 with negative Griffiths cur-

vature, decreasing to h pointwise on any smaller polydisc.

(ii) log deth is a plurisubharmonic function. In particular, if deth �≡0, then

log deth∈L1
loc(X).

In (i), the approximating sequence is obtained through the well-known tech-

nique of convolution with an approximate identity (see Section 6). Also, by duality,

if h is positively curved as in Definition 1.2, there exists an increasing regularising

sequence.

It turns out that it is not too difficult to define the connection matrix of a

singular hermitian metric that is positively or negatively curved as in Definition 1.2.

Proposition 1.4. Let h be a singular hermitian metric on a holomorphic vec-

tor bundle E, that is negatively curved in the sense of Griffiths, as in Definition 1.2.

Then the current ∂h is locally an L2-valued form and θh :=h−1∂h is an a.e. well-

defined matrix of (1, 0)-forms.

Here and in the sequel we identify the metric h with a matrix representing h

in a local holomorphic frame. The property of lying in L2 and so on, is clearly

independent of the choice of frame.

For the curvature, the situation turns out to be more involved.

Theorem 1.5. Let Δ⊂C denote the unit disc and let E=Δ×C
2 be the trivial

vector bundle over Δ. Let h be the singular hermitian metric,

h=

(
1+|z|2 z

z |z|2
)
.

Then, h is negatively curved in the sense of Griffiths, as in Definition 1.2, and the

connection matrix of h is given by (see Section 3),

θh :=h−1∂h=

⎛
⎜⎝

1

z
0

− 1

z2
1

z

⎞
⎟⎠ dz.

Hence, θh is not locally integrable on Δ, and Θh :=∂θh is not a current with measure

coefficients.
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This theorem shows that it is not possible to define the curvature in general, just

using Definition 1.2. The existence of examples such as the metric in Theorem 1.5

forces us to disregard the singular part of the metric, which is characterised by the

fact that deth vanishes there. If we impose the additional condition that deth>ε,

for some ε>0, we get the following theorem. (Here and in what follows Θ̃hν :=

iΘhν (ξ, ξ), where ξ denotes an arbitrary smooth vector field, and Θ̃hν ∈L1
loc(X)

uniformly in ν, means that each element in the matrix Θ̃hν is a locally integrable

function with a bound that is independent of ν.)

Theorem 1.6. Let E→X be a holomorphic vector bundle over a complex man-

ifold X , and let h be a singular hermitian metric on E that is negatively curved in

the sense of Griffiths, as in Definition 1.2. Let furthermore {hν}∞ν=1 be any approx-

imating sequence of smooth, hermitian metrics with negative Griffiths curvature,

decreasing pointwise to h.

If there exists ε>0 such that deth>ε, then Θ̃hν ∈L1
loc(X) uniformly in ν, Θh :=

∂θh is a well-defined current with measure coefficients, and Θ̃hν converge weakly to

Θ̃h as currents with measure coefficients.

If h is a singular hermitian metric that is negatively curved in the sense of

Griffiths as in Definition 1.2, then in general it is not the case that Θ̃hν ∈L1
loc(X)

uniformly in ν. However, if the setting is such that for some reason it is known that

Θ̃hν ∈L1
loc(X) uniformly in ν, then Theorem 1.6 holds without using the assumption

deth>ε. (An example of this is when the vector bundle is a product of a smooth

vector bundle and a singular line bundle.)

As we will soon discuss, despite the rather unpleasant condition deth>ε, the

setting of Theorem 1.6 is sufficient to prove vanishing theorems for these types of

singular vector bundles. But before we turn to this, we first note that the following

corollary is an immediate consequence of Theorem 1.6.

Corollary 1.7. Assume that F :={z :deth(z)=0} is a closed set and assume

furthermore that there exists an exhaustion of open sets {Uj}∞j=1 of F c such that

deth>1/j on Uj . Then Θh exists as a current on F c.

From now on we will assume that the assumptions of this corollary are met.

Now for line bundles one of the main theorems concerning singular metrics is

the Demailly–Nadel vanishing theorem [4] and [6]. One statement of this theorem

is that for forms of appropriate bidegrees with values in a line bundle, it is possible

to solve the inhomogeneous ∂-equation on any complete Kähler manifold, if the

metric is strictly positively curved as a current. To prove a corresponding result in
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the vector bundle case requires an appropriate notion of being curved in the sense

of Nakano in the singular setting.

Just as for curvature in the sense of Griffiths, there exists an alternative char-

acterisation of Nakano negativity that we can use in the singular setting ([1], Sec-

tion 2). Namely let u=(u1, ..., un) denote an n-tuple of holomorphic sections of E,

and define an (n−1, n−1)-form Th
u through

Th
u =

n∑
j,k=1

(uj , uk)h ̂dzj∧dzk,(1)

where (z1, ..., zn) are local coordinates and ̂dzj∧dzk denotes the wedge product of

all dzi and dzi except dzj and dzk, multiplied by a constant of absolute value 1,

chosen so that Th
u is a positive form. Then a short computation yields that h is

negatively curved in the sense of Nakano if and only if Th
u is plurisubharmonic in

the sense that i∂∂Th
u ≥0; see Section 2. Choosing uj=aju, where a∈Cn, we see

that if this requirement is met, h is negatively curved in the sense of Griffiths, as

in Definition 1.2, as well. Hence Θh is well-defined on F c.

We will adopt the following definition of being strictly negatively curved in the

sense of Nakano.

Definition 1.8. We say that a singular hermitian metric h on a vector bundle

E is strictly negatively curved in the sense of Nakano if the following holds:

(i) The (n−1, n−1)-form Th
u given in (1) is plurisubharmonic for any n-tuple

of holomorphic sections u=(u1, ..., un);

(ii) There exists δ>0 such that on F c,

n∑
j,k=1

(Θh
jksj , sk)h ≤−δ

n∑
j=1

‖sj‖2h(2)

for any n-tuple of sections s=(s1, ..., sn).

Here {Θjk} are the matrix-valued distributions defined through

Θh =

n∑
j,k=1

Θh
jk dzj∧dzk

and so the expression in (2) should be interpreted in the sense of distributions.

In Section 5 we prove the following approximation result.
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Proposition 1.9. Let E→Ω be a trivial holomorphic vector bundle over a

domain Ω in C
n, and let h be a singular hermitian metric on E satisfying the as-

sumptions of Corollary 1.7. Assume furthermore that h is strictly negatively curved

in the sense of Nakano, as in Definition 1.8. Let {hν}∞ν=1 be an approximating

sequence of smooth metrics, decreasing pointwise to h on any relatively compact

subset of Ω, obtained through convolution of h with an approximate identity.

If h is continuous, then for every ν, hν is also strictly negatively curved in the

sense of Nakano, with the same constant δ in (2).

The continuity of h is needed to make sure that the approximating sequence

{hν}∞ν=1, obtained through convolution, converges uniformly to h, which will turn

out to be important in the proof.

In Section 5 we start by giving a similar definition and approximation result in

the simpler Griffiths setting. As the dual of a Griffiths negative bundle is Griffiths

positive, the regularisation can also be made in the positive case. In [7] this is

used to prove a Demailly–Nadel type of vanishing theorem for vector bundles over

complex curves ([7], Theorem 1.3).

Unlike curvature in the sense of Griffiths, the dual of a Nakano negative bundle,

in general, is not Nakano positive. Because of this we cannot use Definition 1.8 and

our regularisation result in the positive setting. Hence for singular metrics a whole

new approach to Nakano positivity is probably needed. Unfortunately we have

so far failed to come up with an appropriate definition that lends itself well to

regularisations.

Acknowledgements. It is a pleasure to thank Bo Berndtsson for inspiring and

helpful discussions. I would also like to thank Mark Andrea A. de Cataldo and the

referee for careful reading and constructive criticism of the manuscript.

2. Curvature and positivity

Let X be a complex manifold with dimCX=n, and let (E, h) be a smooth,

hermitian, holomorphic vector bundle over X with rankE=r. Then we have a

well-defined bilinear form, which we denote by 〈 · , · 〉, for forms on X with values in

E by letting 〈α⊗s, β⊗t〉:=α∧β(s, t)h for forms α and β and sections s and t, and

then extend to arbitrary forms with values in E by linearity.

In the main part of this article we are in a local setting and so we will assume

that X is a polydisc U and that E is trivial. Hence we regard h as a matrix-valued

function on U . If s and t are sections of E we will regard them as vectors of

functions so that



Singular hermitian metrics on holomorphic vector bundles 365

(s, t)h = t∗hs,

where t∗ is the transpose conjugate of t and juxtaposition denotes matrix multipli-

cation.

We denote the Chern connection associated with the bilinear form 〈 · , · 〉 by

D=D′+∂ and the curvature by Θ=D2=D′∂+∂D′. Locally D′, and hence D, can

be represented by a matrix of one-forms θ, and one can show that this matrix is given

by θ=h−1∂h. One can also show that Θ equals ∂θ=∂(h−1∂h), i.e. the curvature can

locally be represented as a matrix of two-forms. Thus if we let {z1, ..., zn} denote

local coordinates on X , we have that

Θ=

n∑
j,k=1

Θjk dzj∧dzk,(3)

where Θjk are r×r matrix-valued functions on X .

Throughout this article, unless explicitly stated otherwise, we will use the

∼ symbol to denote form-valued objects acting on some arbitrary, smooth vector

field ξ. For example, θ̃=θ(ξ), ∂̃h=∂h(ξ) and so on. However, for the curvature

tensor we let Θ̃:=iΘ(ξ, ξ).

Now there are two main notions of positivity for holomorphic vector bundles.

We say that (E, h) is strictly positively curved in the sense of Griffiths if for some

δ>0,

(Θ̃s, s)h ≥ δ‖s‖2h|ξ|2

for any section s of E, and any smooth vector field ξ. Using (3) we see that this is

equivalent to
n∑

j,k=1

(Θjks, s)hξjξk ≥ δ‖s‖2h|ξ|2

for any vector ξ∈Cn.

We say that E is strictly positively curved in the sense of Nakano if for some

δ>0,

n∑
j,k=1

(Θjksj , sk)h ≥ δ

n∑
j=1

‖sj‖2h(4)

for any n-tuple (s1, ..., sn) of sections of E. Griffiths and Nakano semipositivity,

seminegativity and strict negativity are defined similarly.

Choosing sj=ξjs in (4) it is immediate that being positively or negatively

curved in the sense of Nakano implies being positively or negatively curved in the

sense of Griffiths. The converse however, does not hold in general. Of these two

main positivity concepts Griffiths positivity has the nicest functorial properties in
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that if E is positively curved in the sense of Griffiths, then the dual bundle E∗ has

negative Griffiths curvature. This property will be very useful for us as it allows

us to study metrics with positive and negative Griffiths curvature interchangeably.

Unfortunately this correspondence between E and E∗ does not hold in the Nakano

case. The reason for studying Nakano positivity is that it is intimately related with

the solvability of the inhomogeneous ∂-equation using L2 methods.

The smoothness of h is central in defining the curvature, and hence also in

being curved in the sense of Griffiths and Nakano. However, as we will be dealing

with singular metrics, these definitions will not work for us. Instead the following

alternative characterizations will be useful.

Let u be an arbitrary holomorphic section of E. Then a short computation

yields

i∂∂‖u‖2h =−〈iΘu, u〉h+i〈D′u,D′u〉h ≥−〈iΘu, u〉h.(5)

Hence we see that if the curvature is negative in the sense of Griffiths, then ‖u‖2h is

plurisubharmonic. On the other hand, we can always find a holomorphic section u

such that D′u=0 at a point. Thus h is negatively curved in the sense of Griffiths if

and only if ‖u‖2h is plurisubharmonic for any holomorphic section u.

In exactly the same way one can also show that h is negatively curved in the

sense of Griffiths if and only if log ‖u‖2h is plurisubharmonic for every holomor-

phic section u. Alternatively, one can obtain this from the well-known fact that

for a positive-valued function v, log v is plurisubharmonic if and only if ve2Re q is

plurisubharmonic for every polynomial q. Choosing v=‖u‖2h we get that ‖u‖2he2Re q=

‖ueq‖2h, which is plurisubharmonic as ueq also is a holomorphic section, for every

polynomial q.

Now turning to curvature in the sense of Nakano, we let u=(u1, ..., un) denote

an n-tuple of holomorphic sections of E and define the (n−1, n−1)-form Tu through

Tu =

n∑
j,k=1

(uj , uk)h ̂dzj∧dzk,

where (z1, ..., zn) are local coordinates on X , and ̂dzj∧dzk denotes the wedge prod-

uct of all dzi and dzi except dzj and dzk, multiplied by a constant of absolute

value 1, chosen so that Tu is a positive form. Then we have that

i∂∂Tu = −
n∑

j,k=1

(Θjkuj , uk)h dV +

∥∥∥∥
n∑

j=1

D′
zjuj

∥∥∥∥
2

h

dV ≥−
n∑

j,k=1

(Θjkuj , uk)h dV,

where dV :=in dz1∧dz1∧...∧dzn∧dzn and D′
zj :=D′

∂/∂zj
. Hence analogous to the

previous case, we see that if the curvature has negative Nakano curvature, then Tu
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is a plurisubharmonic (n−1, n−1)-form, and on the other hand we can always find

holomorphic sections uj such that D′
zjuj=0 at a point, for j=1, ..., n. Thus Tu is

a plurisubharmonic (n−1, n−1)-form if and only if h is negatively curved in the

sense of Nakano.

3. Comparison with de Cataldo and Theorem 1.5

As noted in the introduction, singular hermitian metrics have been introduced

and studied previously by de Cataldo in [3]. However despite the almost identical

title, the purpose and contents of [3] differ quite a lot from ours. In the introduc-

tion of [3] it is stated that the main goal is to study global generation problems

in the vector bundle setting (that had previously been studied by Demailly and

Siu, among others, in the line bundle case). For this the ‘analytic package’ of the

higher-rank analogues of singular hermitian metrics, regularisation-approximation,

L2 estimates, and the Demailly–Nadel vanishing theorem are needed.

However as the main focus in [3] is on algebraic-geometric aspects, and not on

the technical regularisation procedures, all such approximation results are taken as

part of the definitions. Thus h is defined to be a singular hermitian metric on a

vector bundle E over a manifold X if there exists a closed set Σ⊆X of measure zero

and a sequence of (smooth) hermitian metrics {hs}∞s=1 such that lims→∞ hs=h in

the C2
loc-topology on X\Σ. The curvature tensor associated with h is defined to be

the curvature tensor of h restricted to X\Σ; ([3], Definition 2.1.1).

Immediately after this, (in [3], Section 2), this definition is discussed in the line

bundle setting. There it is recalled that if h=h0e
−2ϕ is a singular hermitian metric

on a line bundle L, where h0 is a (smooth) hermitian metric on L and ϕ is a locally

integrable function on X , then

Θh(L)=Θh0(L)+2i∂∂ϕac+2i∂∂ϕsing.

Here 2i∂∂ϕac has locally integrable coefficients and 2i∂∂ϕsing is supported on some

closed set Σ of measure zero. It is then remarked that in the sense of Definition 2.1.1,

Θh(L)=Θh0(L)+2i∂∂ϕac,

i.e. 2i∂∂ϕsing will not be taken into consideration.

For us, finding a current corresponding to 2i∂∂ϕsing in the vector bundle setting

has been one of the main motivations behind this work.

Now as Definition 1.1 is very liberal, more requirements are needed in order to

be able to reach any interesting conclusions.

First off, we need our vector bundles to be holomorphic, since in a holomorphic

frame we have explicit expressions for the connection and curvature in terms of the
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metric. Secondly, in practice some sort of positivity condition on the curvature

is usually needed. Hence the idea has been to require this from the start, as in

Definition 1.2, and then try to define the curvature tensor as a matrix of positive (or

negative) measures. Moreover since Θ=∂θ, for this to work we need that the entries

of θ are locally integrable. However the simple counterexample of Theorem 1.5

shows that this is not always possible. Let us study this example in more detail.

Proof of Theorem 1.5. Recall that the metric is given by

h=

(
1+|z|2 z

z |z|2
)
.

One can check that for any holomorphic section u(z)=(u1(z), u2(z)) of E=Δ×C
2,

‖u‖2h = |zu1(z)|2+|u1(z)+zu2(z)|2,

which is subharmonic, so h has negative Griffiths curvature in the sense of Defini-

tion 1.2.

It is now straightforward to verify that

∂h=

(
z 1

0 z

)
dz,

and that

h−1 =
1

|z|4

(
|z|2 −z

−z 1+|z|2
)
.

Hence a short calculation yields that the connection matrix corresponding to h is

θh :=h−1∂h=
1

|z|4

(
z|z|2 0

−z2 z|z|2
)

dz=

⎛
⎜⎝

1

z
0

− 1

z2
1

z

⎞
⎟⎠ dz.

This is clearly not locally integrable on Δ, and furthermore, we see that ∂ of the non-

integrable element can be thought of as the derivative of δ0, which is a distribution

of order one. Hence Θh cannot be defined in this way as a form-valued matrix of

measures. �

The conclusion is that at least our approach using holomorphic frames, i.e.

trying to define Θh through ∂(h−1∂h), simply cannot work. It is quite possible that

one might be able to achieve this using an orthogonal frame instead, i.e. by trying

to define the curvature through Θ=dθ+θ∧θ. The problem with this approach is
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how to make sense of the concept of an orthogonal frame. Recall that in the smooth

setting this is just a set of sections that are linearly independent at every point and

orthogonal with respect to the metric, but for a singular metric h, it is not clear

what this means on the singular locus of h. For this reason we had to impose the

extra condition deth>ε for some ε>0, as the singular locus of h is characterised

by the fact that deth vanishes there.

Now as previously mentioned, a Demailly–Nadel type of vanishing theorem

in the vector bundle setting is one of the goals in [3]. In order to generalise the

line bundle proof ([4], Théorème 5.1) the notion of strict positivity in the sense

of Nakano is needed. Furthermore one also needs to be able to approximate a

singular hermitian metric that is strictly Nakano positive, with a sequence of smooth

hermitian metrics that are also strictly positively curved in the sense of Nakano.

In [3] this is basically taken as part of the definition, i.e. a hermitian metric

h, which is singular in the sense of Definition 2.1.1, is said to be strictly positively

curved if there exists a sequence of strictly positively curved curvature tensors ap-

proximating Θh; ([3], Definition 2.4.1). (This is a simplification. The actual defi-

nition is more technical, but, as stated in the beginning of Section 2.4, the idea is

to incorporate the requirements needed to obtain L2-estimate-type results into the

definition.)

Clearly this also is quite different from our approach as one of our main goals

has been to try to come up with definitions of being strictly positively or strictly

negatively curved in the sense of Griffiths and Nakano, in the singular setting, that

are possible to regularise without this being part of the definitions.

4. Basic properties

In this section we prove Propositions 1.3(ii) and 1.4. (Part (i) can be found

in [2], Proposition 3.1. We also prove it in the first part of the proof of Proposi-

tion 6.2 below.) Recall that we use ∼ to denote form-valued objects acting on some

arbitrary, smooth vector field ξ. For example, θ̃hν =θhν (ξ), ∂̃hν=∂hν(ξ) and so on.

Also Θ̃hν :=iΘhν (ξ, ξ).

Proof of Proposition 1.3(ii). From part (i) of the proposition we know that on

any polydisc there exists a sequence of smooth hermitian metrics {hν}∞ν=1 on E,

with negative Griffiths curvature, decreasing pointwise to h on any smaller polydisc.

This sequence induces a sequence of metrics {dethν}∞ν=1 on the line bundle detE.

Furthermore the curvature of the induced metric dethν is the trace of the corre-

sponding curvature Θhν , and is hence negative. Since dethν is a negatively curved
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metric on a line bundle, we know that dethν=eϕν , where ϕν is plurisubharmonic,

i.e. log dethν is a plurisubharmonic function.

As {hν}∞ν=1 is a decreasing sequence, {dethν}∞ν=1 will be decreasing as well.

One way to see this is to regard dethν as a quotient of volumes through the change

of variables formula for integrals. Another way is to use the fact that given any

two hermitian matrices it is always possible to find a basis in which both matrices

are diagonal. Hence {log dethν}∞ν=1 is a decreasing sequence of plurisubharmonic

functions and then it is a well-known fact that the limit function, log deth, will be

plurisubharmonic as well, (or identically equal to minus infinity). �

Remark 4.1. With a bit more work the previous proof also implies that if

deth �≡0, then tr(Θ̃hν )∈L1
loc(X) uniformly in ν. Namely, we have just seen that

ϕν=log dethν and ϕ=log deth are plurisubharmonic functions for all ν, and that

ϕν decreases to ϕ. Furthermore, it is a well-known fact that i∂∂ϕν=tr(Θhν ) and

so we only need to show that,

∫
X

χi∂∂ϕν∧ωn−1

is uniformly bounded in ν, where χ is a test function and ω is a Kähler form.

Through integration by parts we get that

∫
X

χi∂∂ϕν∧ωn−1 =

∫
X

ϕνi∂∂χ∧ωn−1 =:

∫
X

ϕνf dV,

for some smooth function f with compact support, as i∂∂χ∧ωn−1 is a top-form.

Since ϕν decreases to ϕ, we have ϕ≤ϕv≤ϕ0 for all ν, and so we obtain the estimate,

∫
X

ϕνf dV =

∫
{f≥0}

ϕνf dV +

∫
{f<0}

ϕνf dV

≤
∫
{f≥0}

ϕ0f dV +

∫
{f<0}

ϕf dV.

As f and ϕ0 are smooth and ϕ∈L1
loc(X), the claim follows.

We now turn to the proof of Proposition 1.4. Let h denote a singular her-

mitian metric with negative Griffiths curvature in the sense of Definition 1.2, and

let {hν}∞ν=1 be an approximating sequence. Just as in Theorem 1.6 we do not

assume that hν is the convolution of h with an approximate identity, but merely

that {hν}∞ν=1 is any sequence of smooth hermitian metrics with negative Griffiths

curvature decreasing pointwise to h.
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Since each Θ̃hν is hermitian with respect to hν , there is a basis of eigenvectors

{vj}nj=1 that are orthonormal with respect to hν . Hence expanding any section s

of E in terms of this basis we get that

(Θ̃hνs, s)hν =
n∑

j,k=1

(λjajvj , akvk)hν =
n∑

j=1

λj |aj |2.

Moreover, each hν being negatively curved in the sense of Griffiths by definition

means that Θ̃hν is negative definite with respect to {hν}∞ν=1. Thus the eigenvalues

{λj}nj=1 are all negative. In particular we have that

|(Θ̃hνs, s)hν | ≤ max
j=1,...,n

|λj | ‖s‖2hν
≤− tr(Θ̃hν )‖s‖2hν

.(6)

This observation will be of importance in the proof of Proposition 1.4.

Proof of Proposition 1.4. As observed in Remark 4.1, tr(Θ̃hν )∈L1
loc(X) uni-

formly in ν. Thus from (6) we get that (Θ̃hνu, u)hν ∈L1
loc(X) uniformly in ν as

well.

If u is assumed to be holomorphic, (5) yields

i∂∂‖u‖2hν
(ξ, ξ)=−(Θ̃hνu, u)hν +‖D̃′

hν
u‖2hν

.

For any test form φ of bidegree (n−1, n−1), partial integration gives∫
X

φ∧i∂∂‖u‖2hν
=

∫
X

‖u‖2hν
i∂∂φ.

As ‖u‖2hν
decreases pointwise to ‖u‖2h, which in turn is assumed to be plurisub-

harmonic, we get that i∂∂‖u‖2hν
(ξ, ξ)∈L1

loc(X) uniformly in ν. Thus ‖D̃′
hν
u‖2hν

∈
L1
loc(X) uniformly in ν as well.

Now for constant u,

‖D̃′
hν
u‖2hν

=(θ̃hνu)∗hν(θ̃
hνu)=u∗(∂̃hν)

∗h−1
ν (∂̃hν)u

and so tr((∂̃hν)
∗h−1

ν (∂̃hν))∈L1
loc(X) uniformly in ν. Since the sequence {hν}∞ν=1 is

locally bounded from above, the sequence {h−1
ν }∞ν=1 will be locally bounded from

below. Together these facts yield

tr((∂̃hν)
∗h−1

ν (∂̃hν))≥C tr((∂̃hν)
∗(∂̃hν))=C‖∂̃hν‖2HS,

where the norm denotes the Hilbert–Schmidt norm. One way to see this is to note

that as the statement is pointwise, there is no loss of generality in assuming that

h−1
ν is diagonal. Hence ∂̃hν∈L2

loc(X) uniformly in ν.
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We know that hν decreases to h and that h∈L1
loc(X), as ‖u‖2h is assumed to be

plurisubharmonic for any holomorphic function u. This implies that hν converges

to h in L1
loc(X), which in turn yields that ∂̃hν converges to ∂̃h in the sense of

distributions. In combination with ∂̃hν∈L2
loc(X) uniformly in ν, we hence get that

|∂̃h.χ| ≤C‖χ‖L2 ,

where ∂̃h.χ denotes the distribution ∂̃h acting on a test function χ. Thus ∂̃h defines

a bounded linear functional on L2(X), and so by the Riesz representation theorem

this yields that ∂h is an L2-valued form with L2-norm not exceeding C.

Finally we also know that log deth∈L1
loc(X) so that deth �=0 a.e. Hence θh :=

h−1∂h is well-defined a.e. �

5. Proof of Theorem 1.6

In this section h will always denote a singular hermitian metric with negative

Griffiths curvature in the sense of Definition 1.2, and {hν}∞ν=1 will denote an ap-

proximating sequence. Note that in Theorem 1.6 we are not assuming that hν is

the convolution of h with an approximate identity, but merely that {hν}∞ν=1 is any

sequence of smooth hermitian metrics with negative Griffiths curvature decreasing

pointwise to h. Recall that we use ∼ to denote form-valued objects acting on some

arbitrary, smooth vector field ξ. For example, θ̃hν =θhν (ξ), ∂̃hν=∂hν(ξ) and so

on. Also Θ̃hν :=iΘhν (ξ, ξ). Furthermore, as Theorem 1.6 is local in nature, we will

think of h, hν , θ
hν etc. as matrix-valued functions on some polydisc U .

The following lemma will be needed in the proof of Theorem 1.6.

Lemma 5.1. Let {fν}∞ν=1 be a sequence of functions in L1
loc(X) converging

weakly in the sense of distributions to a function f∈L1
loc(X). If fν∈L2

loc(X) uni-

formly in ν, then f∈L2
loc(X) and fν converges weakly to f in L2

loc(X).

Proof. Since the setting is local we can without any loss of generality assume

that we are in C
n. Let φ∈L2(X) with compact support. We want to show that

∫
X

φfν dV →
∫
X

φf dV as ν→∞,

and we know that this holds if φ∈C∞
c (X).

By taking the convolution of φ with an approximate identity, we get a sequence

{φμ}∞μ=1 of smooth functions of compact support, converging to φ in L2(X). Fur-

thermore, as fν∈L2
loc(X) uniformly in ν and the L2-norm of a weakly convergent
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sequence decreases, we have that f∈L2
loc(X) as well. Thus by the Cauchy–Schwarz

inequality,∣∣∣∣
∫
X

φ(fν−f) dV

∣∣∣∣ ≤
∣∣∣∣
∫
X

φμ(fν−f) dV

∣∣∣∣+‖φ−φμ‖L2‖fν−f‖L2(K)

≤
∣∣∣∣
∫
X

φμ(fν−f) dV

∣∣∣∣+C‖φ−φμ‖L2 .

for some compact set K in X . Taking the limit first in ν, and then in μ, finishes

the proof of the lemma. �

The idea for the proof of Theorem 1.6 is to use the condition deth>ε to show

that:

(i) θ̃hν ∈L2
loc(X), uniformly in ν, and θ̃h∈L2

loc(X);

(ii) θ̃hν converges weakly to θ̃h in L2
loc(X).

(In (ii) we mean that after choosing a basis for E and representing θ̃hν as a matrix,

each matrix element converges weakly.) Thus we can deduce that Θh :=∂θh is a well-

defined current, and that the sequence of curvature tensors Θ̃hν converges weakly

to Θ̃h in the sense of currents. We then end by showing that Θ̃h in fact has measure

coefficients, which implies that Θ̃hν converges weakly to Θ̃h in the sense of measures.

The proof of (i) is immediate. Let ĥ denote the adjugate of h, i.e. h−1=

(deth)−1ĥ. The assumption deth>ε implies that dethν>ε and so

h−1
ν =(dethν)

−1ĥν <
C

ε
I,

as the entries of ĥν are just polynomials of the entries of hν , i.e. locally bounded

from above.

Hence ∫
X

‖θ̃hν‖2HS dV ≤ C

ε2

∫
X

‖∂̃hν‖2HS dV

and so by the proof of Proposition 1.4, θ̃hν ∈L2
loc(X) uniformly in ν. The exact

same argument also yields that θ̃h∈L2
loc(X).

Part (ii) is more involved. We begin by showing that θ̃hν converges weakly to

θ̃h in the sense of distributions, i.e. for any test function χ∈C∞
c (X),∫

X

χ(θ̃hν

jk −θ̃hjk) dV =

∫
X

χ(h−1
ν ∂̃hν−h−1∂̃h)jk dV −→ 0 as ν→∞.(7)

By adding and subtracting the term (h−1∂̃hν)jk we get∣∣∣∣
∫
X

χ(θ̃hν

jk −θ̃hjk) dV

∣∣∣∣≤
∣∣∣∣
∫
X

χ((h−1
ν −h−1)∂̃hν)jk dV

∣∣∣∣+
∣∣∣∣
∫
X

χ(h−1(∂̃hν−∂̃h))jk dV

∣∣∣∣.
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Now the first term converges to zero since by the Cauchy–Schwarz inequality

∣∣∣∣
∫
X

χ((h−1
ν −h−1)∂̃hν)jk dV

∣∣∣∣
2

≤C

∫
K

‖h−1
ν −h−1‖2HS dV

∫
K

‖∂̃hν‖2HS dV,

where K denotes a compact subset of X . We know, from Proposition 1.4, that

the second factor is bounded uniformly in ν. Furthermore, as previously noted,

the assumption deth>ε makes h−1
ν bounded from above. Hence the first factor

converges to zero by the dominated convergence theorem.

For the second term we note that as h−1 is bounded from above, we have

in particular that h−1∈L2
loc(X). From the proof of Proposition 1.4 in combination

with Lemma 5.1, we know that ∂̃hν converges weakly in L2
loc(X) to ∂̃h. This proves

(7) for any test function χ∈C∞
c (X). Part (ii) now follows by once again invoking

Lemma 5.1.

Finally, to prove that Θ̃h has measure coefficients, we start by showing that

deth>ε implies that Θ̃hν ∈L1
loc(X) uniformly in ν. Let u be a holomorphic section

and let e denote the usual Euclidean metric on Cn. By the Griffiths condition,

−hνΘ̃
hν is a metric and so the Cauchy–Schwarz inequality and (6) yield

−(Θ̃hνu, u)e = (u, h−1
ν u)−hν

eΘhν ≤ (−Θ̃hνu, u)
1/2
hν

(−Θ̃hνh−1
ν u, h−1

ν u)
1/2
hν

≤ tr(Θ̃hν )‖u‖hν‖h−1
ν u‖hν ≤

C

ε
tr(Θ̃hν )‖u‖2hν

.

Now if χ is any compactly supported test-form on X , and we let Θh.χ denote the

action of the current on this test-form, Θ̃h∈L1
loc(X) combined with the fact that

Θ̃hν converges weakly to Θ̃h in the sense of currents implies that

|Θh.χ| ≤C sup |χ|.

Hence Θh is a current of order zero, and so has measure coefficients. �

As mentioned in the introduction, if it is already known that Θ̃hν ∈L1
loc(X)

uniformly in ν, then one can obtain Theorem 1.6 without using the assumption

deth>ε.

The argument becomes much more involved in this case, although the main

idea is the same as above. For simplicity we will only treat the one-dimensional

case. The several variable version is similar but requires a more advanced integral

representation formula.

It turns out that (i) is a little too much to hope for. Instead we will replace it

with:

(i)′ θ̃hν ∈Lp
loc(X), uniformly in ν, for 1<p<2.
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Let Δ denote a disc in C and assume that E=Δ×C
r. After choosing a basis for

E we can represent θ̃hν and Θ̃hν as matrices, and we will denote different elements

of these matrices by θ̃hν

jk and Θ̃hν

jk . In this notation, Cauchy’s formula yields that

θ̃hν

jk (z)=C

∫
X

χ(ζ)

ζ−z
Θ̃hν

jk (ζ) dλ(ζ)+C ′
∫
X

∂χ(ζ)∧θ̃hν

jk (ζ)

ζ−z
=: fν

jk(z)+gνjk(z)

for some bump function χ, which we choose such that χ≡1 in a neighbourhood of

z so that gνjk is holomorphic on Δ.

Now by Jensen’s inequality, for any compact subset K of Δ,

∫
K

|fν
jk(z)|p dV ≤C

∫
K

(∫
X

χp

|ζ−z|p Θ̃
hν

jk (ζ) dλ(ζ)

)
,

which is integrable for 1<p<2 uniformly in ν since |ζ−z|−p∈Lp
loc(Δ) for 1<p<2.

For gνjk we proceed in two steps. First we assume that rankE=1 so that hν is

not matrix-valued. Then

hνf
ν+hνg

ν =hν θ̃
hν = ∂̃hν ∈L2

loc(Δ)

and since hν is locally bounded from above, hνf
ν∈Lp

loc(Δ) and so hνg
ν∈Lp

loc(Δ)

uniformly in ν for 1<p<2. By Jensen’s inequality once again

exp

(
C

∫
K

log |hνg
ν | dV

)
≤C

∫
K

|hνg
ν | dV

so ∫
K

log |hνg
ν | dV <∞.

Since log |hνg
ν |=log hν+log |gν | and we know that log hν is subharmonic, we get

that ∫
K

log |gν | dV <∞

uniformly in ν. However we also know that gν is holomorphic so log |gν | is also

subharmonic. Thus by the sub-mean inequality gν is bounded and so if rankE=1,

θ̃hν ∈Lp
loc(Δ) uniformly in ν for 1<p<2.

For general, matrix-valued hν it follows as in the one-dimensional case that

hνg
ν∈Lp

loc(Δ) uniformly in ν for 1<p<2. Let ĥν denote the adjugate of hν so that

h−1
ν =(dethν)

−1ĥν . Since hν is locally bounded from above and the entries of ĥν

are polynomials of the entries of hν ,

(dethν)g
ν = ĥνhνg

ν ∈Lp
loc(Δ).
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For each entry of the matrix (dethν)g
ν it follows from Jensen’s inequality just as

in the one-dimensional case that

∫
K

log |(dethν)g
ν
jk| dν <∞

and since as we have seen log |dethν |=log dethν is plurisubharmonic, and hence

locally integrable, θ̃hν ∈Lp
loc(Δ) uniformly in ν for 1<p<2. This proves (i)′.

Finally, let Aε :={z :deth(z)>ε}. Then by Hölder’s inequality, for χ∈C∞
c (X),

∣∣∣∣
∫
X

χθ̃hν

jk dV

∣∣∣∣ ≤
∣∣∣∣
∫
Aε

χθ̃hν

jk dV

∣∣∣∣+
∫
Ac

ε

|χθ̃hν

jk | dV

≤
∣∣∣∣
∫
Aε

χθ̃hν

jk dV

∣∣∣∣+C

(∫
Ac

ε

|θ̃hν

jk |
p dV

)1/p

|Ac
ε|p/(p−1)

≤
∣∣∣∣
∫
Aε

χθ̃hν

jk dV

∣∣∣∣+C|Ac
ε|p/(p−1),

where 1<p<2. We already know that log deth∈L1
loc(X), and so |Ac

ε|→0 as ε→0.

Hence it is enough to prove convergence on Aε. But then we are in the original

setting of Theorem 1.6, which we proved above.

6. Approximation results

In the introduction we defined what it means for a metric to be strictly nega-

tively curved in the sense of Nakano and pointed out that the usefulness of Defini-

tion 1.8 stems from the fact that it lends itself well to such regularisations. This is

the content of Proposition 1.9 and the aim of this section is to prove this result.

However, in order to illustrate the main ideas more clearly, we begin by proving

a similar result in the simpler Griffiths setting. Hence we start by defining what it

means for a singular hermitian metric to be strictly curved in the sense of Griffiths.

(In what follows we will assume that F={z :deth(z)=0} is a closed set, and that

there exists an exhaustion of open sets {Uj}∞j=1 of F c such that deth>1/j on Uj .)

Definition 6.1. We say that a singular hermitian metric h on a holomorphic

vector bundle E is strictly negatively curved in the sense of Griffiths if:

(i) h is negatively curved in the sense of Definition 1.2. In particular, by

Theorem 1.6, Θh exists as a current on F c;

(ii) There exists some δ>0 such that on F c,
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n∑
j,k=1

(Θh
jks, s)hξj ξ̄k ≤−δ‖s‖2h|ξ|2(8)

in the sense of distributions, for any section s and any vector ξ∈Cn.

We say that h is strictly positively curved in the sense of Griffiths, if the

corresponding dual metric is strictly negatively curved.

We now have the following approximation result.

Proposition 6.2. Let h be a singular hermitian metric on a trivial holomor-

phic vector bundle E, over a domain Ω in C
n, and assume that h is strictly nega-

tively curved in the sense of Griffiths, as in Definition 6.1. Let furthermore {hν}∞ν=1

be an approximating sequence of smooth metrics, decreasing pointwise to h on any

relatively compact subset of Ω, obtained through convolution of h with an approxi-

mate identity.

If h is continuous, then for every ν, hν is also strictly negatively curved in the

sense of Griffiths, with the same constant δ in (8).

Proof. Let hν=h∗χν , where χν is an approximate identity, i.e. χ∈C∞
c (Ω) with

χ≥0, χ(p)=χ(|p|),
∫
Cn χdV =1, and χν(p)=νnχ(νp). We start by showing that

{hν}∞ν=1 is decreasing in ν, and that for every holomorphic section u and any ν,

‖u‖2hν
is plurisubharmonic.

By definition, {hν}∞ν=1 is a decreasing sequence if for any constant section s,

‖s‖2hν
is decreasing. However if s is constant then ‖s‖2h is plurisubharmonic and it

is immediate from the definition of hν that

‖s‖2hν
= ‖s‖2h∗χν .

The statement now follows from the well-known fact that convolutions of plurisub-

harmonic functions are decreasing.

For the second statement we note that for any holomorphic section u,

‖u‖2hν
(p)=

∫
Cn

K(p, q)χν(q) dV (q),

where (locally)

K(p, q)=u∗(p)h(p−q)u(p).

Since ‖u‖2h is assumed to be plurisubharmonic for any holomorphic section u, for

fixed q, K(p, q) will be plurisubharmonic (and locally bounded from above) in p.

As furthermore χν dV is a positive measure of compact support the result follows

from another well-known property of plurisubharmonic functions.
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From Section 2 we know that for the smooth metrics hν ,

i∂∂‖u‖2hν
≥−〈iΘhνu, u〉hν(9)

for any holomorphic section u. Our next goal is to show that this inequality holds

for h in the sense of distributions.

Now for any test form φ of bidegree (n−1, n−1),

∫
Cn

φ∧i∂∂‖u‖2hν
=

∫
Cn

‖u‖2hν
i∂∂φ

and by the monotone convergence theorem, the right-hand side converges. Hence

i∂∂‖u‖2hν
converges weakly to i∂∂‖u‖2h as measures.

For the right-hand side of (9) we express the curvature tensor in terms of a

local basis

Θhν =

n∑
j,k=1

Θhν

jk dzj∧dzk

and let φ=φjk
̂i dzj∧dzk, where φjk is supported on F c and ̂i dzj∧dzk denotes the

wedge product of all dzi and dzi except dzj and dzk, multiplied by a constant of

absolute value 1, chosen so that i dzj∧dzk∧ ̂i dzj∧dzk=dV . We then have that

∫
Cn

φ∧(〈iΘhνu, u〉hν −〈iΘhu, u〉h)

=

∫
Cn

φjku
∗(hνΘ

hν

jk −hΘh
jk)u dV

≤
∣∣∣∣
∫
Cn

φjku
∗(hν−h)Θhν

jku dV

∣∣∣∣+
∣∣∣∣
∫
Cn

φjku
∗h(Θhν

jk −Θh
jk)u dV

∣∣∣∣.
We know that hν converges uniformly to h since, by assumption, h is continuous.

As Θhν ∈L1
loc(F

c) uniformly in ν, this implies that the first term converges to zero

on F c. Furthermore, by Theorem 1.6 we know that Θhν converges weakly to Θh

as currents with measurable coefficients, and so the second term also converges to

zero on F c. Thus we have that hνΘ
hν converges weakly to hΘh on F c.

From (9) and Definition 6.1 we now get that

i∂∂‖u‖2h ≥−〈iΘhu, u〉h ≥ δ‖u‖2h
n∑

j=1

i dzj∧dzj

in the sense of distributions on F c. Moreover, by Definition 6.1 the left-hand side is

a positive measure. Hence if we let χF c and χF denote the characteristic functions
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of F c and F respectively, we get

i∂∂‖u‖2h =χF ci∂∂‖u‖2h+χF i∂∂‖u‖2h ≥χF ci∂∂‖u‖2h ≥χF cδ‖u‖2h
n∑

j=1

i dzj∧dzj .

Since furthermore F is a set of Lebesgue measure zero, we altogether have that

i∂∂‖u‖2h ≥ δ‖u‖2h
n∑

j=1

i dzj∧dzj(10)

in the sense of distributions (on all of Ω).

If we let hq(p):=h(p−q) we have

‖u‖2hν
(p)=

∫
Cn

‖u‖2hq (p)χν(q) dV (q).

Combining this with (10) yields

i∂∂‖u‖2hν
(p) =

∫
Cn

χν(q)i∂∂‖u‖2hq (p) dV (q)

≥ δ

∫
Cn

‖u‖2hq (p)χν(q) dV (q)

n∑
j

i dzj∧dzj

= δ‖u‖2hν
(p)

n∑
j

i dzj∧dzj .

Lastly, as discussed in Section 2, as long as the metric is smooth, i.e. for fix ν,

at a given point p, the section u can always be chosen so that

i∂∂‖u‖2hν
=−〈iΘhνu, u〉hν at p.

Hence
n∑

j,k=1

(Θhν

jku, u)hν i dzj∧dzk ≤−δ‖u‖2hν

n∑
j=1

i dzj∧dzj ,

which is what we wanted to prove. �

Remark 6.3. As the dual of a strictly Griffiths negative metric is strictly Grif-

fiths positive, a corresponding approximation result holds for singular hermitian

metrics that are strictly positively curved in the sense of Griffiths, as in Defini-

tion 6.1. Thus for vector bundles over Riemann surfaces, where the notions of

Griffiths and Nakano curvature coincide, one can use Proposition 6.2 to prove a

Demailly–Nadel type of vanishing theorem (see [7], Theorem 1.2).
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We now turn to the proof of Proposition 1.9. As already mentioned it is very

similar to the previous proof, and so we will be rather sketchy.

Proof of Proposition 1.9. Let hν :=h∗χν , where χν is an approximate identity.

We begin by observing that if u=(u1, ..., un) is an n-tuple of holomorphic sections

of E, then locally

(uj , uk)hν (p)=

∫
Cn

(uj , uk)hq (p)χν(q) dV (q),

where hq(p):=h(p−q) just as before. In particular if we let p=(z1, ..., zn) and study

the (n−1, n−1)-form

Th
u =

n∑
j,k=1

(uj , uk)h ̂dzj∧dzk

introduced and discussed in Sections 1 and 2, we see that

Thν
u (p)=

∫
Cn

Thq

u (p)χν(q) dV (q).(11)

By Definition 1.8, h is negatively curved in the sense of Nakano if Th
u is plurisub-

harmonic for any holomorphic n-tuple u. Thus in exactly the same way as in the

previous argument we get that Thν
u is a plurisubharmonic (n−1, n−1)-form, and

that Thν
u decrease pointwise to Th

u .

Now from Section 2 we know that for smooth metrics

i∂∂Thν
u ≥−

n∑
j,k=1

(Θhν

jkuj , uk)hν dV.(12)

It follows from the same argument as in the previous proof that this inequality still

holds on F c, in the sense of distributions, in the singular setting. Together with

Definition 1.8 this yields that on F c,

i∂∂Th
u ≥−

n∑
j,k=1

(Θh
jkuj , uk)h dV ≥ δ

n∑
j=1

‖uj‖2h dV.

From Definition 1.8 we also know that the left-hand side is a positive measure, and

so by the same reasoning as before we have

i∂∂Th
u ≥ δ

n∑
j=1

‖uj‖2h dV

in the sense of distributions (on all of Ω).



Singular hermitian metrics on holomorphic vector bundles 381

Combined with (11) this in turn gives

i∂∂Thν
u (p) =

∫
Cn

χν(q)i∂∂T
hq

u (p) dV (q)

≥ δ

n∑
j,k=1

(∫
Cn

‖uj‖2hq (p)χν(q) dV (q)

)
dV (p)

= δ

( n∑
j=1

‖uj‖2hν
(p)

)
dV (p).

Finally, from Section 2 we know that as long as the metric is smooth, the

sections u can always be chosen so that

i∂∂Thν
u =−

n∑
j,k=1

(Θhν

jkuj , uk)hν dV.

Hence
n∑

j,k=1

(Θhν

jkuj , uk)hν ≤−δ

n∑
j=1

‖uj‖2hν

and we are done. �

Remark 6.4. For Nakano positive metrics this argument will not work since

we do not have any counterpart of inequality (12) in that setting. In the proof we

did use the fact that we can always choose the n-tuple u such that equality holds

in (12), but this was for a fixed ν, and it is not possible to do this in such a way

that equality holds uniformly in ν.

In the Griffiths setting the positive case was addressed just by studying duals.

As mentioned in the introduction, the dual of a Nakano negative bundle in general

is not Nakano positive, and so this approach is not possible here. However for dual

Nakano negative bundles, the proposition applies.
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Hossein Raufi
Department of Mathematics
Chalmers Institute of Technology
and University of Gothenburg
SE-412 96 Gothenburg
Sweden
hossein.raufi@gmail.com

Received January 9, 2014
in revised form February 3, 2015
published online May 9, 2015

http://arxiv.org/abs/arXiv:1212.4417
mailto:hossein.raufi@gmail.com

	Singular hermitian metrics on holomorphic vector bundles
	Abstract
	Introduction
	Curvature and positivity
	Comparison with de Cataldo and Theorem 1.5
	Basic properties
	Proof of Theorem 1.6
	Approximation results
	References


