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A modification of the Hodge star operator
on manifolds with boundary

Ryszard L. Rubinsztein

Abstract. For smooth compact oriented Riemannian manifolds M of dimension 4k+2,

k≥0, with or without boundary, and a vector bundle F on M with an inner product and a flat

connection, we construct a modification of the Hodge star operator on the middle-dimensional

(parabolic) cohomology of M twisted by F . This operator induces a canonical complex structure

on the middle-dimensional cohomology space that is compatible with the natural symplectic form

given by integrating the wedge product. In particular, when k=0 we get a canonical almost

complex structure on the non-singular part of the moduli space of flat connections on a Riemann

surface, with monodromies along boundary components belonging to fixed conjugacy classes when

the surface has boundary, that is compatible with the standard symplectic form on the moduli

space.

1. Introduction

Let M be a smooth compact oriented Riemannian manifold of dimension n,

with or without boundary. Let F be a smooth real vector bundle over M , of

finite fiber dimension, equipped with a positive-definite inner product B and a

flat connection. We denote by H∗(M ;F ) the (de Rham) cohomology of M with

coefficients in the local system given by F .

Let ∗ : H∗(M ;F )→H∗(M ;F ) be the Hodge star operator given by the orien-

tation and the Riemannian metric on M (see Section 3).

For n=2m the wedge product of forms and the inner product B define a bilinear

form ω : Hm(M ;F )⊗Hm(M ;F )→R. If n=4k+2, the form ω is skew-symmetric.

If the boundary of M is empty, then the form ω is non-degenerate and gives

a symplectic structure on the vector space H2k+1(M ;F ). It is well known that

in this case the Hodge star operator ∗ gives a complex structure on H2k+1(M ;F )

compatible with the symplectic form ω.
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In the general case, when M may have a non-empty boundary, we replace

H∗(M ;F ) by the parabolic cohomology H∗
par(M ;F ) of M with coefficients in the

local system given by F (see Section 3). Thus H∗
par(M ;F ) is the kernel of the

homomorphism of restriction to the boundary,

H∗
par(M ;F )=Ker(r : H∗(M ;F )→H∗(∂M ;F )).

If n=4k+2, the restriction of the skew-symmetric form ω to the parabolic coho-

mology H2k+1
par (M ;F ) is again non-degenerate and equips it with a structure of a

symplectic vector space.

It is the aim of this note to show that, if the boundary of M is non-empty and

n=4k+2, then there is a canonical modification of the Hodge star operator which

gives an operator on parabolic cohomology, denoted here by Jpar,

Jpar : H
2k+1
par (M ;F )−→H2k+1

par (M ;F ).

The operator Jpar satisfies J2
par=−Id and gives a complex structure on the vector

space H2k+1
par (M ;F ) compatible with the symplectic form ω on it. When the bound-

ary of M is empty then H∗
par(M ;F )=H∗(M ;F ) and Jpar is equal to the ordinary

Hodge star operator.

If n=2, i.e. if M is a compact oriented surface one can consider the mod-

uli space M of flat connections on the trivial principal bundle M×G, G being a

compact Lie group with a Lie algebra g. The flat connections have monodromies

along boundary components restricted to fixed conjugacy classes in G. We choose

a real-valued invariant positive-definite inner product on g. The moduli space M

is a manifold with singularities. Away from the singular points, the tangent spaces

to M can be identified with the parabolic cohomology H1
par(M ;gφ), where gφ is the

trivial vector bundle over M with fiber g and connection φ. Let Σ⊂M denote the

singular locus. The symplectic form ω is closed as a 2-form on M \Σ and turns it

into a symplectic manifold [3].

Given a Riemannian metric on M , the modified Hodge star operator Jpar on

H1
par(M ;gφ) constructed in Section 4 gives a canonical almost complex structure

on the non-singular part of the moduli space M \Σ compatible with the symplectic

form ω. This applies both when the boundary of M is empty and when it is non-

empty.

2. A linear problem

Let V be a finite-dimensional vector space over the field of complex numbers

C, equipped with a real-valued positive-definite inner product ( · , · ) such that the
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operator of multiplication by the complex number i=
√
−1 is an isometry. We

denote this operator by J . (In other words, ( · , · ) is the real part of a hermitian

inner product on V .)

Let U be a real subspace of V satisfying

(1) J(U)∩U⊥ = {0}.

Here U⊥ denotes the orthogonal complement of U in V with respect to the inner

product ( · , · ). The condition (1) is equivalent to the requirement that the alter-

nating 2-form ω(u, v)=(Ju, v) is non-degenerate on U and, hence, equips U with a

structure of a symplectic space.

The aim of this section is to show that the complex structure of V induces a

specific complex structure on every real subspace U satisfying (1). This complex

structure will be compatible with the symplectic 2-form ω(u, v)=(Ju, v) on U .

Let U be a real subspace of V . We denote by pU : V →U the orthogonal

projection of V onto U and define G : U→U by G(u)=pU (J(u)) for u∈U .

Lemma 2.1. (i) For every real subspace U of V , the real linear operator

G : U→U is skew-symmetric with respect to the inner product ( · , · ).
(ii) If U satisfies the condition (1) then G is invertible and the symmetric

operator G2=G◦G : U→U is negative definite.

Proof. (i) Let u, v∈U . Since pU is symmetric, while J is skew-symmetric with

respect to ( · , · ) on V , it follows that

(G(u), v)= (pUJ(u), v)= (J(u), pU (v))= (J(u), v)

=−(u, J(v))=−(pU (u), J(v))=−(u, pUJ(v))=−(u,G(v)).

Thus G : U→U is skew-symmetric.

(ii) If U satisfies the condition (1) then Ker(pU ) intersects the image of J |U
trivially and G is injective and hence invertible. For u∈U , u 	=0, we have

(G2(u), u)=−(G(u), G(u))< 0

and thus G2 is negative definite. �

Let U satisfy the condition (1) and let R : U→U be the positive square root of

the positive-definite symmetric operator −G2 : U→U , R=(−G2)1/2. The operator

G commutes with −G2 and maps its eigenspaces to themselves. It follows that G

commutes with R. We define the operator JU : U→U by JU=R−1G.

Let ω(u, v)=(Ju, v) for u, v∈U .
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Proposition 2.2. If U is a real subspace of V satisfying the condition (1)

then the operator JU : U→U satisfies

(i) J2
U=−Id;

(ii) (JU (u), JU (v))=(u, v) for u, v∈U ;

(iii) ω(JU (u), JU (v))=ω(u, v) for u, v∈U ;

(iv) ω(u, JU (u))>0 for all u∈U, u 	=0;

that is, JU is a complex structure and an isometry on U , and it is compatible with

the symplectic form ω.

Proof. (i) J2
U=R−1GR−1G=R−2G2=(−G2)−1G2=−Id.

(ii) Since R is symmetric, G is skew-symmetric and R and G commute, we

have for u, v∈U ,

(JU (u), JU (v))= (R−1G(u), R−1G(v))= (G(u), R−2G(v))

= (u,−GR−2G(v))= (u,R−2(−G2)(v))= (u, v).

(iii) Furthermore, we have GJU=GR−1G=JUG and JU (v)=pUJU (v) since

JU (v)∈U . Therefore

ω(JU (u), JU (v))= (JJU (u), JU (v))= (JJU (u), pUJU (v))

= (pUJJU (u), JU (v))= (GJU (u), JU (v))= (JUG(u), JU (v))

= (G(u), v)= (pUJ(u), v)= (J(u), v)=ω(u, v).

(iv) Finally, if u∈U , u 	=0, then

ω(u, JU (u))= (J(u), JU (u))= (pUJ(u), JU (u))= (G(u), JU (u))

= (u,−GJU (u))= (u,−GR−1G(u))

= (u,R−1(−G2)(u))= (u,R−1R2(u))= (u,R(u))> 0

since R is a positive-definite symmetric operator on U . �

Example 2.3. Let V =C
2 equipped with the standard inner product on C

2

identified with R
4. Choose a real number r∈R. Let u1=(1, 0), u2(r)=(i, r)∈V

and Ur=span
R
{u1, u2(r)}. Thus n=dimR Ur=2. Identifying C

2 with R
4 via C

2

(z1, z2)↔(Re(z1), Im(z1),Re(z2), Im(z2))∈R4 we obtain Ur={(a, b, br, 0)|a, b∈R},
J(Ur)={(−b, a, 0, br)|a, b∈R} and U⊥

r ={(0,−cr, c, d)|c, d∈R}. It follows that for

every r∈R, the real subspace Ur satisfies the condition (1): J(Ur)∩U⊥
r ={0}. If

r 	=0, then Ur satisfies the additional property

(2) J(Ur)∩Ur = {0},
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that is, Ur is a totally real subspace of V . Taking direct sums of pairs (V, Ur) one

gets examples of subspaces U satisfying the condition (1) in every even dimension n.

The skew-symmetric operator G : Ur→Ur is given by G(u1)=(1/(1+r2))u2(r) and

G(u2(r))=−u1. Hence, G
2=−(1/(1+r2)) IdUr , R=(1/

√
1+r2) IdUr , and the com-

plex structure JUr : Ur→Ur is given by JUr(u1)=(1/
√
1+r2)u2(r) and JUr(u2(r))=

−
√
1+r2u1.

Real subspaces U satisfying both properties (1) and (2) are typical of the

geometric context in which the observations of the present section will be applied.

3. Hodge theory on manifolds with boundary

This section is devoted to a recollection of background material on Hodge

theory on manifolds with boundary that will be used in the following sections.

Let M be a smooth compact oriented Riemannian manifold of dimension n,

with or without boundary. Let F be a smooth real vector bundle over M , of

finite fiber dimension, equipped with a positive-definite inner product B( · , · ) and

a flat connection A. Let dA : Ω0(F )→Ω1(F ) be the covariant derivative operator

corresponding to A. Here we use Ωp(F ) to denote smooth sections of ΛpT ∗M⊗F ,

the p-forms with values in F . We also write dA : Ωp(F )→Ωp+1(F ) for the unique

extension of the covariant derivative that satisfies the Leibniz rule. Since A is a flat

connection, we have dAdA=0 and get a cochain complex

(3) 0−→Ω0(F )
dA−−→Ω1(F )

dA−−→ ...
dA−−→Ωp(F )

dA−−→Ωp+1(F )−→ ... .

The Riemannian metric, the orientation on M and the inner product B on F

give rise to the L2 inner product ( · , · ) on Ω∗(F ),

(α, β)=

∫
M

B(α∧∗β),

where ∗ denotes the Hodge star operator. (The Hodge star operator ∗ on Λ∗T ∗M⊗
F is defined as the tensor product of the usual Hodge star operator on Λ∗T ∗M with

the identity on F .) We have also the codifferential

δA =(−1)n(p+1)+1∗dA∗ : Ωp(F )−→Ωp−1(F ),

which on closed manifolds is the L2-adjoint of the operator dA.

From now on the operators dA and δA will be denoted by d and δ respectively.

For the Hodge decomposition theorem on manifolds with boundary we refer to

[4] and [1].
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A form ω∈Ωp(F ) is called closed if it satisfies dω=0 and coclosed if it satisfies

δω=0. We denote by Cp and cCp the spaces of closed respectively coclosed p-forms.

We define Ep=d(Ωp−1(F )) and cEp=δ(Ωp+1(F )).

Along the boundary ∂M every p-form ω∈Ωp(F ) can be decomposed into tan-

gential and normal components (depending on the Riemannian metric on M ). For

x∈∂M , one has

(4) ω(x)=ωtan(x)+ωnorm(x),

where ωnorm(x) belongs to the kernel of the restriction homomorphism

r∗ : Λ∗T ∗
xM⊗Fx −→Λ∗T ∗

x (∂M)⊗Fx,

while ωtan(x) belongs to the orthogonal complement of that kernel,

ωtan(x)∈Ker(r∗)⊥ ⊂Λ∗T ∗
xM⊗Fx.

Note that r∗ maps the orthogonal complement Ker(r∗)⊥ of the kernel isomorphically

onto Λ∗T ∗
x (∂M)⊗Fx.

Following [1], we define Ωp
N to be the space of smooth p-forms from Ωp(F )

satisfying Neumann boundary conditions at every point of ∂M ,

Ωp
N = {ω ∈Ωp(F ) |ωnorm =0},

and Ωp
D to be the space of smooth p-forms from Ωp(F ) satisfying Dirichlet boundary

conditions at every point of ∂M ,

Ωp
D = {ω ∈Ωp(F ) |ωtan =0}.

Furthermore, we define cEp
N=δ(Ωp+1

N ) and Ep
D=d(Ωp−1

D ) and let

CcCp =Cp∩cCp = {ω ∈Ωp(F ) | dω=0 and δω=0},

CcCp
N = {ω ∈Ωp(F ) | dω=0, δω=0 and ωnorm =0},

CcCp
D = {ω ∈Ωp(F ) | dω=0, δω=0 and ωtan =0}.

If the boundary is empty, ∂M=∅, then, trivially, every form ω satisfies ωnorm=

ωtan=0, the space CcCp=CcCp
N=CcCp

D consists of all forms which are both closed

and coclosed, and this space is equal to the space of harmonic p-forms, that is, to

the kernel of the Laplacian Δ=δd+dδ acting on Ωp(F ).

If, on the other hand, the boundary is non-empty, ∂M 	=∅ and M is con-

nected then the intersection CcCp
N∩CcCp

D={0} ([1], Lemma 2) and the kernel of

the Laplacian Δ contains all forms which are both closed and coclosed but can be

strictly larger than the space of such forms ([1], Example).

In the following the symbol ⊕ will denote an orthogonal direct sum.
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Theorem 3.1. (Hodge decomposition theorem) Let M be a compact connected

oriented smooth Riemannian n-manifold, with or without boundary and let F be a

smooth real vector bundle over M , of finite fiber dimension, equipped with an inner

product and a flat connection A. Then the space Ωp(F ) of F -valued smooth p-forms

decomposes into the orthogonal direct sum

(5) Ωp(F )= cEp
N⊕CcCp⊕Ep

D.

Furthermore, we have the orthogonal direct sum decompositions

(6) CcCp =CcCp
N⊕(Ep∩cCp)= (Cp∩cEp)⊕CcCp

D.

For the proof of Theorem 3.1 see [4].

We denote by H∗(M ;F ) the cohomology of the complex (3) and define

H∗(∂M ;F |∂M ) and H∗(M,∂M ;F ) accordingly.

It follows from (5) that the space Cp of closed p-forms decomposes as

Cp=CcCp⊕Ep
D. Hence, from (6), we get Cp=CcCp⊕Ep

D=CcCp
N⊕(Ep∩cCp)⊕Ep

D.

Using (6) once again we see that (Ep∩cCp)⊕Ep
D=Ep. Therefore,

(7) Cp =CcCp⊕Ep
D =CcCp

N⊕(Ep∩cCp)⊕Ep
D =CcCp

N⊕Ep.

Thus, CcCp
N is the orthogonal complement of the exact p-forms within the closed

ones, so CcCp
N
∼=Hp(M ;F ). In a similar way, the space cCp of coclosed p-forms

decomposes as

(8) cCp = cEp
N⊕CcCp = cEp

N⊕(Cp∩cEp)⊕CcCp
D = cEp⊕CcCp

D.

It follows again from (5) and (6) that CcCp
D
∼=Hp(M,∂M ;F ).

4. A modified Hodge star operator on parabolic cohomology

The main aim of this section is to define a modified Hodge star operator on the

parabolic cohomology (the definition of parabolic cohomology is recalled below).

As in Section 3, M is a smooth compact oriented Riemannian manifold of

dimension n, with or without boundary and F is a smooth real vector bundle over

M with a positive-definite inner product B( · , · ) and a flat connection A.

Let now r∗ : H∗(M ;F )→H∗(∂M ;F |∂M ) be the homomorphism of the restric-

tion to the boundary.

We define the parabolic cohomology H∗
par(M ;F ) of the manifold M with coeffi-

cients in the bundle F with the flat connection A to be the kernel of the restriction

homomorphism r∗,

H∗
par(M ;F ) :=Ker (r∗ : H∗(M ;F )→H∗(∂M ;F |∂M ))
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(cf. [5] and [3], Section 3).

Of course, the parabolic cohomology H∗
par(M ;F ) is equal to the image of

j∗ : H∗(M,∂M ;F )→H∗(M ;F ).

We assume now that the manifold M has dimension n=4k+2. When p=2k+1,

the Hodge star operator ∗ maps Ωp(F ) onto itself, ∗ : Ωp(F )→Ωp(F ), and satisfies

∗∗=−Id. Moreover, it maps CcCp onto itself, mapping CcCp
N onto CcCp

D and vice

versa. Thus ∗ gives a complex structure on Ωp(F ) and on CcCp. For the rest of

this section we shall denote the Hodge star operator ∗ on Ωp(F ) by J . We have

(9) J(CcCp)=CcCp, J(CcCp
N )=CcCp

D and J(CcCp
D)=CcCp

N .

Since M is compact, the cohomology groups Hp(M ;F ) and Hp(M,∂M ;F )

and, hence, CcCp
N and CcCp

D are finite-dimensional vector spaces. Denote by

PN : CcCp→CcCp
N and PD : CcCp→CcCp

D the orthogonal projections of CcCp

onto CcCp
N and CcCp

D respectively. By (6) the kernel Ker(PN ) is equal to Ep∩cCp,

while the kernel Ker(PD) is equal to Cp∩cEp. Since J is an isometry of CcCp, it

follows from (9) that PN ◦J=J ◦PD. Let PN : CcCp
D→CcCp

N be the restriction of

PN to CcCp
D and let PD : CcCp

N→CcCp
D be the restriction of PD to CcCp

N . We

have

(10) PN ◦J =J ◦PD.

When Hp(M,∂M ;F ) is identified with CcCp
D and Hp(M ;F ) with CcCp

N ,

the homomorphism j∗ : Hp(M,∂M ;F )→Hp(M ;F ) is identified with PN : CcCp
D→

CcCp
N . The parabolic cohomology group Hp

par(M ;F ) is thus identified with the im-

age of PN : CcCp
D→CcCp

N which we denote by U , U=Im(PN )⊂CcCp
N .

It follows then from (10) that J(U) is equal to the image of PD : CcCp
N→

CcCp
D. We denote this image by T , T=Im(PD)=J(U)⊂CcCp

D.

Let T⊥ be the orthogonal complement of T in CcCp
D.

Lemma 4.1. The kernel of PN : CcCp
D→CcCp

N is equal to T⊥.

Proof. Let w∈T⊥⊂CcCp
D. Let x∈CcCp

N . As PD is a symmetric mapping

and since PD(x)∈T , we get that (w, x)=(PD(w), x)=(w,PD(x))=(w,PD(x))=0.

Hence w is orthogonal to CcCp
N and therefore PN (w)=0. Thus T⊥⊂Ker(PN ).

On the other hand

dimT⊥ =dimCcCp
D−dimT =dimCcCp

D−dimU

=dimCcCp
D−dim Im(PN )=dimKer(PN ).

Thus T⊥=Ker(PN ). �
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Lemma 4.2. Let v∈T=J(U). If v is orthogonal to U then v=0.

Proof. Assume that v∈T=J(U) is orthogonal to U . Since v∈CcCp
D, we have

PN (v)∈U=Im(PN ). On the other hand, as PN is a projection along a space

orthogonal to CcCp
N and, hence, orthogonal to U , we get that PN (v) is also or-

thogonal to U . Since PN (v) both belongs to U and is orthogonal to U , we must

have PN (v)=0. Thus v belongs to Ker(PN ) which, by Lemma 4.1, is equal to T⊥.

Belonging to T and T⊥ at the same time, v must be 0. �

Let V be the subspace of CcCp spanned by CcCp
D and CcCp

N . Since both these

spaces are finite-dimensional, so is V . Moreover, (9) implies that V is a complex

subspace of CcCp with respect to the complex structure J given by the Hodge star

operator. V inherits the real inner product ( · , · ) from CcCp and J acts as an

isometry. Finally, U⊂V and, according to Lemma 4.2,

(11) J(U)∩U⊥ =0,

where this time U⊥ denotes the orthogonal complement of U in V .

The alternating 2-form ω(u, v)=(J(u), v) is a symplectic (non-degenerate) form

on V . The property (11) implies that the restriction of ω to U is a symplectic (non-

degenerate) form on U .

Since (11) is satisfied, we can now apply the construction of Section 2 to V , U

and J and obtain a linear operator

JU : U −→U,

which equips the space U with a complex structure. When U is identified with the

parabolic cohomology Hp
par(M ;F ) we denote the operator corresponding to JU by

Jpar,

(12) Jpar : H
p
par(M ;F )−→Hp

par(M ;F )

and call it the modified Hodge star operator on the parabolic cohomology. We have

the real inner product ( · , · ) and the symplectic form ω on Hp
par(M ;F )=U . Propo-

sition 2.2 now gives the following result.

Theorem 4.3. Let M be a smooth compact oriented Riemannian manifold of

dimension n=4k+2, with or without boundary, and F be a real finite-dimensional

vector bundle over M equipped with an inner product and a flat connection. Let

p=2k+1. Then the modified Hodge star operator Jpar : H
p
par(M ;F )→Hp

par(M ;F )

satisfies

(i) J2
par=−Id;
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(ii) ω(Jpar(u), Jpar(v))=ω(u, v) for u, v∈Hp
par(M ;F );

(iii) ω(u, Jpar(u))>0 for all u∈Hp
par(M ;F ), u 	=0;

that is, Jpar is a complex structure on the parabolic cohomology Hp
par(M ;F ) com-

patible with the symplectic form ω.

Remark 4.4. (i) The symplectic form ω on Hp
par(M ;F )=U is the restriction of

the form ω on Hp(M ;F )=CcCp
N which in turn is given by

ω(u, v)= (Ju, v)= (∗u, v)= (v, ∗u)=
∫
M

B(v∧∗∗u)=
∫
M

B(u∧v)=

= ([u]∪[v])[M ; ∂M ],

where [u] and [v] denote the cohomology classes of the closed forms u and v. Thus

the symplectic form ω is given by the cup (wedge) product composed with B.

(ii) When M is without boundary, ∂M=∅, then CcCp
N=CcCp

D=U=J(U)

above and Jpar=J=∗. Thus, in that case, the parabolic cohomology Hp
par(M ;F ) is

equal to the ordinary cohomology Hp(M ;F ) and the modified Hodge star operator

is equal to the ordinary Hodge star operator.

(iii) If M is not connected then it is obvious from the construction above that

the parabolic cohomology Hp
par(M ;F ) and the modified Hodge star operator Jpar

are direct sums of their counter-parts on the components.

(iv) The modified Hodge star operator Jpar is canonically determined by the

choice of the Riemannian metric and the orientation on M , and the choice of the

inner product and the flat connection on F .

5. The moduli space of flat connections on a Riemann surface with

boundary

Let G be a compact Lie group with a Lie algebra g equipped with a real-

valued positive-definite invariant inner product. Let S be a smooth compact ori-

ented surface, with or without boundary. We consider the moduli space M =

M (S;G,C1, ..., Ck) of gauge equivalence classes of flat connections in the trivial

principal G-bundle over S with monodromies along boundary components belong-

ing to some fixed conjugacy classes C1, ..., Ck in G, k being the number of boundary

components of S (see [3]).

The space M is a finite-dimensional manifold with singularities. We denote

by Σ⊂M the singular locus. Every point of M can be represented by a group

homomorphism φ : π1(S)→G such that φ maps elements of π1(S) given by the

boundary components into the corresponding conjugacy classes Cj . Let G act
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on g through the adjoint representation. To every such group homomorphism φ

we can associate a bundle over S with fiber g equipped with a flat connection

and an R-valued positive-definite inner product in the fibers. We denote that flat

vector bundle by gφ. The tangent space to M at a non-singular point [φ]∈M

is naturally identified with the parabolic cohomology group H1
par(S ;gφ) (see [3],

Section 3, Propositions 4.4 and 4.5 and pp. 409–410).

In [3] the manifold M \Σ is equipped with a symplectic structure given by

−1 times the wedge product of forms and the inner product on the bundle gφ ([3],

Section 3, pp. 386–387, and Theorem 10.5). Hence, this symplectic structure is the

negative of the one given by the form ω in our paper.

It follows now from Theorem 4.3 that a choice of a Riemannian metric on the

surface S gives, via the modified Hodge star operator Jpar, a canonical almost com-

plex structure on the moduli space M \Σ compatible with the symplectic form ω.

To get an almost complex structure on M \Σ compatible with the symplectic form

of [3] one has to take the operator −Jpar.

Note added in proof. The property (11) has also been proven in [2].
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