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Abstract. In this paper, a random graph process {G(t)}t≥1 is studied and its degree

sequence is analyzed. Let {Wt}t≥1 be an i.i.d. sequence. The graph process is defined so that,

at each integer time t, a new vertex with Wt edges attached to it, is added to the graph. The

new edges added at time t are then preferentially connected to older vertices, i.e., conditionally

on G(t−1), the probability that a given edge of vertex t is connected to vertex i is proportional to

di(t−1)+δ, where di(t−1) is the degree of vertex i at time t−1, independently of the other edges.

The main result is that the asymptotical degree sequence for this process is a power law with

exponent τ=min{τW, τP}, where τW is the power-law exponent of the initial degrees {Wt}t≥1

and τP the exponent predicted by pure preferential attachment. This result extends previous work

by Cooper and Frieze.

1. Introduction

Empirical studies on real life networks, such as the Internet, the World-Wide
Web, social networks, and various types of technological and biological networks,
show fascinating similarities. Many of the networks are small worlds, meaning that
typical distances in the network are small, and many of them have power-law degree
sequences, meaning that the number of vertices with degree k falls off as k−τ for
some exponent τ >1. See [16] for an example of these phenomena in the Internet,
and [25] and [26] for an example on the World-Wide Web. Also, [27, Table 3.1]
gives an overview of a large number of networks and their properties.

Incited by these empirical findings, random graphs have been proposed to
model and/or explain these phenomena – see [3] for an introduction to random
graph models for complex networks. Two particular classes of models that have
been studied from a mathematical viewpoint are (i) graphs where the edge proba-
bilities depend on certain weights associated with the vertices, see e.g. [7], [11], [12],
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[13] and [29], and (ii) so-called preferential attachment models, see e.g. [2], [6], [8],
[9] and [14]. The first class can be viewed as generalizations of the classical Erdős-
Rényi graph allowing for power-law degrees. Typically, the degree of a vertex is
determined by its weight. Preferential attachment models are dynamic in the sense
that a new vertex is added to the graph at each integer time. Each new vertex
comes with a number of edges attached to it which are connected to the old vertices
in such a way that vertices with high degree are more likely to be attached to.
This has been shown to lead to graphs with power-law degree sequences, and these
results are extended in the current paper.

In preferential attachment models, the degree of a vertex increases over time,
implying that the oldest vertices tend to have the largest degrees. Indeed, vertices
with large degrees are the most likely vertices to obtain even larger degrees. This
is sometimes called the rich-get-richer effect. Models where the vertex degrees are
determined by associated weights, on the other hand, give rise to something which
could be referred to as rich-by-birth effect (a vertex is born with a weight which
controls its degree). In reality, both these effects could play a role.

The aim of the current paper is to formulate and analyze a model that combines
the rich-get-richer and rich-by-birth effects. The model is a preferential attachment
model where the number of edges added upon the addition of a new vertex is
a random variable associated to the vertex. For bounded initial degrees, the model
is included in the very general class of preferential attachment models treated in [14],
but the novelty of the model lies in that the initial degrees can have an arbitrary
distribution. In particular, we can take the weight distribution to be a power law,
which gives a model with two “competing” power laws: the power law caused by
the preferential attachment mechanism and the power law of the initial degrees.
In such a situation it is indeed not clear which of the power laws will dominate in
the resulting degrees of the graph. Our main result implies that the most heavy-
tailed power law wins, that is, the degrees in the resulting graph will follow a power
law with the same exponent as the initial degrees in case this is smaller than the
exponent induced by the preferential attachment, and with an exponent determined
by the preferential attachment in case this is smaller.

The proof of our main result requires finite moment of order 1+ε for the initial
degrees. However, we believe that the conclusion is true also in the infinite mean
case. More specifically, we conjecture that, when the distribution of the initial
degrees is a power law with infinite mean, the degree sequence in the graph will
obey a power law with the same exponent as the one of the initial degrees. Indeed,
the power law of the initial degrees will always be the “strongest” in this case, since
preferential attachment mechanisms only seem to be able to produce power laws
with finite mean. In reality, power laws with infinite mean are not uncommon, see
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e.g. [27, Table 3.1] for some examples, and hence it is desirable to find a model that
can capture this. We have not been able to give a full proof for the infinite mean
case, but we present partial results in Section 1.2.

1.1. Definition of the model

The model that we consider is described by a graph process {G(t)}t≥1. To
define it, let {Wi}i≥1 be an independent identically distributed (i.i.d.) sequence
of positive integer-valued random variables and let G(1) be a graph consisting of
two vertices v0 and v1 with W1 edges joining them. For t≥2, the graph G(t) is
constructed from G(t−1) in such a way that a vertex vt, with associated weight
Wt, is added to the graph G(t−1), and the edge set is updated by adding Wt edges
between the vertex vt and the vertices v0, v1, ..., vt−1. Thus, Wt is the random initial
degree of vertex vt. Write d0(s), ..., dt−1(s) for the degrees of the vertices v0, v1, ...,
vt−1 at time s≥t−1. The endpoints of the Wt edges emanating from vertex vt are
chosen independently (with replacement) from {v0, ..., vt−1}, and the probability
that vi is chosen as the endpoint of a fixed edge is equal to

di(t−1)+δ
∑t−1

j=0(dj(t−1)+δ)
=

di(t−1)+δ

2Lt−1+tδ
, 0≤ i≤ t−1,(1.1)

where Lt=
∑t

i=1 Wi, and δ is a fixed parameter of the model. Write SW for the
support of the distribution of the initial degrees. To ensure that the above expression
defines a probability, we require that

δ+min{x : x∈SW}> 0.(1.2)

This model will be referred to as the PARID-model (preferential attachment with
random initial degrees). Note that, when Wi≡1 and δ=0, we retrieve the original
preferential attachment model from Barabási–Albert [2].

Remark 1.1. We shall give special attention to the case where P(Wi=m)=1 for
some integer m≥1, since it turns out that sharper error bounds are possible in this
case. These sharper bounds are needed in [22], where the diameter in preferential
attachment models is studied.

1.2. Main result

Our main result concerns the degree sequence in the graph G(t). To formulate
it, let Nk(t) be the number of vertices with degree k in G(t) and define pk(t)=
Nk(t)/(t+1) as the fraction of vertices with degree k. Furthermore, let {rk}k≥1 be
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the probabilities associated with the weight distribution, that is,

rk = P(W1 = k), k≥ 1.(1.3)

Finally, assume that the weights have finite mean µ>0 and define θ=2+δ/µ. We
are interested in the limiting distribution of pk(t), as t!∞. This distribution,
denoted by {pk}k≥1, is obtained as the solution of the recurrence relation

pk =
k−1+δ

θ
pk−1− k+δ

θ
pk+rk.(1.4)

Roughly, this relation is derived by analyzing how the number of vertices with
degree k is changed upon the addition of a new vertex; see e.g. [14] for some heuristic
explanation. By iteration, it can be seen that the recursion is solved by

pk =
θ

k+δ+θ

k−1∑

i=0

rk−i

i∏

j=1

k−j+δ

k−j+δ+θ
, k≥ 1,(1.5)

where the empty product, arising when i=0, is defined to be equal to one. Since
{pk}k≥1 satisfies (1.4) with p0=0, we have that

∑∞
k=1 pk=

∑∞
k=1 rk=1. Hence,

{pk}k≥1 defines a probability distribution. Our main result states that the limiting
degree distribution in the PARID-model is given by {pk}k≥1.

Theorem 1.2. If the initial degrees {Wi}i≥1 have finite moment of order 1+ε

for some ε>0, then there exists a constant γ∈(
0, 1

2

)
such that

lim
t!∞ P

(
max
k≥1

|pk(t)−pk| ≥ t−γ
)

= 0,

where {pk}k≥1 is defined in (1.5). When rm=1 for some integer m≥1, then t−γ

can be replaced by C
√

(log t)/t for some sufficiently large constant C.

To analyze the distribution {pk}k≥1, first consider the case when the initial
degrees are almost surely constant, that is, when rm=1 for some positive integer m.
Then rj =0 for all j �=m, and (1.5) reduces to

pk =

⎧
⎪⎨

⎪⎩

θΓ(k+δ)Γ(m+δ+θ)
Γ(m+δ)Γ(k+1+δ+θ)

for k≥m;

0 for k<m,

where Γ( · ) denotes the gamma function. By Stirling’s formula, we have that
Γ(s+a)/Γ(s)∼sa, as s!∞, and from this it follows that pk∼ck−(1+θ) for some
constant c>0. Hence, the degree sequence obeys a power law with exponent
1+θ=3+δ/m. Note that, by choosing δ>−m appropriately, any value of the
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exponent larger than 2 can be obtained. For other choices of {rk}k≥1, the behavior
of {pk}k≥1 is less transparent. The following proposition asserts that, if {rk}k≥1 is
a power law, then {pk}k≥1 is a power law as well. It also gives the aforementioned
characterization of the exponent as the minimum of the exponent of the rk’s and
an exponent induced by the preferential attachment mechanism.

Proposition 1.3. Assume that rk=P(W1=k)=k−τWL(k) for some τW>2 and
some function k �!L(k) which is slowly varying at infinity. Then pk=k−τ L̂(k) for
some slowly varying function k �!L̂(k) and with power-law exponent τ given by

τ = min{τW, τP},(1.6)

where τP is the power-law exponent of the pure preferential attachment model given
by τP=3+δ/µ. When rk decays faster than a power law, then (1.6) remains true
with the convention that τW=∞.

Now assume that the mean of the initial degrees {Wi}i≥1 is infinite. More
specifically, suppose that {rk}k≥1 is a power law with exponent τW∈[1, 2]. Then,
we conjecture that the main result above remains true.

Conjecture 1.4. When {rk}k≥1 is a power-law distribution with exponent
τW∈[1, 2], then the degree sequence in the PARID-model obeys a power law with
the same exponent τW.

Unfortunately, we cannot quite prove Conjecture 1.4. However, we shall prove
a slightly weaker version of it. To this end, write N≥k(t) for the number of vertices
with degree larger than or equal to k at time t, that is, N≥k(t)=

∑t
i=0 1{di(t)≥k},

and let p≥k(t)=N≥k(t)/(t+1). Since di(t)≥Wi, obviously

E[p≥k(t)] =
E[N≥k(t)]

t+1
≥ E[

∑t
i=1 1{Wi≥k}]

t+1
= P(W1 ≥ k)

t

t+1
= P(W1 ≥ k)(1+o(1)),

(1.7)

that is, the expected degree sequence in the PARID-model is always bounded from
below by the weight distribution. In order to prove a related upper bound, we start
by investigating the expectation of the degrees.

Theorem 1.5. Suppose that
∑

k>x

rk = P(W1 > x)= x1−τWL(x),

where τW∈(1, 2) and x �!L(x) is slowly varying at infinity. Then, for every s<

τW−1, there exists a constant C>0 and a slowly varying function x �!l(x) such
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that, for i∈{0, ..., t},

E[di(t)s]≤C

(
t

i∨1

)s/(τW−1)(
l(t)
l(i)

)s

,

where x∨y=max{x, y}.
As a consequence of Theorem 1.5, we obtain the following result.

Corollary 1.6. If
∑

k>x rk=P(W1>x)=x1−τWL(x), where τW∈(1, 2) and the
function x �!L(x) is slowly varying at infinity, then, for every s<τW−1, there exists
an M (independent of t) such that

E[ p≥k(t)]≤Mk−s.

Proof. For s<τW−1, it follows from Theorem 1.5 and Markov’s inequality that

E[ p≥k(t)] =
1

t+1

t∑

i=0

P(di(t)≥ k)=
1

t+1

t∑

i=0

P(di(t)s ≥ ks)

(1.8) ≤ 1
t+1

t∑

i=0

k−s
E[di(t)s]≤ k−s C

t+1

t∑

i=0

(
t

i∨1

)s/(τW−1)(
l(t)
l(i)

)s

≤Mk−s,

since, for s<τW−1 and using [17, Theorem 2, p. 283], there exists a constant c>0
such that

t∑

i=0

(i∨1)−s/(τW−1)l(i)−s = ct1−(s/τW−1)l(t)−s(1+o(1)). �

Combining Corollary 1.6 with (1.7) yields that, when the weight distribution is
a power law with exponent τW∈(1, 2), the only possible power law for the degrees
has exponent equal to τW. This statement is obviously not as strong as Theorem 1.2,
but it does offer convincing evidence for Conjecture 1.4. We prove Theorem 1.5 in
Section 3.

1.3. Related work

Before proceeding with the proofs, we discuss how the proof of our main result
is related to other proofs of similar results in the literature and describe some related
work.

Virtually all proofs of asymptotic power laws in preferential attachment mod-
els consist of two steps: one step where it is proved that the degree sequence is
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concentrated around its mean, and one where the mean degree sequence is iden-
tified. In this paper, these two results are formulated in Propositions 2.1 and 2.2
below, respectively. For bounded support of Wi, the concentration result and its
proof are identical in all proofs. To handle the case where Wi has unbounded
support, we make use of an additional coupling argument. The main differences
however arise in the statement and proof of the part where the expected degree
sequence is characterized. In our Proposition 2.2, a stronger result is proved than
the ones for δ=0 appearing in [9] for the case of a fixed number of edges, and in [23]
and [14] for the case of a random number of edges with bounded support and ex-
ponential moment, respectively. More precisely, Proposition 2.2 is valid for a wider
range of k values and the error term is smaller. The model in [14] – which is much
more general than the model discussed here – and the model in [23] indeed also
allow for a random i.i.d. number of edges {Wi}i≥1. However, as mentioned, there
Wi is assumed to have bounded support and exponential moments, respectively,
and hence, in those models, the competition of the exponents in (1.6) do not arise.

A related model which also tries to combine the rich-get-richer and the rich-by-
birth effect is the so-called fitness model, formulated by Barabási and Bianconi [4]
and [5], and later generalized by Ergün and Rodgers [15]. There the vertices are
equipped with weights, referred to as fitnesses, which determine their ability to
compete for edges. The number of edges emanating from each vertex however
is fixed. Recently, the degree sequence in this model has been analyzed in [10].
Results similar to ours for various other random graph processes where a fixed
number of edges emanates from each vertex can be found in [20]. Furthermore,
in [6], a directed preferential attachment model is investigated, and it is proved that
the degrees obey a power law similar to the one in [9]. In [1], the error bound in
our concentration result (Proposition 2.1) is proved for m=1 for several models.
For related references, see [20] and [30]. Finally, we mention [24], where a graph
process is studied in which, conditionally on G(t), edges to different vertices are
added independently with probability proportional to the degree of the vertex. In
this case, as in [9], the power-law exponent can only take the value τ=3, but it can
be expected that by incorporating an additive δ-term as in (1.1), the model can
be generalized to τ≥3. However, since δ<0 is not allowed in this model (by the
independence of the edges to different vertices, the degree of any vertex is zero with
positive probability), we expect that τ<3 is not possible.

2. Proofs of Theorem 1.2 and Proposition 1.3

In this section, we prove Theorem 1.2 and Proposition 1.3. We start by proving
Proposition 1.3, since the proof of Theorem 1.2 makes use of it.
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2.1. Proof of Proposition 1.3

Recall the definition (1.5) of pk. Assume that {rk}k≥1 is a power-law distri-
bution with exponent τW>2, that is, assume that rk=L(k)k−τW, for some slowly
varying function k �!L(k). We want to show that then pk is a power-law distribution
as well, more precisely, we want to show that pk=L̂(k)k−τ , where τ =min{τW, 1+θ}
and k �!L̂(k) is again a slowly varying function. To this end, first note that the ex-
pression for pk can be rewritten in terms of the gamma function as

pk =
θΓ(k+δ)

Γ(k+δ+1+θ)

k∑

m=1

Γ(m+δ+θ)
Γ(m+δ)

rm.(2.1)

By Stirling’s formula, we have that

Γ(k+δ)
Γ(k+δ+1+θ)

= k−(1+θ)(1+O(k−1)), as k!∞,(2.2)

and

Γ(m+δ+θ)
Γ(m+δ)

= mθ(1+O(m−1)), as m!∞.(2.3)

Furthermore, by assumption, rm=L(m)m−τW. It follows that

k∑

m=1

Γ(m+δ+θ)
Γ(m+δ)

rm(2.4)

is convergent, as k!∞, if θ−τW<−1, that is, if τW>1+θ. For such values of τW,
the distribution pk is hence a power law with exponent τP=1+θ. When θ−τW≥−1,
that is, when τW≤τP, the series in (2.4) diverges and, by [17, Lemma, p. 280], it
can be seen that

k �−!
k∑

m=1

Γ(m+δ+θ)
Γ(m+δ)

rm

varies regularly with exponent θ−τW+1. Combining this with (2.2) yields that pk

(compare (2.1)) varies regularly with exponent τW, as desired.

2.2. Proof of Theorem 1.2

As mentioned in Section 1.3, the proof of Theorem 1.2 consists of two parts: in
the first part, we prove that the degree sequence is concentrated around its mean,
and in the second part, the mean degree sequence is identified. These results are
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proved in two separate propositions – Propositions 2.1 and 2.2 – which are proved
in Sections 2.3 and 2.4, respectively.

The result on the concentration of the degree sequence is as follows:

Proposition 2.1. If the initial degrees {Wi}i≥1 in the PARID-model have
finite moments of order 1+ε, for some ε>0, then there exists a constant α∈(

1
2 , 1

)

such that

lim
t!∞ P

(
max
k≥1

|Nk(t)−E[Nk(t)]| ≥ tα
)

= 0.

When rm=1 for some m≥1, then tα can be replaced by C
√

t log t for some suffi-
ciently large C. Identical concentration estimates hold for N≥k(t).

As for the identification of the mean degree sequence, the following proposition
says that the expected number of vertices with degree k is close to (t+1)pk for
large t. More precisely, it asserts that the difference between E[Nk(t)] and (t+1)pk

is bounded, uniformly in k, by a constant times tβ, for some β∈[0, 1).

Proposition 2.2. Assume that the initial degrees {Wi}i≥1 in the PARID-
model have finite moment of order 1+ε for some ε>0, and let {pk}k≥1 be defined
as in (1.5). Then there exist constants c>0 and β∈[0, 1) such that

max
k≥1

|E[Nk(t)]−(t+1)pk| ≤ ctβ.(2.5)

When rm=1 for some m≥1, then the above estimate holds with β=0.

With Propositions 2.1 and 2.2 at hand it is not hard to prove Theorem 1.2.

Proof of Theorem 1.2. Combining (2.5) with the triangle inequality, it follows
that

P

(
max
k≥1

|Nk(t)−(t+1)pk| ≥ ctβ+tα
)
≤P

(
max
k≥1

|Nk(t)−E[Nk(t)]| ≥ tα
)
.

By Proposition 2.1, the right-hand side tends to 0, as t!∞, and hence, since
pk(t)=Nk(t)/(t+1), we have that

lim
t!∞ P

(

max
k≥1

|pk(t)−pk| ≥ ctβ+tα

t+1

)

= 0.

The theorem follows from this by picking 0<γ<1−max{α, β}. Note that, since
0≤β<1 and 1

2 <α<1, we have 0<γ< 1
2 . The proof for rm=1 is analogous. �
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2.3. Proof of Proposition 2.1

This proof is an adaption of a martingale argument, which first appeared
in [9], and has been used for all proofs of power-law degree sequences since. The
idea is to express the difference Nk(t)−E[Nk(t)] in terms of a Doob martingale.
After bounding the martingale differences, which are bounded in terms of the
random number of edges {Wi}i≥1, the Azuma–Hoeffding inequality can be applied
to conclude that the probability of observing large deviations is suitably small, at
least when the initial number of edges has bounded support. When the initial
degrees {Wi}i≥1 are unbounded, an extra coupling step is required. The argument
for N≥k(t) is identical, so we focus on Nk(t).

We start by giving an argument when Wi≤ta for all i≤t and some a∈(
0, 1

2

)
.

First note that

Nk(t)≤ 1
k

∞∑

l=k

lNl(t)≤ 1
k

∞∑

l=1

lNl(t)=
Lt

k
.(2.6)

Thus, E[Nk(t)]≤µt/k. For α∈(
1
2 , 1

)
, let η>0 be such that η+α>1 (the choice

of α will be specified in more detail below). Then, for any k>tη, the event
|Nk(t)−E[Nk(t)]|≥tα implies that Nk(t)≥tα, and hence that Lt≥kNk(t)>tη+α.
It follows from Boole’s inequality that

P

(
max
k≥1

|Nk(t)−E[Nk(t)]| ≥ tα
)
≤

tη
∑

k=1

P(|Nk(t)−E[Nk(t)]| ≥ tα)+P(Lt > tη+α).

Since η+α>1 and Lt/t!µ almost surely, the event Lt>tη+α has small probability.
To estimate the probability P(|Nk(t)−E[Nk(t)]|≥tα), introduce

Mn = E[Nk(t)|G(n)], n = 0, ..., t,

where G(0) is defined as the empty graph. Since E[Mn]<∞, the process is a Doob
martingale with respect to {G(n)}t

n=0. Furthermore, we have that Mt=Nk(t) and
M0=E[Nk(t)], so that

Nk(t)−E[Nk(t)] = Mt−M0.

Also, conditionally on the initial degrees {Wi}t
i=1, the increments satisfy the in-

equality |Mn−Mn−1|≤2Wn. To see this, note that the additional information con-
tained in G(n) compared to G(n−1) consists in how the Wn edges emanating from
vn are attached. This can affect the degrees of at most 2Wn vertices. By the
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assumption that Wi≤ta for all i=1, ..., t, we obtain that |Mn−Mn−1|≤2ta. Com-
bining all of this, it follows from the Azuma–Hoeffding inequality – see e.g. [18,
Section 12.2] – that, conditionally on Wi≤ta for all i=1, ..., t,

P(|Nk(t)−E[Nk(t)]| ≥ tα)≤ 2 exp
(

− t2α

8
∑t

i=1 t2a

)

= 2 exp
(

− t2α−1−2a

8

)

,

so that we end up with the estimate, again conditionally on Wi≤ta for all i=1, ..., t,

P

(
max
k≥1

|Nk(t)−E[Nk(t)]| ≥ tα
)
≤ 2tη exp

(

− t2α−1−2a

8

)

+P(Lt > tη+α).(2.7)

Since a< 1
2 , the above exponential tends to 0 for any α<1 satisfying that α>a+ 1

2 .
When the initial degrees are bounded, the above argument can be adapted to yield
that the probability that maxk≥1 |Nk(t)−E[Nk(t)]| exceeds C

√
t log t is o(1) for

some C>0 sufficiently large. We omit the details of this argument.
We conclude that Proposition 2.1 has been proved for all graphs G(t) satis-

fying that Wi≤ta for arbitrary a∈(
0, 1

2

)
. Naturally, this assumption may not be

true. When the initial degrees are bounded, the assumption is true, even with ta

replaced by m, but we are interested in graphs having initial degrees with finite
(1+ε)-moments. We next extend the proof to this setting by a coupling argument.

Fix a∈(
0, 1

2

)
, arbitrarily, and define, for i=1, 2, ..., t and 1≤s≤t,

W ′
i = Wi∧ta and L′

s =
s∑

i=1

W ′
i ,(2.8)

where x∧y=min{x, y}. Then, the above argument shows that the PARID-model
with initial degrees {W ′

i}t
i=1 satisfies the claim in Proposition 2.1. Denote the graph

process with initial degrees {W ′
i}t

i=1 by {G′(i)}t
i=1 and its degrees by d′i(s), i≤s≤t.

We now present a coupling between {G(i)}t
i=1 and {G′(i)}t

i=1.
Define the attachment probabilities in {G(i)}t

i=1 and {G′(i)}t
i=1 by

pi(s)=
di(s−1)+δ

2Ls−1+δs
and p′i(s)=

d′i(s−1)+δ

2L′
s−1+δs

.(2.9)

Observe that p′i(s) is properly defined since d′i(s−1)+δ≥W ′
i +δ=Wi∧ta+δ≥0,

for ta≥min{x:x∈SW}, which is true for t not too small.
We number the edges by saying that the edge (s, l) is the lth edge of vertex s,

where 1≤l≤Ws. The aim is to couple all edges in such a way that most edges have
the same starting and ending vertices in G and G′. For this, we shall split the set
of edges into two classes, the successfully coupled edges, and the miscoupled edges.
The successfully coupled edges will have identical starting and ending vertices in
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G and in G′, while the miscoupled edges will either only exist in G (when l>W ′
s

for edge (s, l)) or will have the same starting vertex, but different ending vertices
in G and in G′ (when l≤W ′

s for edge (s, l)). We shall denote the set of miscoupled
edges with number (s, l) with s≤t by U(t). We now explain when an edge is
miscoupled. For any W ′

s<l≤Ws, the edge with number (s, l) is miscoupled. In the
graph G(s), we attach the edge to a vertex i with probability pi(s), while in G′(s)
this edge is absent. For 1≤l≤W ′

s, the edge with number (s, l) is attached to i in both
graphs with probability mi(s)=pi(s)∧p′i(s), where i=0, 1, ..., s−1. Observe that
∑s−1

i=0 pi(s)=
∑s−1

i=0 p′i(s)=1, but
∑s−1

i=0 mi(s)≤1. For each edge with number (s, l)
with 1≤l≤W ′

s, we take one trial, independent of all randomness involved, with
probability vector

(m0(s), m1(s), ..., ms−1(s), ν(s)),(2.10)

where ν(s)=1−∑s−1
i=0 mi(s). If the trial ends in cell i, which happens with proba-

bility mi(s), then we attach the edge (s, l) to vertex i in both G(s) and G′(s), and
the edge (s, l) is coupled successfully. If the trial ends in cell s, which happens with
probability ν(s), then the edge (s, l) is miscoupled, so that (s, l)∈U(s). Then, in the
graphs G(s) and G′(s), respectively, we attach the edge (s, l) to vertex 0, 1, ..., s−1
according to two further, independent trials with probability vectors

1
ν(s)

(p0(s)−m0(s), ..., ps−1(s)−ms−1(s)),(2.11)

1
ν(s)

(p′0(s)−m0(s), ..., p′s−1(s)−ms−1(s)),

respectively (note that since mi(s)=pi(s)∧p′i(s), these draws are indeed differ-
ent a.s.). From this definition, we conclude that the probability of attaching any
edge of vertex s to vertex i in the graph G has marginal probability

mi(s)+ν(s)
pi(s)−mi(s)

ν(s)
= pi(s),(2.12)

as required. Similarly, this marginal probability equals p′i(s) in G′, so that the
graphs G and G′ have the correct marginal distributions. We note that each mis-
coupled edge in U(s) creates a difference in degrees of at most 2 in G(s) and G′(s),
so that

s∑

i=1

|di(s)−d′i(s)| ≤ 2|U(s)|.(2.13)

Indeed, when l>W ′
s, the edge (s, l) is absent in G′(s) and present in G(s), so that

the sum of absolute difference in degrees is increased by at most 2, while if l≤W ′
s
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and (s, l)∈U(s), then only the ending vertices of the edge (s, l) are different in G(s)
and G′(s), so that the sum of absolute difference in degrees is again increased by at
most 2.

From the above construction we get

E[|U(s)|] = E[|U(s−1)|]+2E[Ws−W ′
s]+E[Rs],(2.14)

where Rs is the total number of miscoupled edges during the attachment of the
edges with numbers (s, l) and l≤W ′

s. From (2.11), we obviously obtain

E[Rs] = E[E[Rs |Ws]] = E[W ′
sν(s)] = E[W ′

s]E[ν(s)],(2.15)

because W ′
s is independent of mi(s), i=0, 1, ..., s−1, and hence of ν(s).

In order to bound E[Rs], we observe that

ν(s)= 1−
s−1∑

i=0

mi(s)=
s−1∑

i=0

[ pi(s)−(pi(s)∧p′i(s))] =
1
2

s∑

i=0

|pi(s)−p′i(s)|.

We bound

|pi(s)−p′i(s)|=
∣
∣
∣
∣
di(s−1)+δ

2Ls−1+δs
− d′i(s−1)+δ

2L′
s−1+δs

∣
∣
∣
∣(2.16)

≤ |di(s−1)−d′i(s−1)|
2Ls−1+δs

+
2(Ls−1−L′

s−1)(d
′
i(s−1)+δ)

(2Ls−1+δs)(2L′
s−1+δs)

,

because L′
s−1≤Ls−1. From (2.16) we obtain the following upper bound for ν(s):

ν(s)=
1
2

s−1∑

i=0

|pi(s)−p′i(s)|(2.17)

≤ 1
2

s−1∑

i=0

|di(s−1)−d′i(s−1)|
2Ls−1+δs

+
1
2

s−1∑

i=0

2(Ls−1−L′
s−1)(d

′
i(s−1)+δ)

(2Ls−1+δs)(2L′
s−1+δs)

≤ |U(s−1)|
2Ls−1+δs

+
Ls−1−L′

s−1

2Ls−1+δs
,

by (2.13). The following lemma bounds the expected value of |U(t)|.

Lemma 2.3. There exist constants K>0 and b∈(0, 1) such that for all t∈N,

E[|U(t)|]≤Ktb.(2.18)
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Proof. We prove Lemma 2.3 by induction. We start with some preparations
for the induction step. Obviously, E[W ′

s]≤E[Ws]=µ and, from the existence of the
(1+ε)-moment of Ws, we obtain that

E[Ws−W ′
s] = E[(Ws−ta)1{Ws>ta}]≤ t−aε

E[W 1+ε
s ]≤Ct−aε.(2.19)

Secondly, from the strong law of large numbers Ls/s!µ a.s. Using this in combin-
ation with (2.17), we find that, taking ζ>0 such that 2(1−ζ)µ+δ=(1+ζ)µ>1,
which is possible since 2µ+δ>µ,

E[ν(s)]≤ E[|U(s−1)|]
(s−1)(1+ζ)µ

+
2E[Ls−1−L′

s−1]
s−1

+P(Ls−1 ≤ (1−ζ)µ(s−1))(2.20)

=
E[|U(s−1)|]

(s−1)(1+ζ)µ
+2E[Ws−1−W ′

s−1]+P(Ls−1≤ (1−ζ)µ(s−1)).

We are now ready to prove (2.18). Obviously, for any finite set of natural
numbers t, the inequality (2.18) holds by making K sufficiently large. This initializes
the induction hypothesis, and we may assume in the induction step that t is large.
So assume (2.18) for s−1<t, with s large and we will show that (2.18) holds for s.
From (2.14), (2.15), (2.19), (2.20) and the induction hypothesis, it follows that

E[|U(s)|]≤E[|U(s−1)|]+2E[Ws−W ′
s]+E[Rs]

≤K(s−1)b+2C(1+µ)t−aε+
K(s−1)b

(1+ζ)(s−1)
+µP(Ls−1 ≤ (1−ζ)µ(s−1))

= Ksb

((

1− 1
s

)b

+
2C(1+µ)
Ksb+aε

+
(1−1/s)b

(1+ζ)(s−1)

)

+µP(Ls−1 ≤ (1−ζ)µ(s−1)).

Standard large deviation techniques and the fact that Lt is a sum of t i.i.d. non-
negative random variables show that s �!P(Ls−1≤(1−ζ)µ(s−1)) converges to 0
exponentially fast for any ζ>0, so that we obtain the required bound Ksb whenever
s is sufficiently large and

(

1− 1
s

)b

+
2C(1+µ)
Ksb+aε

+
(1−1/s)b

(1+ζ)(s−1)
< 1.

This can be established when b+aε≥1, by taking s and K sufficiently large. �

We now complete the proof of Proposition 2.1. The Azuma–Hoeffding argu-
ment proves that N ′

k(t), the number of vertices with degree k in G′(t), satisfies the
bound in Proposition 2.1, i.e., that (recall (2.7))

P

(
max
k≥1

|N ′
k(t)−E[N ′

k(t)]| ≥ tα
)
≤ 2tη exp

(

− t2α−1−2a

8

)

+P(L′
t > tη+α)(2.21)
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for α∈(1
2 , 1) and η>0 such that α+η>1 and a∈(0, 1

2 ). Moreover, we have for every
k≥1, that

|Nk(t)−N ′
k(t)| ≤ |U(t)|,(2.22)

since every miscoupling can change the degree of at most one vertex. By (2.22)
and (2.18), there is a b∈(0, 1) such that

|E[Nk(t)]−E[N ′
k(t)]| ≤E[|U(t)|]≤Ktb.(2.23)

Also, by the Markov inequality, (2.22) and (2.18), for every α∈(b, 1), we have that

P

(
max
k≥1

|Nk(t)−N ′
k(t)|> tα

)
≤P(|U(t)|> tα)≤ t−α

E[|U(t)|] = o(1).(2.24)

Now fix α∈(
b∨(

a+ 1
2

)
, 1

)
, where x∨y=max{x, y}, and decompose

max
k≥1

|Nk(t)−E[Nk(t)]| ≤max
k≥1

|N ′
k(t)−E[N ′

k(t)]|+max
k≥1

|E[Nk(t)]−E[N ′
k(t)]|(2.25)

+max
k≥1

|Nk(t)−N ′
k(t)|.

The first term on the right-hand side is bounded by tα with high probability
by (2.21), the second term is, for t sufficiently large and with probability one,
bounded by tα by (2.23) while the third term is bounded by tα with high prob-
ability by (2.24). This completes the proof.

2.4. Proof of Proposition 2.2

For k≥1, let

Nk(t)= E[Nk(t)|{Wi}t
i=1](2.26)

denote the expected number of vertices with degree k at time t given the initial
degrees W1, ..., Wt, and define

εk(t)= Nk(t)−(t+1)pk, k≥ 1.(2.27)

Also, for a sequence of real numbers Q={Qk}k≥1, define the supremum norm of Q

as ‖Q‖=supk≥1 |Qk|. Using this notation, since E[Nk(t)]=E[Nk(t)], we have to
show that there are constants c>0 and β∈[0, 1) such that

‖E[ε(t)]‖= sup
k≥1

|E[Nk(t)]−(t+1)pk| ≤ ctβ for t = 0, 1, ...,(2.28)
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where ε(t)={εk(t)}k≥1. The plan to do this is to formulate a recursion for ε(t), and
then to use induction in t to establish (2.28). The recursion for ε(t) is obtained by
combining a recursion for N(t)={Nk(t)}k≥1, that will be derived below, and the
recursion for pk in (1.4). The hard work then is to bound the error terms in this
recursion; see Lemma 2.4 below.

Let us start by deriving a recursion for N(t). To this end, for a real-valued
sequence Q={Qk}k≥0, with Q0=0, introduce the operator Tt, defined as

(TtQ)k =
(

1− k+δ

2Lt−1+tδ

)

Qk+
k−1+δ

2Lt−1+tδ
Qk−1, k≥ 1.(2.29)

When applied to N(t−1), the operator Tt describes the effect of the addition of
a single edge emanating from the vertex vt, the vertex vt itself being excluded
from the degree sequence. Indeed, there are on the average Nk−1(t−1) vertices
with degree k−1 at time t−1 and a new edge is connected to such a vertex with
probability (k−1+δ)/(2Lt−1+tδ). After this connection is made, the vertex will
have degree k. Similarly, there are on the average Nk(t−1) vertices with degree k at
time t−1. Such a vertex is hit by a new edge with probability (k+δ)/(2Lt−1+tδ),
and will then have degree k+1. The expected number of vertices with degree k after
the addition of one edge is hence given by the operator in (2.29) applied to N(t).

Write T n
t for the n-fold application of Tt, and define T ′

t =T Wt
t . Then T ′

t de-
scribes the change in the expected degree sequence N(t) when all the Wt edges
emanating from vertex vt have been connected, ignoring vertex vt itself. Hence,
N(t) satisfies

Nk(t)= (T ′
tN(t−1))k+1{Wt=k}, k≥ 1.(2.30)

Introduce a second operator S on sequences of real numbers Q={Qk}k≥0, with
Q0=0, by (compare to (1.4))

(SQ)k =
k−1+δ

θ
Qk−1− k+δ

θ
Qk, k≥ 1,(2.31)

where θ=2+δ/µ and µ is the expectation of W1.
The recursion (1.4) is given by pk=(Sp)k+rk, with initial condition p0=0. It

is solved by p={pk}k≥1, as defined in (1.5). Observe that

(t+1)pk = tpk+(Sp)k+rk = t(T ′
tp)k+rk−�k(t), k≥ 1,(2.32)

where

�k(t)= t(T ′
tp)k−(Sp)k−tpk.(2.33)
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Combining (2.27), (2.30) and (2.32), and using the linearity of T ′
t , it follows that

ε(t)={εk(t)}k≥1 satisfies the recursion

εk(t)= (T ′
tε(t−1))k+1{Wt=k}−rk+�k(t),(2.34)

indeed,

εk(t) = Nk(t)−(t+1)pk = (T ′
tN(t−1))k+1{Wt=k}−t(T ′

tp)k−rk+�k(t)

= (T ′
tε(t−1))k+1{Wt=k}−rk+�k(t).

Now we define kt=ηt, where η∈(µ, 2µ+δ). As, by (1.2), δ>−min{x:x∈SW}≥−µ,
the interval (µ, 2µ+δ) �=∅. Also, by the law of large numbers, Lt≤kt, as t!∞, with
high probability. Further, we define ε̃k(t)=εk(t)1{k≤kt} and note that, for k≤kt,
the sequence {ε̃k(t)}k≥1 satisfies

ε̃k(t)= 1{k≤kt}(T
′
tε(t−1))k+1{Wt=k}−rk+�̃k(t),(2.35)

where �̃k(t)=�k(t)1{k≤kt}. It follows from E[1{Wt=k}]=rk and the triangle inequal-
ity that

‖E[ε(t)]‖≤ ‖E[ε(t)−ε̃(t)]‖+‖E[ε̃(t)]‖(2.36)

≤‖E[ε(t)−ε̃(t)]‖+‖E[1(−∞,kt]( · )T ′
tε(t−1)]‖+‖E[�̃(t)]‖,

where 1(−∞,kt](k)=1{k≤kt}. Inequality (2.36) is the key ingredient in the proof of
Proposition 2.2. We will derive the following bounds for the terms in (2.36).

Lemma 2.4. There are constants Cε̃, C
(1)
ε , C

(2)
ε and C�̃, independent of t,

such that for t sufficiently large and some β∈[0, 1),
(a) ‖E[ε(t)−ε̃(t)]‖≤Cε̃/t1−β ;
(b) ‖E[1(−∞,kt]( · )T ′

tε(t−1)]‖≤(1−C
(1)
ε /t)‖E[ε(t−1)]‖+C

(2)
ε /t1−β ;

(c) ‖E[�̃(t)]‖≤C�̃/t1−β.
When rm=1 for some integer m≥1, then the above bounds hold with β=0.

Given these bounds, Proposition 2.2 is easily established.

Proof of Proposition 2.2. Recall that we want to establish (2.28). We shall
prove this by induction on t. Fix t0∈N. We start by verifying the induction hypoth-
esis for t≤t0, thus initializing the induction hypothesis. For any t≤t0, we have

‖E[ε(t)]‖≤ sup
k≥1

E[Nk(t)]+(t0+1) sup
k≥1

pk ≤ 2(t0+1),(2.37)

since there are precisely t0+1 vertices at time t0 and pk≤1. This initializes the
induction hypothesis, when c is so large that 2(t0+1)≤ctβ0 . Next, we advance the
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induction hypothesis. Assume that (2.28) holds at time t−1 and apply Lemma 2.4
to (2.36) to get that

‖E[ε(t)]‖≤ ‖E[ε(t)−ε̃(t)]‖+‖E[1(−∞,kt]( · )T ′
tε(t−1)]‖+‖E[�̃(t)]‖

≤ Cε̃

t1−β
+

(

1−C
(1)
ε

t

)

c(t−1)β+
C

(2)
ε

t1−β
+

C�̃

t1−β

≤ ctβ− cC
(1)
ε −(C(2)

ε +Cε̃+C�̃)
t1−β

,

as long as 1−C
(1)
ε /t≥0, which is equivalent to t≥C

(1)
ε . If we then choose c large

so that cC
(1)
ε ≥C

(2)
ε +Cε+C�̃, c≥2(t0+1)t−β

0 (recall (2.37)) and t0≥C
(1)
ε , then we

have that ‖E[ε(t)]‖≤ctβ, and (2.28) follows by induction in t. �

It remains to prove Lemma 2.4. We shall prove Lemma 2.4(a)–(c) one by one,
starting with (a).

Proof of Lemma 2.4(a). We have ‖E[ε(t)−ε̃(t)]‖≤E[‖ε(t)−ε̃(t)‖], and, using
the definition of ε̃(t), we get that

‖ε(t)−ε̃(t)‖= sup
k>kt

|Nk(t)−(t+1)pk| ≤ sup
k>kt

Nk(t)+(t+1) sup
k>kt

pk.

The maximal possible degree of a vertex at time t is Lt, which implies that
supk>kt

Nk(t)=0, when Lt≤kt. The latter is true almost surely when rm=1 for
some integer m, when t is sufficiently large, since for t large Lt=mt≤ηt=kt, where
η∈(m, 2m+δ), by the fact that µ=m and δ>−m. On the other hand, by (2.6),
with Nk(t) replaced by Nk(t) we find that Nk(t)≤Lt/kt for k≥kt, and we obtain
that

E

[
sup
k>kt

Nk(t)
]
≤ k−1

t E[Lt1{Lt>kt}].(2.38)

With kt=ηt for some η∈(µ, 2µ+δ), we have that

E[Lt1{Lt>kt}]≤ k−ε
t E[L1+ε

t 1{Lt>kt}]≤ k−ε
t E[|Lt−µt|1+ε]+(µt)1+εk−ε

t P(Lt > kt),
(2.39)

and, by the Markov inequality,

P(Lt > kt)≤P(|Lt−µt|1+ε > (kt−µt)1+ε)≤ (kt−µt)−(1+ε)
E[|Lt−µt|1+ε].

Combining the two latter results, we obtain that

E[Lt1{Lt>kt}]≤ k−ε
t

(

1+
(

µ

η−µ

)1+ε)

E[|Lt−µt|1+ε].(2.40)
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To bound the last expectation, we will use a consequence of the Marcinkiewicz–
Zygmund inequality, see e.g. [19, Corollary 8.2 in §3], which runs as follows. Let
q∈[1, 2], and suppose that {Xi}i≥1 is an i.i.d. sequence with E[X1]=0 and
E[|X1|q]<∞. Then there exists a constant cq depending only on q, such that

E

[∣
∣
∣
∣

t∑

i=1

Xi

∣
∣
∣
∣

q]

≤ cqtE[|X1
q|].(2.41)

Applying (2.41) with q=1+ε, we obtain that

E

[
sup
k>kt

Nk(t)
]
≤ k

−(1+ε)
t

(

1+
(

µ

η−µ

)1+ε)

E[|Lt−µt|1+ε]≤ c1+εt
−ε.(2.42)

Furthermore, since by Proposition 1.3, we have pk≤ck−γ for some γ>2 (see
also (1.6)), we have that supk>kt

pk≤ct−γ for some constant c. It follows that

(t+1) sup
k>kt

pk ≤ Cp

tγ−1
,

and, since γ>2, part (a) is established with Cε̃=c1+ε+Cp, and 1−β=(ε∧γ)−1. �

Proof of Lemma 2.4(b). We will start by showing that for t sufficiently large,

‖E[1(−∞,kt]( · )Ttε(t−1)]‖≤
(

1−C
(1)
ε

t

)

‖E[1(−∞,kt]( · )ε(t−1)]‖+
C

(3)
ε

t1−β
,(2.43)

which is (b) when we condition on Wt=1. We shall extend the proof to the case
where Wt≥1 at a later stage. To prove (2.43), we shall prove a related bound, which
also proves useful in the extension to Wt≥1. Indeed, we shall prove, that for any
real-valued sequence Q={Qk}k≥0 satisfying (i) Q0=0 and (ii)

sup
k≥1

|k+δ| |Qk| ≤CQLt−1,(2.44)

there exists a β∈(0, 1) (independent of Q) and a constant c>0 such that for t

sufficiently large,

‖E[1(−∞,kt]( · )TtQ]‖≤
(

1−C
(1)
ε

t

)

‖E[1(−∞,kt]( · )Q]‖+
cCQ

t1−β
.(2.45)

Here we stress that Q can be random, for example, we shall apply (2.45) to ε(t−1)
in order to derive (2.43).

In order to prove (2.45), we recall that

E[(TtQ)k] = E

[(

1− k+δ

2Lt−1+tδ

)

Qk+
k−1+δ

2Lt−1+tδ
Qk−1

]

, k≥ 1.(2.46)
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In bounding this expectation we will encounter a problem in that Qk, which is
allowed to be random, and Lt−1 are not independent (for example when Q=ε(t−1)).
To get around this, we add and subtract the expression on the right-hand side but
with the random quantities replaced by their expectations, that is, for k≥1, we
write

E[(TtQ)k]=
(

1− k+δ

2µ(t−1)+tδ

)

E[Qk]+
k−1+δ

2µ(t−1)+tδ
E[Qk−1](2.47)

+(k+δ)E
[

Qk
2Lt−1−2µ(t−1)

(2Lt−1+tδ)(2µ(t−1)+tδ)

]

(2.48)

+(k+δ−1)E
[

Qk−1
2µ(t−1)−2Lt−1

(2Lt−1+tδ)(2µ(t−1)+tδ)

]

.(2.49)

Note that, when rm=1 for some integer m≥1, then Lt=µt=mt. Hence the terms
in (2.48) and (2.49) are both equal to zero, and only (2.47) contributes. We
first deal with (2.47). Observe that k≤kt=ηt, with η∈(µ, 2µ+δ), implies that
k≤(2µ+δ)(t−1) for t sufficiently large, and hence

1− k+δ

2µ(t−1)+tδ
≥ 0.(2.50)

It follows that, for t sufficiently large,

sup
k≤kt

∣
∣
∣
∣

(

1− k+δ

2µ(t−1)+tδ

)

E[Qk]+
k−1+δ

2µ(t−1)+tδ
E[Qk−1]

∣
∣
∣
∣(2.51)

≤
(

1− 1
2µ(t−1)+tδ

)

‖E[1(−∞,kt]( · )Q]‖≤
(

1−C
(1)
ε

t

)

‖E[1(−∞,kt]( · )Q]‖,

for some constant C
(1)
ε . This proves (2.45) – with CQ=0 – when the number of

edges is a.s. constant since (2.48) and (2.49) are zero. It remains to bound the
terms (2.48) and (2.49) in the case where the number of edges is not a.s. constant.
We will prove that the supremum over k of the absolute values of both these terms
are bounded by constants divided by t1−β for some β∈[0, 1). Starting with (2.48),
by using the assumption (ii) in (2.44), as well as 2Lt−1+δt≥Lt−1 for t sufficiently
large, it follows that

sup
k≥1

∣
∣
∣
∣(k+δ)E

[

Qk
2Lt−1−2µ(t−1)

(2Lt−1+tδ)(2µ(t−1)+tδ)

]∣
∣
∣
∣≤

cCQ

t
E[|Lt−1−µ(t−1)|].

To bound the latter expectation, we combine (2.41) for q=1+ε, with Hölder’s in-
equality, to obtain that

E[|Lt−µt|]≤E[|Lt−µt|1+ε]1/(1+ε) ≤ (c1+εtE[|W1−µ|1+ε])1/(1+ε) ≤ ct1/(1+ε),

(2.52)
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since Wi has finite moment of order 1+ε by assumption, where, without loss of
generality, we can assume that ε≤1. Hence, we have shown that the supremum
over k of the absolute value of (2.48) is bounded from above by a constant divided
by t1−β, where β=1/(1+ε). That the same is true for the term (2.49) can be seen
analogously. This completes the proof of (2.45).

To prove (2.43), we note that, by convention, ε0(t−1)=0, so that we only need
to prove that supk≥1 |k+δ| |εk(t−1)|≤cLt−1. For this, note from (2.6), the bound
pk≤ck−γ , γ>2, and from the lower bound Lt≥t that

sup
k≥1

|k+δ| |εk(t−1)|≤
∑

k≥1

(k+|δ|)|εk(t−1)| ≤
∑

k≥1

(k+|δ|)Nk(t−1)+t
∑

k≥1

(k+|δ|)pk

≤Lt−1+|δ|(t−1)+t
∑

k≥1

(k+|δ|)pk ≤ cLt−1,(2.53)

for some constant c. This completes the proof of (2.43).
To complete the proof of Lemma 2.4(b), we first show that (2.45) implies, for

every 1≤n≤t and all k≥1, that

E[1{k≤kt}(T
n
t ε(t−1))k]≤

(

1−C
(1)
ε

t

)

‖E[1(−∞,kt]( · )ε(t−1)]‖+
nC

(3)
ε

t1−β
.(2.54)

To see (2.54), we use induction on n. We note that (2.54) for n=1 is precisely equal
to (2.43), and this initializes the induction hypothesis. To advance the induction
hypothesis, we note that

1{k≤kt}(T
n
t ε(t−1))k = 1{k≤kt}Tt(Q(n−1))k,(2.55)

where Qk(n−1)=1{k≤kt}(T
n−1
t ε(t−1))k. We wish to use (2.45), and we first check

the assumptions (i) and (ii). By definition, Q0(n−1)=0, which establishes (i). For
assumption (ii), we need to do some more work. According to (2.29), and using
that 2Lt−1+tδ>Lt−1≥t−1, for t sufficiently large,

∞∑

k=1

(k+|δ|)(TtQ)k ≤
(

1+
1
t

) ∞∑

k=1

(k+|δ|)Qk,

and hence, by induction,

∞∑

k=1

(k+|δ|)(T n−1
t Q)k ≤

(

1+
1
t

)n−1 ∞∑

k=1

(k+|δ|)Qk.



62 Maria Deijfen, Henri van den Esker, Remco van der Hofstad and Gerard Hooghiemstra

Substituting Qk=εk(t−1) and using that |εk(t−1)|≤Nk(t−1)+tpk, yields that

∑

k≤kt

(k+|δ|)(T n−1
t N(t−1))k+t

∑

k≤kt

(k+|δ|)(T n−1
t p)k(2.56)

≤
(

1+
1
t

)n−1 ∞∑

k=1

(k+|δ|)Nk(t−1)+
(

1+
1
t

)n−1

t

∞∑

k=1

(k+|δ|)pk

≤
(

1+
1
t

)n−1

cLt−1,

according to (2.53). Using the inequality 1+x≤ex, x≥0, together with n≤t, this
in turn yields that

sup
k≥1

|k+δ| |Qk(n−1)| ≤ ecLt−1,(2.57)

which implies assumption (ii).
By the induction hypothesis, we have that, for k≤kt,

E[Qk(n−1)]≤
(

1−C
(1)
ε

t

)

‖E[1(−∞,kt]( · )ε(t−1)]‖+
(n−1)C(3)

ε

t1−β
,(2.58)

so that we obtain, from (2.45), with Q=1(−∞,kt]( · )Ttε(t−1),

E[1{k≤kt}(T
n
t ε(t−1))k]≤

(

1−C
(1)
ε

t

)

‖E[1(−∞,kt]( · )ε(t−1)]‖+
(n−1)C(3)

ε +cCQ

t1−β
,

(2.59)

which advances the induction hypothesis when C
(3)
ε >cCQ.

By (2.59), we obtain that, for Wt≤t,

E[1{k≤kt}(T
′
tε(t−1))k |Wt]≤

(

1−C
(1)
ε

t

)

‖E[ε(t−1) |Wt]‖+
WtC

(3)
ε

t1−β

=
(

1−C
(1)
ε

t

)

‖E[ε(t−1)]‖+
WtC

(3)
ε

t1−β
,

where we use that ε(t−1) is independent of Wt. In the case that Wt>t, we bound,
similarly as in (2.53),

sup
k≤kt

|(T ′
tε(t−1))k| ≤ cLt,(2.60)
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so that

E[1{k≤kt}(T
′
tε(t−1))k |Wt](2.61)

≤
(

1−C
(1)
ε

t

)

‖E[ε(t−1)]‖+
WtC

(3)
ε

t1−β
+cE[Lt1{Wt>t} |Wt].

The bound in (b) follows from this by taking expectations on both sides, using that

E[Lt1{Wt>t}] = µ(t−1)P(Wt > t)+E[Wt1{Wt>t}]≤
(

µ

tε
+

1
tε

)

E[W 1+ε
t ],(2.62)

after which we use that β=1/(1+ε)≥1−ε and choose the constants appropriately.
This completes the proof of Lemma 2.4(b). �

Proof of Lemma 2.4(c). Recall that

�̃k(t)=�k(t)1{k≤kt} with �k(t)= t((T ′
t−I)p)k−(Sp)k,(2.63)

where Tt is defined in (2.29), T ′
t =T Wt

t , S is defined in (2.31), and where I denotes the
identity operator. In what follows, we will assume that k≤kt, so that �̃k(t)=�k(t).
We start by proving a trivial bound on �k(t). By (2.34), we have that

�k(t)= εk(t)−(T ′
tε(t−1))k−1{Wt=k}+rk,(2.64)

where supk≥1 |εk(t)|≤cLt by (2.53) and supk≤kt
|(T ′

tε(t−1))k|≤cLt by (2.60). Thus

sup
k≤kt

|�k(t)| ≤CηLt(2.65)

for some Cη (recall that kt=ηt, where η∈(µ, 2µ+δ)). For x∈[0, 1] and w∈N, we let

fk(x; w)= ((I+x(Tt−I))wp)k.

Then �k(t)=�k(t; Wt), where

�k(t; w)= t[fk(1; w)−fk(0; w)]−(Sp)k,(2.66)

and x �!fk(x; w) is a polynomial in x of degree w. By a Taylor expansion around
x=1,

fk(1; w)= pk+w((Tt−I)p)k+ 1
2f ′′

k (xk; w)(2.67)

for some xk∈(0, 1), and, since I+x(Tt−I) and Tt−I commute,

f ′′
k (x; w)= w(w−1)((I+x(Tt−I))w−2(Tt−I)2p)k.
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We next claim that, on the event {kt≤2Lt−1+(t−1)δ},
sup
k≤kt

|((I+x(Tt−I))Q)k| ≤ sup
k≤kt

|Qk|.

Indeed, I+x(Tt−I)=(1−x)I+xTt and x∈[0, 1], so that the claim follows when
supk≤kt

|(TtQ)k|≤supk≤kt
|Qk|. The latter is the case, since, on the event that

k+δ≤2Lt−1+tδ, and arguing as in (2.51), we have

sup
k≤kt

|(TtQ)k|≤ sup
k≤kt

[(

1− k+δ

2Lt−1+tδ

)

|Qk|+ k−1+δ

2Lt−1+tδ
|Qk−1|

]

≤
(

1− 1
2Lt−1+tδ

)

sup
k≤kt

|Qk|.

Since k≤kt, the inequality k+δ≤2Lt−1+tδ follows when kt≤2Lt−1+(t−1)δ.
As a result, on the event {kt≤2Lt−1+(t−1)δ}, we have that

max
x∈[0,1]

sup
k≤kt

|f ′′
k (x; w)| ≤w(w−1) sup

k≤kt

|((Tt−I)2p)k|.(2.68)

Now recall the definition (2.31) of the operator S, and note that, for any sequence
Q={Qk}∞k=1, we can write

((Tt−I)Q)k =
θ

2Lt−1+tδ
(SQ)k =

1
tµ

(SQ)k+(RtQ)k,(2.69)

where the remainder operator Rt is defined as

(RtQ)k =
(

k+δ

2tµ+tδ
− k+δ

2Lt−1+tδ

)

Qk+
(

k−1+δ

2Lt−1+tδ
− k−1+δ

2tµ+tδ

)

Qk−1.(2.70)

Combining (2.66), (2.67), (2.68) and (2.69), on the event {kt≤2Lt−1+(t−1)δ} and
uniformly for k≤kt, we obtain that

�k(t; w)≤
(

w

µ
−1

)

(Sp)k+wt sup
k≤kt

|(Rtp)k|+ 1
2
w(w−1)t sup

k≤kt

|((Tt−I)2p)k|,(2.71)

together with a similar lower bound with minus signs in front of the last two terms.
Indeed,

�k(t; w) = t[fk(1; w)−fk(0; w)]−(Sp)k

= tw((Tt−I)p)k+ 1
2 tf ′′

k (xk; w)−(Sp)k

=
wt

µt
(Sp)k+wt(Rp)k−(Sp)k+ 1

2 tf ′′
k (xk; w),

and (2.71) follows from this identity and (2.68).
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With (2.71) at hand, we are now ready to complete the proof of (c). We
start by treating the case where rm=1 for some integer m≥1. In this case, with
w=Wt=m=µ, we have that (w/µ−1)(Sp)k≡0. Furthermore, the inequality kt≤
2Lt−1+(t−1)δ is true almost surely when t is sufficiently large. Hence, we are done
if we can bound the last two terms in (2.71) with w=Wt. To do this, note that, by
the definition (2.29) of Tt and the fact that 2Lt−1+tδ≥kt=ηt, with η>µ,

sup
k≥1

|((Tt−I)Q)k| ≤ 2
ηt

sup
k≥1

(k+|δ|)|Qk|.(2.72)

Applying (2.72) twice yields that

|((Tt−I)2p)k| ≤ 4
η2t2

sup
k≥1

(k+|δ|)2pk,

and, since by Proposition 1.3, pk≤ck−γ for some γ>2, there is a constant C̃p such
that

sup
k≥1

(k+|δ|)2pk ≤ C̃p.(2.73)

Finally, since Lt=mt, we have that

|(Rtp)k| ≤ 2
m(t−1)t

sup
k≥1

(k+|δ|)pk ≤ 2C̃p

m(t−1)t
.

Summarizing, we arrive at the statement that there exists cm,δ such that

sup
k≤kt

|�k(t; m)| ≤ cm,δ

t
,

which proves the claim in (c) with β=0 when rm=1.
We now move to random initial degrees. For any a∈(0, 1), we can split

�k(t)=�k(t)1{Wt≤ta}+�k(t)1{Wt>ta}.(2.74)

On the event {kt≤2Lt−1+(t−1)δ}, the first term of (2.74) can be bounded by the
right-hand side of (2.71), i.e.,

�k(t)1{Wt≤ta}

≤
((

Wt

µ
−1

)

(Sp)k+tWt sup
k≤kt

|(Rtp)k|+ Wt(Wt−1)
2

t sup
k≤kt

|((Tt−I)2p)k|
)

1{Wt≤ta},

with a similar lower bound where the last two terms have a minus sign. From (2.65),
we obtain the upper bound

�k(t)1{Wt>ta} ≤CηLt1{Wt>ta}.
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Combining these two upper bounds with the identity (2.74), and adding the term
(Wt/µ−1)(Sp)k1{Wt>ta} to the right-hand side, yields that on the event that
{kt≤2Lt−1+(t−1)δ},

�k(t)≤
(

Wt

µ
−1

)

(Sp)k+tWt1{Wt≤ta} sup
k≤kt

|(Rtp)k|(2.75)

+tW 2
t 1{Wt≤ta} sup

k≤kt

|((Tt−I)2p)k|+1{Wt>ta}CηLt,

and similarly we get as a lower bound, using that |Wt/µ−1|≤Wt,

�k(t)≥
(

Wt

µ
−1

)

(Sp)k−tWt1{Wt≤ta} sup
k≤kt

|(Rtp)k|(2.76)

−tW 2
t 1{Wt≤ta} sup

k≤kt

|((Tt−I)2p)k|−1{Wt>ta}(CsWt+CηLt),

where we used that supk≥1 |(Sp)k|≤Cs. We use (2.75) and (2.76) on the event
{kt≤2Lt−1+(t−1)δ}, and (2.65) on the event {kt>2Lt−1+(t−1)δ} to arrive at

�k(t)≤
(

Wt

µ
−1

)

(Sp)k+tWt1{Wt≤ta} sup
k≤kt

|(Rtp)k|(2.77)

+tW 2
t 1{Wt≤ta} sup

k≤kt

|((Tt−I)2p)k|

+(1{Wt>ta}+1{kt>2Lt−1+(t−1)δ})((Cs+Cη)Wt+CηLt−1),

with a similar lower bound where the last three terms have minus signs. We now take
expectations on both sides of (2.77) and take advantage of the equality E[Wt/µ]=1
and the property that (Sp)k is deterministic, so that the first term in the right-hand
side drops out. Moreover, using that Wt and Lt−1 are independent, as well as that
kt>2Lt−1+(t−1)δ implies that Lt−1≤kt, we arrive at

|E[�k(t)]| ≤E[1{Wt>ta}((Cs+Cη)Wt+Cηµt)](2.78)

+(Cηkt+(Cs+Cη)µ)P(kt > 2Lt−1+(t−1)δ)(2.79)

+tE
[
sup
k≤kt

|(Rtp)k|
]
E[Wt1{Wt>ta}](2.80)

+tE[W 2
t 1{Wt≤ta}]E

[
sup
k≤kt

|((Tt−I)2p)k|
]
.(2.81)

We now bound each of these four terms one by one. To bound (2.78), we use that
Wt has finite (1+ε)-moment, to obtain that

E[1{Wt>ta}Wt] = E[1{Wt>ta}W
−ε
t W 1+ε

t ]≤ t−aε
E[W 1+ε

t ] = O(t−aε)
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and

tE[1{Wt>ta}] = tP(W 1+ε
t > ta(1+ε))≤ t1−a(1+ε)

E[W 1+ε
t ] = O(t1−a(1+ε)),

which bounds (2.78) as

E[1{Wt>ta}((Cs+Cη)Wt+Cηµt)] = O(tb),(2.82)

with b=max{−aε, 1−a(1+ε)}.
To bound (2.79), we use that Lt−1< 1

2 (ηt−δ(t−1))= 1
2 (η−δ)(t−1)+ 1

2η when
kt>2Lt−1+(t−1)δ. Now, since η∈(µ, 2µ+δ), we have that 1

2 (η−δ)<µ. Standard
large deviation theory and the fact that the initial degrees Wi are non-negative give
that the probability that Lt−1<σ(t−1), with σ<µ, is exponentially small in t. As
a result, we obtain that

(Cηkt+(Cs+Cη)µ)P(kt > 2Lt−1+(t−1)δ)= O(t−1).(2.83)

To bound (2.80), we use that 2Lt−1+tδ≥Lt−1≥t−1≥t/2, and also use (2.73),
to obtain that

E

[
sup
k≤kt

|(Rtp)k|
]
≤ c

t2
E|Lt−1−tµ| sup

k≥1
(k+|δ|)pk ≤ c

t2
E|Lt−1−tµ|.

Thus,

tE
[
sup
k≤kt

|(Rtp)k|
]
E[Wt1{Wt>ta}]≤ c

t
E|Lt−1−tµ|t−aε ≤O(t−aε−ε/(1+ε)),(2.84)

where the final bound follows from (2.52).
Finally, to bound (2.81), note that

E[W 2
t 1{Wt≤ta}] = E[W 1−ε

t W 1+ε
t 1{Wt≤ta}]≤ ta(1−ε)

E[W 1+ε
t ] = O(ta(1−ε)),

and, by (2.29) and the fact that 2Lt−1+tδ≥ηt for some η>0, we have that

E

[
sup
k≤kt

|((Tt−I)2p)k|
]
≤ c

t2
sup
k≥1

(k+|δ|)2pk.(2.85)

This leads to the bound that

tE[W 2
t 1{Wt≤ta}]E

[
sup
k≤kt

|((Tt−I)2p)k|
]
≤O(ta(1−ε)−1).(2.86)

Combining the bounds in (2.82), (2.83), (2.84) and (2.86) completes the proof of
part (c) of Lemma 2.4, for any a such that 1/(ε+1)<a<1. �
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3. Proof of Theorem 1.5

In this section, we write F (x)=P(W1≤x), and assume that 1−F (x)=x1−τL(x)
for some slowly varying function x �!L(x). Throughout this section, we write τ=τW.

From (1.1) it is immediate that

di(t)= di(t−1)+Xi,t for i = 0, 1, 2, ..., t−1,(3.1)

where, conditionally on di(t−1) and {Wj}t
j=1, the distribution of Xi,t is binomial

with parameters Wt and success probability

qi(t)=
di(t−1)+δ

2Lt−1+tδ
.(3.2)

Hence, for t>i,

E[(di(t)+δ)s | {Wj}t
j=1] = E[E[(di(t−1)+δ+Xi,t)s | di(t−1), {Wj}t

j=1] | {Wj}t
j=1]

(3.3)

≤E[(di(t−1)+δ+E[Xi,t | di(t−1), {Wj}t
j=1])

s],

where we have used the Jensen inequality E[(a+X)s]≤(a+E[X ])s, which follows
from the concavity of t �!(a+t)s for 0<s<1. Next, we make the substitution
E[Xi,t |di(t−1), {Wj}t

j=1]=Wtqi(t) and use the inequality 2Lt−1+tδ≥Lt−1+δ, to
obtain that

E[(di(t)+δ)s | {Wj}t
j=1]≤E[(di(t−1)+δ)s | {Wj}t

j=1]
(

1+
Wt

2Lt−1+tδ

)s

≤E[(di(t−1)+δ)s | {Wj}t
j=1]

(
Lt+δ

Lt−1+δ

)s

.

Thus, by induction, and because di(i)=Wi, we get that, for all t>i≥1,

E[(di(t)+δ)s | {Wj}t
j=1]≤ (Wi+δ)s

t∏

n=i+1

(
Ln+δ

Ln−1+δ

)s

= (Wi+δ)s

(
Lt+δ

Li+δ

)s

.(3.4)

The case i=0 can be treated by (d0(t)+δ)s=(d1(t)+δ)s, which is immediate from
the definition of G(1). Thus,

E[(di(t)+δ)s]≤E

[

(Wi+δ)s

(
Lt+δ

Li+δ

)s]

.(3.5)

Define f(Wi)=(Wi+δ)s and

g(Wi)=
(

Lt+δ

Li+δ

)s

=
(

1+
Wi+1+Wi+2+...+Wt

W1+W2+...+Wi+δ

)s

,
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and notice that when we condition on all Wj , 1≤j≤t, except Wi, then the map
Wi �!f(Wi) is increasing in its argument, whereas Wi �!g(Wi) is decreasing. This
implies that

E[f(Wi)g(Wi)]≤E[f(Wi)]E[g(Wi)].(3.6)

Hence,

E[(di(t)+δ)s]≤E[(Wi+δ)s]E
[(

Lt+δ

Li+δ

)s]

≤E[(Wi+δ)s]E[(Lt+δ)s]E[(Li+δ)−s],

(3.7)

where in the final step we have applied the inequality (3.6) once more.
For i, t!∞,

E[(Li+δ)−s] = (1+o(1))E[L−s
i ] and E[(Lt+δ)s] = (1+o(1))E[Ls

t ].(3.8)

The moment of order s of Wi+δ can be bounded by

E[(Wi+δ)s]≤E

[

W s
i

(

1+
|δ|
Wi

)s]

≤ (1+|δ|)s
E[W s

i ] = (1+|δ|)s
E[W s

1 ],(3.9)

since Wi≥1. Combining (3.7), (3.8) and (3.9) gives for i sufficiently large and t>i,

E[(di(t)+δ)s]≤ (1+|δ|)s
E[W s

1 ]E[L−s
i ]E[Ls

t ](1+o(1)).(3.10)

We will bound each of the terms E[W s
1 ], E[Ls

t ] and E[L−s
i ] separately.

Evidently, E[W s
1 ] can be bounded by some constant, since all moments smaller

than τ−1 are finite. We will show that, for some constant Cs,

E[Ls
t ]≤Cst

s/(τ−1)l(t)s(3.11)

and that, for i sufficiently large,

E[L−s
i ]≤Csi

−s/(τ−1)l(i)−s.(3.12)

We will first show claim (3.12) and then (3.11). For claim (3.12), we define the
norming sequence {an}n≥1 by

an = sup{x : 1−F (x)≥n−1},(3.13)

so that it is immediate that an=n1/(τ−1)l(n), where n �!l(n) is slowly varying. We
use that Li≥W(i)=max1≤j≤i Wj , so that

E[L−s
i ]≤E[W−s

(i) ] =−E[(−Y(i))s],(3.14)
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where Yj =−W−1
j and Y(i)=max1≤j≤i Yj . Clearly, we have that Yj∈[−1, 0], so that

E[(−Y1)s]<∞. Also, aiY(i)=−ai/W(i) converges in distribution to −E−1/(τW−1),
where E is exponential with mean 1, so it follows from [28, Theorem 2.1] that, as
i!∞,

E

[(
ai

Li

)s]

≤−E[(−aiY(i))s]!E[E−1/(τ−1)] <∞,(3.15)

which proves the claim (3.12).
We now turn to claim (3.11). The discussion in [21, p. 565 and Corollary 1]

yields that, for s<τ−1, E[Ls
t ]=E[|Lt|s]≤2s/2λs(t), for some function λs(t) depend-

ing on s, t and F . Using the discussion in [21, p. 564], we have that λs(t)≤
Cst

s/(τ−1)M∗(t1/(τ−1))s, where M∗( · ) is a slowly varying function. With some
more effort, it can be shown that we can replace M∗(t1/(τ−1)) by l(t), which
gives (3.11).

Combining (3.10), (3.11) and (3.12), we obtain that

E[(di(t)+δ)s]≤C

(
t

i∨1

)s/(τ−1)(
l(t)
l(i)

)s

.(3.16)

Finally, we note that, since di(t)≥min{x:x∈SW}≡δ+ν where ν>0, and using (1.2),
we can bound E[di(t)s]≤(1∨ν−1)s

E[(di(t)+δ)s], which together with (3.16) estab-
lishes the proof of Theorem 1.5.
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