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Power weighted Lp-inequalities
for Laguerre–Riesz transforms

Eleonor Harboure, Carlos Segovia†, José L. Torrea and Beatriz Viviani

Abstract. In this paper we give a complete description of the power weighted inequalities, of

strong, weak and restricted weak type for the pair of Riesz transforms associated with the Laguerre

function system {Lα
k }, for any given α>−1. We achieve these results by a careful estimate of the

kernels: near the diagonal we show that they are local Calderón–Zygmund operators while in the

complement they are majorized by Hardy type operators and the maximal heat-diffusion operator.

We also show that in all the cases our results are sharp.

1. Introduction

The purpose of this article is to study boundedness properties in
Lp((0,∞), xδ dx) for the Riesz transforms associated with the orthogonal systems
of Laguerre functions Lα

k , α>−1, started in [4], see also [17]. There, following the
ideas developed in [12], the appropriate Riesz transforms are introduced and, using
a transference method from Hermite systems along with Kanjin’s transplantation
theorem for Laguerre expansions, continuity results in Lp((0,∞), xδ dx) were ob-
tained for δ ranging in a certain interval depending on p and α. Recently (see [6]
and [3]), sharper results of this kind have been given for the maximal heat operator
related to such expansions. There, the authors not only obtain strong type inequal-
ities but they analyse the behaviour at the extreme points, proving weak type or
restricted weak type inequalities that, as they show, are sharp.
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indebted for all we have learnt and enjoyed working in his company. Undoubtedly, his clearness
of thinking and his ability for computations are vividly present throughout this manuscript.

Partially supported by Ministerio de Educación y Ciencia (Spain), MTM2005–08350-C03-
01, Proyecto IALE (UAM-Banco Santander Central-Hispano), and grants from CONICET and
Universidad Nacional del Litoral (Argentina).

The fourth author was also supported by grant SAB2003-0024 from MEC (Spain).



286 Eleonor Harboure, Carlos Segovia, José L. Torrea and Beatriz Viviani

Our aim in this paper is to perform an analogous analysis for the case of
the Riesz operators. Our approach this time is through a careful study of their
kernels. We make use of a technique, that nowadays might be called classical, of
splitting the kernel into its “global” and “local” parts (see (3.1) and (3.2) for their
precise definitions). The local parts of the Riesz transforms are shown to be local
Calderón–Zygmund operators in the sense defined in [10] (see Theorem 3), which
gives no restriction on the exponent δ. On the other hand, the global parts are
estimated by a sum of positive operators, namely a variation of the maximal heat
operator and some Hardy type operators. We combine both estimates to give our
main result stated as Theorem 1.

We remark at this point that our boundedness results for the Riesz transforms
are a little worse than those for the maximal heat operator. Not only do we not get
boundedness on L∞, as expected, but we also get a weaker result at one of the end
points, when the range of p is a finite interval. Nevertheless it turns to be sharp.

As we just mentioned, the main key to achieve our results is a careful analysis
of the kernels. Since they involve modified Bessel functions and their derivatives,
part of the proof becomes highly technical. However, such precise knowledge of
the behaviour of the kernels allows us to get really sharp inequalities. In fact, in
Section 6, we show that our boundedness results on Lp

(
(0,∞), xδ dx

)
cannot be

improved any further (see Theorem 2).
Let us remark that this technique of splitting the kernel according to the local

and global regions, goes back to Muckenhoupt and Stein (see [7] and [9]) in con-
nection with problems concerning Poisson summation and conjugacy for different
systems of orthogonal polynomials, like those of Jacobi, Hermite or Laguerre.

Later, even though it is not pointed out explicitly, K. Stempak in [13] did also
make use of such technique in order to bound the heat and Poisson maximal oper-
ators for various systems of Laguerre expansions. Finally, very recently, A. Nowak
and K. Stempak in [11], have obtained boundedness results for Riesz transforms
associated to other Laguerre orthonormal functions, using again this type of par-
tition of the kernel. We include, as a final section, a brief discussion on how their
results are related to ours.

Given a real number α>−1, we consider the Laguerre second order differential
operator Lα defined by

Lα =−y d2

dy2
− d

dy
+
y

4
+
α2

4y
, y > 0.

It is well known that Lα is non-negative and selfadjoint with respect to the Lebesgue
measure on (0,∞), furthermore its eigenfunctions are the Laguerre functions Lα

k
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defined by

Lα
k (y)=

(
Γ(k+1)

Γ(k+α+1)

)1/2

e−y/2yα/2Lα
k (y),

where Lα
k are the Laguerre polynomials of type α see [15, p. 100] and [16, p. 7]. The

orthogonality of Laguerre polynomials with respect to the measure e−yyα leads to
the orthonormality of the family {Lα

k}∞k=0 in L2((0,∞), dy).
Given the second order non negative and selfadjoint differential operator Lα

and its heat semigroup Tt=e−tLα , following [12], we shall consider the Riesz poten-
tials

L−σf(x)=
1

Γ(σ)

∫ ∞

0

tσ−1Ttf(x) dt, σ > 0,

which can be derived from the identity s−σ=Γ(σ)−1
∫ ∞
0 tσ−1e−ts dt.

In order to define the corresponding Riesz transforms, the following first order
derivatives can be introduced, see [4],

δα
y =

√
y
d

dy
+

1
2

(√
y− α√

y

)
and ∂β

y =−√
y
d

dy
+

1
2

(√
y− β√

y

)
= (δβ−1

y )∗.

The action for α>−1 and β>0 on the Laguerre functions is given by

δα
y (Lα

k )=−
√
kLα+1

k−1 and ∂β
y (Lβ

k )=−√
k+1Lβ−1

k+1 .

Moreover

Lα−
(
α+1

2

)
= (δα

y )∗δα
y = ∂α+1

y δα
y .

Hence the Riesz transforms for the Laguerre function expansions are defined by

Rα
+ = δα

y (Lα)−1/2, α>−1, and Rβ
− = ∂β

y (Lβ)−1/2, β > 0,

that is

Rα
+(Lα

k )=−
√
k

√
k+(α+1)/2

Lα+1
k−1 and Rβ

−(Lβ
k )=−

√
k+1

√
k+(β+1)/2

Lβ−1
k+1 .

One of the main interests in studying Riesz transforms lies in their intimate con-
nection with potential and Sobolev spaces. In our case it is easy to check that
Rα+1

− �Rα
+=Tm, the multiplier operator associated with the sequence

mk =
k

√
(k+(α+1)/2)(k+α/2)

.
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The boundedness of Tm and Tm−1 in L2((0,∞), dx) is obvious, but moreover [16,
Theorem 6.3.4] gives the continuity in Lp((0,∞), dx). From this observation and
the boundedness of the above Riesz transforms in Lp((0,∞), dx) given in Theorem 1
below, we may write

‖f‖p = ‖Tm−1 �Rα+1
− �Rα

+f‖p ≤C‖Rα
+f‖p =C‖δα

y (Lα)−1/2f‖p ≤C‖f‖p,

for f satisfying
∫ ∞
0
f(y)Lα

0 (y) dy=0. Therefore for good enough functions, we get

‖δα
y f‖p ∼‖(Lα)1/2f‖p.

This equivalence is the key to define the Sobolev space associated to this Laplacian
in terms of the δα

y derivative.
The above observation leads us to give the following definition.

Definition 1. In what follows we denote by Rα the Riesz transform vector
associated to Lα, that is

Rα = (Rα
+, R

α+1
− ).

Since we are interested in Lp-boundedness of both Riesz transforms simultaneously
we shall state our results in terms of the operator

‖Rα‖(f)= (|Rα
+f |2+|Rα+1

− f |2)1/2.

Our main result is the following.

Theorem 1. Let α>−1 and δ be a real number. Then the operator ‖Rα‖
satisfies.

(a) ‖Rα‖ is of strong type (p, p) with respect to xδ dx as long as −αp/2<δ+1<
(α+2)p/2 and 1<p<∞.

(b) ‖Rα‖ is of weak type (1, 1) with respect to xδ dx as long as −α/2≤δ+1≤
(α+2)/2 if α �=0 and 0<δ+1≤1 when α=0.

(c) If α �=0 and −αp/2=δ+1 for some 1<p<∞, then ‖Rα‖ is of restricted
weak type (p, p) with respect to the measure xδ dx.

(d) If (α+2)p/2=δ+1 for some 1<p<∞, then ‖Rα‖ is of restricted weak type
(p, p) with respect to xδ dx.

We notice that our results include negative values of δ+1 when α>0. In fact
if we fix α and δ the range of p may be described as follows.

For α>0:
If δ≤−1−α/2 it is of strong type for −2(δ+1)/α<p<∞, and if p=−2(δ+1)/α

it is of restricted weak type if p>1 and weak type when p=1.
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If −1−α/2<δ≤α/2 it is of strong type for 1<p<∞ and weak type (1, 1).
If δ>α/2 it is of strong type if 2(δ+1)/(2+α)<p<∞ and restricted weak type

when p=2(δ+1)/(2+α).
For α<0:
If δ≤−α/2−1 there are no boundedness results except for δ=−α/2−1 when

we have weak type (1, 1).
If −α/2−1<δ≤α/2 it is of strong type if 1<p<−2(δ+1)/α, weak type (1, 1)

and restricted weak type for p=−2(δ+1)/α.
If δ>α/2 it is of strong type for 2(δ+1)/(2+α)<p<−2(δ+1)/α and of re-

stricted weak type at both end points p=2(δ+1)/(2+α) and p=−2(δ+1)/α.
For α=0:
If δ≤−1 there are no results.
If −1<δ≤0 it is of strong type 1<p<∞ and of weak type for p=1.
If δ>0 it is of strong type for δ+1<p<∞ and of restricted weak type for

p=δ+1.
At this point we would like to remark that if we compare our results for the

Riesz transforms with those obtained for the maximal operator of the heat semi-
group ([6], [3]) we notice that besides the expected difference at p=∞ we also
obtain a weaker result at the end point p=−2(δ+1)/α. However we will show that
it cannot be improved.

In fact the next theorem states that our results are sharp.

Theorem 2. Let α>−1 and δ∈R. Then
(a) ‖Rα‖ is not strong type (1, 1) with respect to xδ dx for any δ.
(b) If α �=0 and −αp/2=δ+1 for some p>1, then ‖Rα‖ is not of weak type

(p, p) with respect to xδ dx.
(c) If (α+2)p/2=δ+1 for some 1<p<∞, then ‖Rα‖ is not of weak type (p, p)

with respect to xδ dx.

2. Preliminaries

The heat diffusion semigroup e−tLα is given by

Wα(f, t, x)=
∫ ∞

0

Uα(s, x, z)f(z) dz,

where s=(1−e−t/2)/(1+e−t/2), and Uα(s, x, z) is

1
2

1−s2
2s

e−1/4(s+1/s)(x1/2−z1/2)2e−1/2(s+1/s)(xz)1/2
Iα

(
1−s2
2s

(xz)1/2

)
.(2.1)
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Iα is the modified Bessel function of order α (see [13] and [6]). We introduce the
following notation which we will use frequently

M(s, x, z)=
1
2

1−s2
2s

e−1/4(s+1/s)(x1/2−z1/2)2e−1/2(s+1/s)(xz)1/2
,

and, if we also set w=((1−s2)/2s)(xz)1/2, the kernel for the semigroup can be
written as

Uα(s, x, z)=M(s, x, z)Iα(w).

To get the kernel of the Riesz–Laguerre transform R+
α we write

Rα
+(x, z)= δα

x (Lα)−1/2(x, z)= δα
x

1
Γ
(

1
2

)
∫ ∞

0

e−tLα

(x, z)t1/2 dt

t

=Cδα
x

∫ 1

0

e−2 log((1+s)/(1−s))Lα

(x, z)
(

log
(

1+s
1−s

))−1/2
ds

1−s2 .

Now, using the equality I ′α(r)=αIα(r)/r+Iα+1(r), the kernel of the Riesz transform
can be written as

Rα
+(x, z)=C

(√
x
d

dx
+

1
2

(√
x− α√

x

))
(Lα)−1/2(x, z)

=C

∫ 1

0

(
1
2

1−s2
2s

z1/2Uα+1(s, x, z)− 1
2

(1−s)2
2s

x1/2Uα(s, x, z)
)

×
(

log
(

1+s
1−s

))−1/2
ds

1−s2

=C

∫ 1

0

Kα
+ (s, x, z)

(
log

1+s
1−s

)−1/2
ds

1−s2 .

From Theorems 3 and 4, in the next section, and following the ideas of the proof
of Proposition 3.2 in [14], it can be shown that for f, g∈C∞

c ((0,∞)) with disjoint
compact supports, we have

〈Rα
±f, g〉=

∫ ∞

0

∫ ∞

0

Rα
±(x, z)f(x)g(z) dx dz.(2.2)

We leave it to the reader to check the details yielding that the kernel for the other
Riesz transform is given by

Rβ
−(x, z)=C

∫ 1

0

Kβ
−(s, x, z)

(
log

(
1+s
1−s

))−1/2
ds

1−s2 ,
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where

Kβ
− =−1

2
1−s2
2s

(
z1/2Uβ+1− 1+s

1−sx
1/2Uβ

)
− β

x1/2
Uβ .(2.3)

3. Proof of the main result

We split the kernels of the Riesz transforms into their “local” and “global”
parts. By the local part we mean the restriction of the kernel to the set

{(x, z) :x/4<z< 4x}

and by the global part its restriction to the complementary set. In what follows we
state some results for each of these parts and we show our main result, assuming
they are true. The proofs of these theorems will be given in Sections 4 and 5,
respectively.

Theorem 3. Let α>−1. We denote by K(x, z) either the kernel Rα
+(x, z) or

Rα+1
− (x, z). Then for x and z satisfying x/4<z<4x we have

(a) |K(x, z)|≤C/|x−z|;
(b)

∣
∣
∣
∣
∂

∂x
K(x, z)

∣
∣
∣
∣+

∣
∣
∣
∣
∂

∂z
K(x, z)

∣
∣
∣
∣≤

C

|x−z|2 .

Theorem 4. Let α>−1. We denote by K(x, z) either the kernel Rα
+(x, z) or

Rα+1
− (x, z). If we denote by Tglob the operator given by

Tglobf(x)=
∫

(0,∞)

K(x, z)χ{z≤x/4}∪{z≥4x}f(z) dz,(3.1)

then, we have
(i) Tglob is of strong type (p, p) with respect to xδ dx as long as −αp/2<δ+1<

(α+2)p/2 and 1<p<∞;
(ii) Tglob is of weak type (1, 1) with respect to xδ dx as long as −α/2≤δ+1≤

(α+2)/2 if α �=0 and 0<δ+1≤1 when α=0;
(iii) if α �=0 and −αp/2=δ+1 for some 1<p<∞, then Tglob is of restricted

weak type (p, p) with respect to the measure xδ dx;
(iv) if (α+2)p/2=δ+1 for some 1<p<∞, then Tglob is of restricted weak type

(p, p) with respect to xδ dx.
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Proof of Theorem 1. It is enough to prove the statements for each of the
components of Rα. We consider the operator

Rα
+,locf =Rα

+f−Rα
+,globf,(3.2)

where

Rα
+,globf =

∫ ∞

0

Rα
+(x, z)χ{z≤x/4}∪{z≥4x}f(z) dz.

By Plancherel’s theorem, Rα
+ is bounded on L2((0,∞), dx). From Theorem 4 the

operator Rα
+,glob is also bounded on L2((0,∞), dy). Therefore Rα

+,loc is bounded on
L2((0,∞), dx), for any α>−1. Moreover by (2.2) we have that for f, g∈C∞

c ((0,∞))
with disjoint compact supports

〈Rα
+,locf, g〉=

∫ ∞

0

∫ 4x

x/4

Rα
+(x, z)f(x)g(z) dx dz.

Therefore by using Theorem 3 we have that Rα
+,loc is a “local Calderón–Zygmund

operator” as defined in [10]. Hence we can apply Theorem 4.3 (a) in [10] to conclude
that Rα

+,loc is bounded on Lp((0,∞), xδ dx) for any δ∈R and 1<p<∞. Applying
again Theorem 4 we get the boundedness of Rα

+ as stated in (a), (c) and (d).
Moreover as Rα

+,loc is a “local Calderón–Zygmund operator” we can apply The-
orem 4.3 (b) in [10] getting that Rα

+,loc is bounded from L1((0,∞), xδ dx) into
L1,∞((0,∞), xδ dx) for any δ∈R. Therefore by using Theorem 4 (ii) we get (b).
All the arguments are also valid for Rα+1

− . �

4. Local region. Proof of Theorem 3

As we have seen in (2.1) the kernel Uα(s, x, z) can be expressed by

Uα(s, x, z)=M(s, x, z)Iα

(
1−s2
2s

(xz)1/2

)
,(4.1)

where M(s, x, z)= 1
2 ((1−s2)/2s)e−1/4(s+1/s)|x1/2−z1/2|2e−1/4(s+1/s)(xz)1/2

.
As in the local region x∼z, the last exponential is equivalent to e−c(s+1/s)x.

Now we state some basic inequalities about the behaviour of Iα that we shall use
often, (see for example [5]).

(a) If 0≤w≤1, then Iα(w)
wα.

(b) If w≥1 then Iα(w)
eww−1/2.
(c) If α≥− 1

2 then Iα(w)≤Cαe
ww−1/2 for any w≥0.

(d) If −1<β≤α, then Iα(w)≤CIβ(w).
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From (b) it is easy to see that for w=((1−s2)/2s)(xz)1/2≥1 and x∼z,

Uα(s, x, z)≤C

(
1−s2
2s

)1/2

e−1/4(s+1/s)|x1/2−z1/2|2e−csxx−1/2.(4.2)

Before proceeding to prove Theorem 3 we state two lemmas which give some esti-
mates useful to obtain the conditions on the size of the kernels and their derivatives.

Lemma 1. Let γ> 1
2 and ε≥0. Assume that

L(s, x, z)=
|z1/2−x1/2|2((γ−1)+ε)

x1/2+εsγ
e−(1/4s)|x1/2−z1/2|2 .

Then there exists a constant C such that for x and z in the local region

∫ 1/2

0

L(s, x, z)
(

log
1+s
1−s

)−1/2

ds≤ C

|x−z| .

Proof. Using that log(1+s)/(1−s)∼s for 0≤s≤1/2 and that x∼z we have

∫ 1/2

0

L(s, x, z)
(

log
(

1+s
1−s

))−1/2

ds

≤ |z1/2−x1/2|2[(γ−1)+ε]

x1/2+ε

∫ 1/2

0

e−(1/4s)|x1/2−z1/2|2

sγ−1/2

ds

s

≤C
|z1/2−x1/2|2[(γ−1)+ε]

|x1/2−z1/2|2γ−1x1/2+ε

∫ ∞

0

e−uuγ−1/2−1 du

≤C
|z1/2−x1/2|2ε

|x1/2−z1/2|x1/2+ε

=C
|z1/2−x1/2|2ε|z1/2+x1/2|

|x−z|x1/2+ε
≤ C

|x−z| ,

as we wanted. This completes the proof of the lemma. �

Lemma 2. Let σ≥0 and γ such that γ−σ> 1
2 . Assume that

L′(s, x, z)=
|z1/2−x1/2|2(γ−3/2)

sγ−σx1+σ
e−(1/4s)|x1/2−z1/2|2 .

Then, in the local region x∼z we have

∫ 1/2

0

L′(s, x, z)
(

log
(

1+s
1−s

))−1/2

ds≤ C

|x−z|2 .
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Proof. By the estimate log((1+s)/(1−s))∼s and the fact that in the local
region x∼z, we get

∫ 1/2

0

L′(s, x, z)
(

log
(

1+s
1−s

))−1/2

ds

≤C
|z1/2−x1/2|2(γ−3/2)

x1+σ

∫ 1/2

0

e−(1/4s)|x1/2−z1/2|2

sγ−σ−1/2

ds

s

≤C
|z1/2−x1/2|2(γ−3/2)

x1+σ|z1/2−x1/2|2(γ−σ−1/2)

∫ ∞

0

e−uuγ−σ−1/2 du

u

≤C
|z1/2−x1/2|2σ

x1+σ|x1/2−z1/2|2

≤C
C

|x−z|2 ,

which completes the proof of the lemma. �

Proof of Theorem 3. As we have seen in (2.3), given α>−1, the kernels of
both Riesz transforms before integration in s are:

Kα
+ =

1
2

1−s2
2s

(
z1/2Uα+1− 1−s

1+s
x1/2Uα

)
.

and

Kα+1
− =−1

2
1−s2
2s

(
z1/2Uα+2− 1+s

1−sx
1/2Uα+1

)
−α+1
x1/2

Uα+1.

Therefore, if we call bs= 1
2 (1−s2)/2s and as either (1−s)/(1+s) or (1+s)/(1−s),

we get that we should analyse

H1 = bs(z1/2Uβ+1−asx
1/2Uβ) and H2 =−α+1

x1/2
Uα+1,

since choosing in H1, as=(1−s)/(1+s) and β=α, we get Kα
+ , while Kα+1

− is ob-
tained taking as=(1+s)/(1−s), β=α+1 in H1 and then performing −H1+H2.
Therefore it would be enough to get the desired estimates for those kernels. Setting
ψ(s)=(log((1−s)/(1+s)))−1/2/(1−s2) we must show that in the local region x∼z,

(a)
∫ 1

0
|Hi(s, x, z)|ψ(s) ds≤C/|x−z|, i=1, 2,

(b)
∫ 1

0 |(∂/∂x+∂/∂z)Hi(s, x, z)|ψ(s) ds≤C/|x−z|2, i=1, 2.
We split the first integral in 0≤s≤ 1

2 and 1
2≤s≤1. In the latter case we observe

that all the terms in H1 and H2 are bounded in absolute value by Cx1/2Uα with
α that may be assumed to be negative. In fact for H1 we just use that Uγ≤CUγ′
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when γ′≤γ and that x∼z, while for H2 we use that Iα+1(w)≤CwIα(w), and so

1
x1/2

Uα+1(s, x, z)=
1

x1/2
M(s, x, z)Iα+1

(
1−s2

2s
(xz)1/2

)

≤ C

x1/2
Uα(s, x, z)

1−s2
2s

(xz)1/2 ≤Cx1/2Uα(s, x, z).

Now, for w=((1−s2)/2s)(xz)1/2≤1 and 1
2≤s≤1 we have

x1/2Uα ≤C(1−s2)x1/2

(
1−s2

2s
(xz)1/2

)α

e−c|x1/2−z1/2|2e−cx

≤C(1−s2)x1/2+αe−c|x1/2−z1/2|2e−cx ≤C
(1−s2)1+α

x1/2
e−c|x1/2−z1/2|2 ,

(4.3)

where we used that x∼z and e−cx≤Cx−(1+α).
Similarly for w≥1, using (4.2), we get for some C>0,

x1/2Uα ≤C(1−s2)1/2e−c|x1/2−z1/2|2e−cx ≤ (1−s2)1/2

x1/2
e−c|x1/2−z1/2|2 .(4.4)

Therefore, letting γ=min
{
α+1, 1

2

}
, we have

∫ 1

1/2

x1/2Uα(s, x, z)ψ(s) ds≤ C

x1/2
e−c|x1/2−z1/2|2

∫ 1

1/2

(1−s2)γ

(
log

1+s
1−s

)−1/2
ds

1−s2

≤ C

x1/2|x1/2−z1/2| ≤
C|x1/2+z1/2|
x1/2|x−z| ≤ C

|x−z| .

Now we consider 0≤s≤ 1
2 . This time we observe that all terms in H1 and H2 are

bounded by (C/s)x1/2Uα. For this kernel, in the region w=((1−s2)/2s)(xz)1/2≤1,
using that Iα(w)∼wα, we have

C

s
x1/2Uα(s, x, z)≤ C

sx1/2

(x
s

)1+α

e−cx/se−(1/4s)|x1/2−z1/2|2 .

Therefore, applying Lemma 1 with ε=0 and γ=1 we are done.
The most delicate part concerns H1 in the region w≥1. Here we will use the

cancellation by means of the asymptotic formula ([5], p. 123)

Iα(w)=
ew

(2πw)1/2

[
1+Oα

(
1
w

)]
.

First we write H1 as

H1(s, x, z)= bs(z1/2−x1/2)Uβ+1+bsx1/2(Uβ+1−asUβ)=H1
1 +H2

1 .
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The first term follows easily since using the behavior of Iβ at infinity, H1
1 is bounded

by

C
|z1/2−x1/2|

s2
s1/2

(xz)1/4
e−(1/4s)|x1/2−z1/2|2 ≤C

|z1/2−x1/2|
x1/2s3/2

e−(1/4s)|x1/2−z1/2|2 ,

and we may apply Lemma 1 with γ= 3
2 and ε=0. For the second we use the

asymptotic formula to get

|Iβ+1(w)−asIβ(w)| ≤ ew

(2πw)1/2

(
(1−as)+

C

w

)
.

But, for both possible values of as it holds that 1−as≤Cs for 0≤s≤ 1
2 . Therefore

since in our situation w
x/s, we get

|H2
1 | ≤

Cx1/2

s
|Uβ+1−asUβ | ≤ C

s
e−(1/4s)|x1/2−z1/2|2e−csx x

1/2

s

( s
x

)(
s+

s

x

)

≤Ce−(1/4s)|x1/2−z1/2|2
(
e−csx

s1/2
+

1
s1/2x

)
≤C

e−(1/4s)|x1/2−z1/2|2

sx1/2
,(4.5)

where we used that e−csx≤C(sx)−1/2 and that in the region w≥1, since w∼x/s,
we have 1/x1/2≤C/s1/2. An application of Lemma 1 with ε=0 and γ=1 leads to
the desired bound for H2

1 .
Finally we take care of H2 in 0≤s≤ 1

2 and w≥1. But, using that for w≥1,
Iα+1(w)≤Cew, we get just as above

H2(s, x, z)≤ C

sx1/2
e−(1/4s)|x1/2−z1/2|2 ,

and we are done.
Now we turn to the boundedness of the derivatives of H1 and H2.
First we analyze the derivatives with respect to z. Straightforward calculations

show that we have to deal with the following type of terms:

Case 1.

β+3
4

1−s2
2s

1
z1/2

Uβ+1.

Case 2.

1−s2
4s

(
−1−s2

4s
x1/2Uβ− 1

4

(
s+

1
s

)
z1/2Uβ+1

)
.

Case 3.

1−s2
4s

(
1
4
as

(
s+

1
s

)
x1/2Uβ− 1−s2

4s
asxz

−1/2Uβ+1

)
.
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Case 4.

−1−s2
4s

β

2
as
x1/2

z
Uβ .

Case 5.

− (α+1)
4

s2+1
s

1
x1/2

Uα+1+(α+1)
1−s2
2s

1
z1/2

Uα+2+(α+1)2
1

zx1/2
Uα+1.

With such notation, (∂/∂z)Kα
+ is the sum of the first four terms with

as=(1−s)/(1+s) and β=α, while (∂/∂z)Kα+1
− is the sum of Case 5 with all the

others with as=(1+s)/(1−s) and β=α+1. As before, for 1
2≤s≤1, all the terms

above are bounded by one of the type

C

x1/2
Uα(s, x, z)eεx,

for ε>0 small enough and we may assume that α<0. This is clear for terms having
x−1/2, z−1/2 or x1/2z−1. For those with x1/2, z1/2 or xz−1/2 we use that x∼z and
that x1/2≤Ceεx/x1/2. Finally, the last term of Case 5 follows from the inequality
Iα+1(w)≤CwIα(w) valid for any w≥0.

Now, for the above kernel we have that for w=((1−s2)/2s)(xz)1/2≤1, x∼z
and 1

2≤s≤1,

1
x1/2

Uαe
εx ≤C

1−s2
x1/2

eεxe−cxe−c|x1/2−z1/2|2(1−s2)αxα

≤C
(1−s2)1+αx1/2e−c′x

x1−α

1
|x1/2−z1/2|2(1+α)

≤C
(1−s2)1+α

x1−α

|x1/2−z1/2|−2α

|x−z|2 |x1/2+z1/2|2

≤C
(1−s2)1+α

|x−z|2 ,

as long as 0<ε<c and −1<α≤0.
On the other hand if w≥1 we get

1
x1/2

Uαe
εx ≤C

(1−s2)1/2

x
e−c|x1/2−z1/2|2eεxe−cx

≤C
(1−s2)1/2

x

1
|x1/2−z1/2|2 ≤C

(1−s2)1/2

|x−z|2 .

In both cases we arrive at the desired estimate since the integrals against ψ(s) are
finite. Now we proceed with the case 0≤s≤ 1

2 . Here again we notice that all the
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terms in the Cases 1, 4 and 5 may be bounded by one of the following kernels

A1 = x1/2Uα, and A2 =
1

sx1/2
Uα,

and we may assume that −1<α<0. To bound A1 for w=((1−s2)/2s)(xz)1/2≤1
we observe that in our situation x≤Cs≤C, and hence

x1/2Uα ≤ C

s
x1/2 (xz)α/2

sα
e−(1/4s)|x1/2−z1/2|2

≤ C

xs3/2
xα+3/2s1/2−αe−(1/4s)|x1/2−z1/2|2 ≤ C

xs3/2
e−(1/4s)|x1/2−z1/2|2 .

On the other hand, for w≥1,

x1/2Uα ≤ C

s
x1/2 s1/2

(xz)1/4
e−(1/4s)|x1/2−z1/2|2e−csx ≤ C

xs3/2
e−(1/4s)|x1/2−z1/2|2 ,

since e−csx≤Cs−1x−1 and x∼z.
Applying now Lemma 2 we get the desired boundedness for A1. As for A2, in

w≤1,

1
sx1/2

Uα ≤ C

s2x1/2

(x
s

)α
e−(c/s)xe−(1/4s)|x1/2−z1/2|2 ≤ C

sα+3/2x1−α
e−(1/4s)|x1/2−z1/2|2 ,

where we have used that e−cx/s≤C(x/s)−1/2. Now for w≥1 we get

1
sx1/2

Uα ≤ C

s2x1/2

s1/2

x1/2
e−(1/4s)|x1/2−z1/2|2 =

C

s3/2x
e−(1/4s)|x1/2−z1/2|2 .

With these estimates the result follows for A2 by applying Lemma 2 with σ=−α≥0
and γ= 3

2 in the first case, and with σ=0 and γ= 3
2 in the second one.

It remains to take care of Cases 2 and 3 for 0≤s≤ 1
2 . We rewrite their sum as

Case 2+Case 3=
1−s2
16

((asxz
−1/2−z1/2)Uβ+1+(as−1)x1/2Uβ)

+
1−s2
16s2

(
(as+1)x1/2Uβ−

(
1+as

x

z

)
z1/2Uβ+1

)
=N+L.

Regarding N , each term can be bounded again by A1 as before. As for L the
worst term is the first one with β=α. Furthermore, if we are in the region w=
((1−s2)/2s)(xz)1/2≤1, we have 1/s≤C/x and therefore

C

s2
x1/2Uα ≤ C

sx1/2
Uα,

which turns out to be A2.



Power weighted Lp-inequalities for Laguerre–Riesz transforms 299

Therefore to finish the boundedness of the derivatives with respect to z, it
only remains to get the right bounds for L in 0≤s≤ 1

2 and w≥1. Here we have to
take care of the cancellation, so we will use again the asymptotic formula as we did
before. First let us write L as

L=
1−s2
16s2

(
(as+1)x1/2Uβ−z1/2(as+1)Uβ+1+z1/2as

(
1−x

z

)
Uβ+1

)
.

Now we use that Uγ =Meww−1/2(1+Cγ/w), where w=((1−s2)/2s)(xz)1/2≥1 and
plug this formula into the above expression leading to

L=
1−s2
16s2

M
ew

w1/2

[
(as+1)(x1/2−z1/2)+asz

1/2
(
1−x

z

)
+C

(1+as)
w

(x1/2+asz
1/2)

]

=L1+L2+L3.

First we observe that

|L3| ≤ Cx1/2

s2
e−(1/4s)|x1/2−z1/2|2

sw3/2
≤ C

s3/2x
e−(1/4s)|x1/2−z1/2|2 ,

and hence an application of Lemma 2 with γ= 3
2 and σ=0 gives the result. Now we

write the remaining sum as

L1+L2 =
1−s2
16s2

M
ew

w1/2

(
(x1/2−z1/2)+as

x1/2

z1/2
(z1/2−x1/2)

)

=
1−s2
16s2

M
ew

w1/2
(x1/2−z1/2)

(
1−as

x1/2

z1/2

)

=
1−s2
16s2

M
ew

w1/2
(x1/2−z1/2)

(
(1−as)+

as

z1/2
(z1/2−x1/2)

)

=G1+G2.

Using again that in any case 1−as
s, we get for G1,

|G1| ≤ C

s2
e−(1/4s)|x1/2−z1/2|2e−csx

( s
x

)1/2

|x1/2−z1/2|

≤ C

s2x
|x1/2−z1/2|e−(1/4s)|x1/2−z1/2|2 ,

where for the last inequality we used that e−csx≤C(xs)−1/2. Therefore we may
apply Lemma 2 this time with γ=2 and σ=0.

Finally for G2,

|G2| ≤ C

s3
e−(1/4s)|x1/2−z1/2|2

( s
x

)1/2 |x1/2−z1/2|2
x1/2

=
C

s5/2x
|x1/2−z1/2|2e−(1/4s)|x1/2−z1/2|2 ,

and again the desired estimate follows by Lemma 2 with γ= 5
2 and σ=0.
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To finish the proof of the theorem we should deal with the derivatives with
respect to x of both kernels. They are quite similar, so we only outline the calcula-
tions.

This time the kind of terms involved are:

Case 1′.

1
2

1−s2
2s

β+1
2

as

x1/2
Uβ.

Case 2′.

1
2

1−s2
2s

(
−1+s2

4s
z1/2Uβ+1+

1−s2
4s

z

x1/2
Uβ

)
.

Case 3′.

1
2

1−s2
2s

(
as

1+s2

4s
x1/2Uβ−as

1−s2
4s

z1/2Uβ+1

)
.

Case 4′.

α+1
2x3/2

Uα+1.

Case 5′.

α+1
x1/2

∂

∂x
Uα+1.

This time (∂/∂x)Rα
+ is the sum of the first three terms with as=(1−s)/(1+s) and

β=α and (∂/∂x)Rα
− is the sum of the five cases with as=(1+s)/(1−s) and β=α+1.

Case 1′ is equivalent to Case 4 since x
z. Case 5′ is similar to Case 5 since this
came out from ((α+1)/x1/2)(∂/∂z)Uα+1. As Uα+1 is a symmetric function in x

and z, and we did not use any cancellation in this case, all the terms will be the
same after using that x∼z.

Regarding Cases 2′ and 3′ we observe that each term individually is equivalent
to a similar term in Cases 2 and 3. So the only difference might be in the argument
involving cancellation. However, putting together the terms with 1/s2 from Cases 2′

and 3′, we would arrive at the following expression instead of L

L′ =
1−s2
16s2

[(
as+

z

x

)
x1/2Uβ−(as+1)z1/2Uβ+1

]

=
1−s2
16s2

[
(as+1)x1/2Uβ−(as+1)z1/2Uβ+1−

(
1− z

x

)
x1/2Uβ

]
.
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The asymptotic formula for Uγ gives rise again to three terms. The last one has
the same behaviour as L3. The other two, say L′

1 and L′
2, turn into

L′
1+L′

2 =
1−s2
16s2

M
ew

w1/2

[
(as+1)(x1/2−z1/2)−

(
x1/2− z

x1/2

)]

=
1−s2
16s2

M
ew

w1/2
(x1/2−z1/2)

(
as− z1/2

x1/2

)

=
1−s2
16s2

M
ew

w1/2
(x1/2−z1/2)

[
(as−1)+

x1/2−z1/2

x1/2

]
.

Each of these terms are now quite similar to G1 and G2 above.
So it remains to deal with Case 4′ which is actually of a new kind. Anyhow,

for w≥1 we use that Iα+1(w)≤CwIα(w)≤Cw1/2ew to get

1
x3/2

Uα+1 ≤ C

x3/2

1−s2
s

e−(1/4s)|x1/2−z1/2|2
(

1−s2
2s

)1/2

(xz)1/4

≤C
(1−s2)3/2

s3/2x
e−(1/4s)|x1/2−z1/2|2 .

Then for the integral between 0 and 1
2 we may use Lemma 2 with γ= 3

2 and σ=0.
As for the other range of s we get

∫ 1

1/2

1
x3/2

Uα+1(s, x, z)ψ(s) ds≤ C

x
e−c|x1/2−z1/2|2

∫ 1

1/2

(1−s2)3/2ψ(s) ds

≤ C

x|x1/2−z1/2|2 ≤ C

|x−z|2 .

On the other hand the argument for w≤1 relies strongly on the fact that α+1>0.
More precisely, assuming the worst case −1<α≤0, we have

1
x3/2

Uα+1 ≤ C

x3/2

1−s2
2s

e−(1/4s)|x1/2−z1/2|2
(

1−s2
2s

(xz)1/2

)α+1

≤ C

x1/2−α

(1−s2)2+α

s2+α
e−(1/4s)|x1/2−z1/2|2

≤ C(1−s2)3/2+α

x1−αs3/2+α
e−(1/4s)|x1/2−z1/2|2 ,

where we have used that for w≤1, (1−s2)/s≤C/x. Therefore, for 0≤s≤ 1
2 we may

apply Lemma 2 with γ= 3
2 and σ=−α≥0, since γ−σ= 3

2 +α> 1
2 .
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Finally, for the integral on the interval
[

1
2 , 1

]
, since 1+α>0 we have

∫ 1

1/2

1
x3/2

Uα+1(s, x, z)ψ(s) ds≤ C

x1−α|x1/2−z1/2|2(1+α)

∫ 1

1/2

(1−s2)3/2+αψ(s) ds

≤ C|x1/2−z1/2|−2α

x1−α|x1/2−z1/2|2 ≤C
x−α|x1/2+z1/2|2
x1−α|x−z|2 ≤ C

|x−z|2 ,

since −α≥0. This completes the proof of the theorem. �

5. Global region. Proof of Theorem 4

We consider the modified Hardy operators

Hβ
0 f(x)= x−β−1

∫ x

0

f(y)yβ dy, x> 0,

Hβ
∞f(x)= xβ

∫ ∞

x

f(y)y−β−1 dy, x> 0.

We shall use the following known results, whose proofs can be found in [2] and [8].

Lemma 3. Let β>−1.
(a) If 1<p<∞ and δ<(β+1)p−1, Hβ

0 is of strong type (p, p) with respect to
xδ dx.

(b) Hβ
0 is of weak type (1, 1) with respect to xδ dx as long as δ≤β.

(c) If 1<p<∞ and δ=(β+1)p−1, Hβ
0 is of restricted weak type (p, p) with

respect to xδ dx.

Lemma 4. Let β>−1.
(a) If 1<p<∞ and δ>−βp−1 then Hβ

∞ is of strong type (p, p) with respect to
xδ dx.

(b) Hβ
∞ is of weak type (1, 1) with respect to xδ dx as long as δ≥−β−1 when

β �=0 and δ>−1 when β=0.
(c) Hβ

∞ is of restricted weak type (p, p) with respect to xδ dx when δ=−βp−1
and p>1 when β �=0.

Proof of Theorem 4. Our aim is to prove that on the global region each of the
terms involved in Rα

+ or Rα+1
− are bounded, up to a constant, by the following sum

of operators

H
1+α/2
0 +Hα/2

0 +Hα/2
∞ +Ũ∗

α,glob,(5.1)
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where Ũ∗
α is a minor modification of U∗

α, the maximal operator of the semigroup
associated to our system of Laguerre functions. More precisely

Ũ∗
αf(x)= sup

0<s≤1

∫
Ũα(s, x, z)f(z) dy,

where Ũα=M̃Iα, with M̃= 1
2 ((1−s2)/2s)e−1/8(s+1/s)|x1/2−z1/2|2e−1/2(s+1/s)(xz)1/2

.
Therefore the only difference with Uα is the 1

8 in the first exponential of M̃
instead of 1

4 . We refer to [3] in order to check that such a change does not affect
the estimates obtained there. In particular all the results of Theorem 1 remain true
for Ũ∗

α. Moreover we point out that, as in the case of U∗
α, the operator

Ũ∗
α,globf(x)= sup

0<s≤1

∫
Ũα(s, x, z)χG(x, z)f(z) dz,

with G={(x, z):(x, z)/x<z/4 or x>4z} satisfies the inequality

Ũ∗
α,globf ≤C(Hα/2

0 f+Hα/2
∞ f)

for any α>−1 and f≥0.
Next we check that the sum of operators given in (5.1) satisfies all the state-

ments of Theorem 4.
First, to get (i), according to Theorem 1 of [3] and Lemmas 3 and 4 , if 1<p<∞

and −2p/α−1<δ<(α+2)p/2−1, the sum H
α/2
0 +Hα/2

∞ +Ũ∗
α is bounded on Lp(xδ)

as stated. The remaining operator H1+α/2
0 gives no further restriction on δ since it

is bounded for δ<(2+α/2)p−1.
Now, for p=1, using the same results, the last three terms are of weak type for

−α/2−1≤δ≤α/2 when α �=0 and with strict inequality on the left-hand side when
α=0. Regarding H1+α/2

0 , it is of weak type (1, 1) with respect to xδ dx for the wider
range δ≤1+α/2. So (ii) holds.

Finally, for 1<p<∞ and δ=(α+2)p/2−1, the operators Ũ∗
α and H

α/2
0 are of

restricted weak type and the two others are of strong type, while, when 1<p<∞
and δ=−αp/2−1, α �=0, Hα/2

∞ is of restricted weak type, Ũ∗
α is of weak type and

the remaining ones are of strong type (p, p) with respect to xδ dx.
Therefore, in order to complete the proof we have to bound the terms of Rα

+

and Rα+1
− by the stated operators.

Let us remind that the kernels of the Riesz transforms are given by

∫ 1

0

Kα
+ (s, x, z)ψ(s) ds and

∫ 1

0

Kα+1
− (s, x, z)ψ(s) ds,
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with ψ(s)=(log(1+s)/(1−s))−1/2/(1−s2) and

Kα
+ =

1
2

1−s2
2s

(
z1/2Uα+1− 1−s

1+s
x1/2Uα

)
,

Kα+1
− =−1

2
1−s2
2s

(
z1/2Uα+2− 1+s

1−sx
1/2Uα+1

)
−α+1
x1/2

Uα+1.

First we notice that in the global region G={(z, z):z<x/4 or z>4x} we have

|x1/2−z1/2|2 ≥Cmax{x, z}
 x+z.

Now, for the first term in Kα
+ we have for (x, z)∈G,

1
2

1−s2
2s

z1/2Uα+1 =
1
2

1−s2
2s

z1/2MIα+1

≤C
1−s2
s

z1/2e(1/8s)|x1/2−z1/2|2M̃Iα+1

≤C
1−s2
s

e−cx/sz1/2Ũα+1,

and then for f≥0, interchanging the order of integration we have

∫ ∞

0

χG(x, z)f(z)z1/2

∫ 1

0

1−s2
2s

Uα+1(s, x, z)ψ(s) ds dz≤ C

x1/2
Ũ∗

α+1,glob(z1/2f)(x),

since
∫ 1

0 e
−cx/sψ(s) ds/s≤Cx−1/2.

As we remarked above, Ũ∗
α+1,glob≤C(H(α+1)/2

0 +H(α+1)/2
∞ ). By looking at the

definition of these operators we get that

x−1/2Ũ∗
α+1,glob(z1/2f)(x)≤C(H1+α/2

0 f+Hα/2
∞ f)(x),

and the claim is true for this piece of Rα
+. For the second term in Kα

+ , proceeding
as above, its absolute value is bounded in the global region by

C
(1−s)2

s
x1/2Uα ≤C

(1−s)2
s

x1/2e−cx/sŨα,

and hence for f≥0, interchanging the order of integration, we obtain

∫ ∞

0

χG(x, z)f(z)
∫ 1

0

1−s2
s

x1/2Uα(s, x, z)ψ(s) ds≤CŨ∗
αf(x),

and we are done with this term.
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Regarding Rα+1
− , the first term in Kα+1

− is bounded in absolute value by the
first term in Kα

+ , since Uα+2≤Uα+1. As for the second term in Kα+1
− we have the

bound

C
x1/2

s
Uα+1 ≤ c

xz1/2

s

1−s2
s

Uα,

using that Iα+1(w)≤wIα(w). In the global region we use that Uα≤Ce−c(x+z)/sŨα

to conclude that the above kernel, in the global region, is bounded by

C(1−s2) x

s3/2

(z
s

)1/2

e−c(x+z)/sŨα ≤C(1−s2) x

s3/2
e−cx/sŨα.

Then, integration against ψ(s) and f(z) leads to the bound Ũ∗
αf(x), since∫ 1

0 (1−s2)s−3/2e−cx/sψ(s) ds≤C/x.
Finally, for the third term in Kα+1

− , our aim is to prove that for (x, z)∈G,
∫ 1

0

x−1/2Uα+1(s, x, z)ψ(s) ds≤C
xα/2z(α+1)/2

(x+z)α+3/2
.(5.2)

In fact in the global region and for w=((1−s2)/2s)(xz)1/2≤1, we have the bound

x−1/2Uα+1(s, x, z)≤C

(
1−s2
s

)2+α

xα/2z(α+1)/2e−c(x+z)/s,

while for w≥1, using the corresponding bound for Iα+1 and that
(((1−s2)/2s)(xz)1/2)α+3/2≥1, we arrive at the same estimate.

Then for (x, z)∈G,

∫ 1

0

x−1/2Uα+1(s, x, z)ψ(s) ds≤Cxα/2z(α+1)/2

∫ 1

0

(
1−s2
s

)2+α

e−c(x+z)/sψ(s) ds.

Splitting the integral from 0 to 1
2 and from 1

2 to 1, as usual, it is easily checked that
it behaves like (x+z)−(α+3/2), proving the claim.

Now, we notice that the right-hand side of (5.2) is bounded either by
Cx−α/2−1zα/2 or by Cxα/2z−α/2−1, since α+1>0.

Therefore the kernel corresponding to the third term of Kα+1
− is bounded in

the global region by

C(χ{z≤x}x−α/2−1zα/2+χ{z≥x}xα/2z−α/2−1),

giving rise to the operators Hα/2
0 and Hα/2

∞ , respectively. This completes the proof
of the theorem. �
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Remark 1. We point out that the operator Hα/2
∞ appeared in our argument

just twice. First when we bound the first term using Ũ∗
α+1,glob and later when

estimating the third term of Rα+1
− . In fact Ũ∗

α+1,glob may be bounded as in [3] by
a smaller operator Tα+1 which is of weak type (p, p) for p=−2/α(δ+1), 1<p<∞.
So the only term in our argument which might not be of such a weak type is the
last term of Rα+1

− .

6. Sharpness of the results. Proof of Theorem 2

(a) It is enough to show the negative result for Rα
+. Suppose it were bounded

on L1(xδ). For ε small, choosing Iε=(1+2ε, 2)Jε=(1, 1+ε) and fε=χJε we would
have

C1

∫

Iε

∣
∣
∣
∣

∫ 1+ε

1

Rα
+(x, z) dz

∣
∣
∣
∣x

δ dx≤C‖fε‖L1(xδ) ≤C2ε.

Now if we split the kernel as

Rα
+(x, z)=A(x, z)+B(x, z),

having in mind that x∼1, we would arrive at

C1

∫

Iε

∣
∣
∣
∣

∫

Jε

A(x, z) dz
∣
∣
∣
∣ dx≤C2

(
ε+

∫

Iε

∫

Jε

|B(x, z)| dz dx
)
.

In order to get a contradiction we must make a clever partition of the kernel. First
observe that for (x, z)∈Iε×Jε,

1<z< 1+ε< 1+2ε<x< 2.

In particular (x, z) belong to the local region. Moreover, as

w=
1−s2
2s

(xz)1/2 ≥ 1

if and only if 0≤s≤(
√

1+xz−1)/
√
xz=axz and in our situation 1≤√

xz≤2, we have
that axz≥γ=(

√
2−1)/2.

Then, for (x, z)∈Iε×Jε and 0<s<γ, we must have w≥1 and in that case we
may use

Iα(w)
C
ew

w1/2
, α>−1.
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With the notation used in the proof of Theorem 3 we set

A(x, z)=
∫ γ

0

H1
1 (s, x, z)ψ(s) ds,

and hence

B(x, z)=
∫ 1

γ

H1
1 (s, x, z)ψ(s) ds+

∫ 1

0

H2
1 (s, x, z)ψ(s) ds.

First we bound A(x, z) from below. Recalling that

H1
1 (s, x, z)=

1−s
1+s

(z1/2−x1/2)Uα+1(s, x, z),

we see that H1
1 does not change sign on the integration domain and by the above

remark, for 0<γ<s we have

Uα+1(s, x, z)≥ C

s3/2
e−(1/4s)|x1/2−z1/2|2 ,

as the other exponentials either cancel or are bounded from below when 1≤x, z≤2.
Therefore

−A(x, z)≥ (x1/2−z1/2)
∫ γ

0

1
s
e−(1/4s)|x1/2−z1/2|2 ds

s
.

Changing variables we get that the integral behaves like |x1/2−z1/2|−2 and hence
for (x, z)∈Iε×Jε we have

−A(x, z)≥ C

x−z ,

and then since x−z≤x−1
∫

Iε

∣∣
∣
∣

∫

Jε

A(x, z) dz
∣∣
∣
∣ dx≥C

∫ 2

1+2ε

ε

x−1
dx=Cε log

1
2ε
.

Now we bound B from above. Coming back to the proof of Theorem 3 all the terms
in H=H1+H2 are bounded for γ≤s≤1 by (1−s2)σe−C|x1/2−z1/2|2 for some σ>0
(see (4.3) and (4.5)).

Since in our case x≥1 we obtain for (x, z)∈Iε×Jε,
∣
∣
∣
∣

∫ 1

γ

H1(s, x, z)ψ(s) ds
∣
∣
∣
∣≤C.
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To take care of H2
1 , for 0<s<γ we refer to (4.5) where we got for w≥1,

|H2
1 (s, x, z)| ≤Ce−(1/4s)|x1/2−z1/2|2

(
e−csx

s1/2
+

1
s1/2x

)
.

Using that in our situation x≥1 we arrive at the bound

C

s1/2
e−(1/4s)|x1/2−z1/2|2 .

As we observed, for 0<s<γ, w=((1−s2)/2s)(xz)1/2 must be greater than one so
that

∫ γ

0

|H2
1 (s, x, z)|ψ(s) ds≤

∫ γ

0

e−(1/4s)|x1/2−z1/2|2 ds
s

≤
∫ ∞

(1/γ)|x1/2−z1/2|2
e−u du

u

≤C

(
1+log

C

|x−z|
)
,

since |x1/2−z1/2|∼|x−z| in our situation. In this way we get
∫

Iε

∫

Jε

|B(x, z)| dz dx≤Cε+ε
∫ 2

1+2ε

log
(

C

x−ε−1

)
dx

≤Cε

(
1+

∫ 1

0

log
c

u
du

)
≤Cε.

Putting together all the estimates, if Rα
+ were of strong type with respect to xδ dx

we would arrive at log(c/ε)≤C for all ε small enough. This proves statement (a).
(b) As we remarked after proving Theorem 4, see Remark 1, the only piece

that was not bounded for an operator of weak type (p, p) for p=−2(δ+1)/α, α �=0
and p>1, was the one coming from the third term in Rα+1

− , namely x−1/2Uα+1 and
over the region z≥4x. Since the local parts of both Riesz operators is bounded on
Lp(xδ) for any p>1 and any δ, the operator ‖Rα‖ will not be of weak type for such
p if and only if the operator with kernel

H(x, z)=χ{z≥4x}

∫ 1

0

x−1/2Uα+1(s, x, z)ψ(s) ds,

it is not of weak type. Since it is non-negative we are going to bound it from below
for (x, z)∈D={(x, z):z≥4x, 0≤x≤ 1

4 , 0≤z≤1}.
Let us start observing that w=((1−s2)/2s)(xz)1/2≤1 if and only if s≥axz=√

xz/(1+
√
x, z). Since in D, axz≤√

xz for
√
xz≤s, we may use the estimate

Iα+1(w)
wα+1. Therefore

H(x, z)≥Cχ{z≥4x}x−1/2

∫ 3/4

√
xz

M(s, x, z)
(

1−s2
2s

(xz)1/2

)α+1

ψ(s) ds.



Power weighted Lp-inequalities for Laguerre–Riesz transforms 309

For the exponentials in M we observe that (s+1/s)|x1/2−z1/2|2≤C((x+z)/s+1)
and also (s+1/s)(xz)1/2≤C((x+z)/s+1). Moreover, since s is away from 1, we get

H(x, z)≥Cxα/2z(α+1)/2χ{z≥4x}

∫ 3/4

√
xz

e−c(x+z)/s

sα+3/2

ds

s
.

Performing the change of variables (x+z)/s=u the integral turns into

C

(x+z)α+3/2

∫ (x+z)/
√

xz

4/3(x+z)

e−uuα+3/2 du

u
≥ C

(x+z)α+3/2
.

Since (x+z)/
√
xz=(x/z)1/2+(z/x)1/2≥2 and 4

3 (x+z)≤ 5
3≤2.

Altogether, using x+z≤ 5
4z,

χD(x, z)H(x, z)≥Cxα/2z−α/2−1χD(x, z).

Then our claim would be true if we can show that for some f∈Lp(xδ) with p=
−2(δ+1)/α>1, supported on (0, 1), the function

h(x)=χ(0,1/4)(x)xα/2

∫ 1

x

f(z)z−α/2−1 dz

does not belong to Lp,∞(xδ).
Take now f(z)=χ(0,1/4)(z)zα/2/log(1/z). Clearly we have f(z)∈Lp(xδ) for

p=−2(δ+1)/α. Also, in this case we have

h(x)=χ(0,1/4)x
α/2 log log

1
x
.

We would like to show that this function does not belong to Lp,∞(xδ). Since p=
−2(δ+1)/α is positive we distinguish two cases: α>0 and δ+1<0, or α<0 and
δ+1>0. In either case the function is monotone near the origin, increasing in the
first case and decreasing in the second one. Now if we call µh(λ) the distribution
function of h with respect to xδ dx, that is

µh(λ)=
∫

{h(x)>λ}
xδ dx,

straightforward calculations give that µh(λ)
h−1(λ)δ+1 for small λ in the first case
and for large λ in the second case. Therefore if h were in Lp,∞(xδ) we would have

h−1(λ)≥Cλ2/α for λ! 0, or h−1(λ)≤Cλ2/α for λ!∞.

Since δ+1<0 in the first case and δ+1>0 in the second one. This means that

λ≥ h(cλ2/α), λ! 0, or, alternatively λ≤ h(cλ2/α), λ!∞,
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h−1 being increasing or decreasing. Therefore either log log(1/cλ2/α)!0 when
λ!0, or log log(1/cλ2/α)!∞ when λ!∞. Since both conclusions are false the
claim is proved.

(c) It is enough to show that Rα
+ is not of weak type (p, p) for p such that

1<p<∞ and (α+2)/2p=δ+1. Let us observe that in this case, since α+2 is always
positive, δ+1 must be positive.

First, since the local part is strong type (p, p) for any 1<p<∞ and any δ, we
may restrict ourselves to consider the global part. Following the estimates given in
the proof of Theorem 4 we see that the first term of Rα

+,glob was bounded by the

operators H1+α/2
0 and Hα/2

∞ . But, according to Lemma 3, H1+α/2
0 is of strong type

(p, p) with respect to xδ as long as δ+1<(2+α/2)p.
Since in our case p=2(δ+1)/(α+2), the last inequality is clearly satisfied. As

for Hα/2
∞ , it is strong type, according to Lemma 4, as long as δ+1>−αp/2, which

in our case means 1>−α/(α+2) which is true since α>−1.
Therefore it would be enough to show that the remaining term of Rα

+,glob is not
of weak type. To do that let us take f(z)=χ(0,1/4)(z)(z−1−α/2)/log(1/z). Clearly
f∈Lp(xδ) for p=2(δ+1)/(α+2).

Also,

∫ ∞

0

zα/2f(z) dz=∞.

Then, if we call this piece of the operator R+
α,2, we have that

R+
α,2f(x)=

∫ 1/4

0

(∫ 1

0

1−s
1+s

x1/2Uα(s, x, z)ψ(s) ds
)
f(z) dz

≥C

∫ 1/4

0

∫ 1/2

1/4

x1/2Uα(s, x, z) dsf(z) dz.

Observe that if we restrict our positive function R+
α,2f(x) to 1<x<2, together with

the inequalities 0<z< 1
4 and 1

4<s<
1
2 it gives that w=((1−s2)/2s)(xz)1/2≤1 and

then having in mind that all the exponentials on Uα are bounded we get for these
values of x,

R+
α,2f(x)≥C

∫ 1/4

0

∫ 1/2

1/4

(
1−s2
2s

(xz)1/2

)α

dsf(z) dz≥C

∫ 1/4

0

zα/2f(z) dz=∞.

Hence R+
α,2f is infinite on some interval, proving the assertion.
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7. Some relations with other systems of Laguerre functions

As we said in the introduction, Riesz transforms associated to a different system
of Laguerre functions have been considered by Nowak and Stempak in a recent paper
(see [11]). In this section we briefly describe the relationship between their results
and ours. Let k=(k1, ..., kd)∈N

d, N={0, 1, ...}, and α=(α1, ..., αd)∈(−1,∞)d be
multi-indices. The Laguerre functions ϕα

k on R
d
+ are defined as

ϕ(x)=ϕα1
k1

(x1)...ϕαd

kd
(xd), x= (x1, ..., xd)∈R

d
+,

where ϕαi

ki
are the one-dimensional Laguerre functions

ϕαi

ki
(xi)=

√
2xiLαi

ki
(x2

i ).(7.1)

Given α∈[− 1
2 ,∞

)d, the Riesz transforms Rα
j are defined for functions f∈L2 as

Rα
j f =−2

∑

k∈Nd

(
kj

4|k|+2|α|+2d

)1/2

〈f, ϕα
k 〉ϕα+ej

k−ej
, j= 1, ..., d,

with the convention ϕα+ej

k−ej
=0 if kj−1<0.

In dimension one, if we change in the above expression ϕα
k to Lα

k and ϕα+1
k−1

to Lα+1
k−1 , we recover the definition given in the present paper of the operators Rα

+.
It is therefore clear, using relation (7.1), that for 1<p<∞, and real numbers γ
and δ, related by

γ= 2δ− p

2
+1,

the inequalities
∫ ∞

0

|Rαf(x)|pxγ dx≤C

∫ ∞

0

|f(x)|pxγ dx

and
∫ ∞

0

|Rα
+f(y)|pyδdy≤C

∫ ∞

0

|f(y)|pyδdy

are equivalent. In particular The δ-interval that appears in our Theorem 1 (a) leads
to the following γ-interval for the ϕ-setting

−(
α+ 1

2

)
p−1<γ<

(
α+ 3

2

)
p−1.(7.2)

In other words we get strong power weighted results for operators associated to
a given Laguerre orthonormal system from a corresponding weighted result for a dif-
ferent orthonormal system. This fact has also appeared in [3] in relation with the
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heat semigroup and has been systematically analyzed in [1] for a larger class of oper-
ators and for more Laguerre function systems. Roughly speaking, one could say that
an exhaustive knowledge of the weighted Lp boundedness of the operators associated
to a particular Laguerre system, implies a complete knowledge of the boundedness
of the corresponding operators on the other Laguerre orthonormal systems. In the
particular case we are considering now, the range of γ described in (7.2) for α≥− 1

2 ,
is wider than the Ap-range −1<γ<p−1, admitted in Theorem 3.4 of [11]. Fur-
thermore, boundedness results are also given for −1<α<− 1

2 . On the other side,
it is worth pointing out that in [11] results for non-necessarily power weights are
obtained. Also multi-dimensional results are treated for α∈[− 1

2 ,∞
)d
, αi /∈

(− 1
2 ,

1
2

)
.
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