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Codimension-p Paley–Wiener theorems

Yan Yang, Tao Qian and Frank Sommen

Abstract. We obtain the generalized codimension-p Cauchy–Kovalevsky extension of the

exponential function ei〈y,t〉 in Rm=Rp⊕Rq, where p>1, y, t∈Rq, and prove the corresponding

codimension-p Paley–Wiener theorems.

0. Introduction

The Clifford algebra formulation of Euclidean spaces will be adopted. Let
e1, ..., em be basic elements satisfying eiej+ejei=−2δij, where δij =1 if i=j and
δij =0 otherwise, i, j=1, 2, ..., m. Set

Rm = {x= x1e1+...+xmem : xj ∈R, j = 1, 2, ..., m},

and

Rm
1 = {x= x0+x : x0 ∈R, x∈Rm}.

Rm and Rm
1 are called the homogeneous and inhomogeneous Euclidean spaces,

respectively.
A number of generalizations of the classical Paley–Wiener theorem (PW the-

orem) to higher dimensional spaces were studied [1], [3], [6], [7] and [9]. Among
the literature, by imbedding Rm into Cm=Rm⊕iRm, the corresponding PW the-
orem is obtained in [6]. By making use of Clifford algebra a direct proof of the
theorem is obtained in [9]. In [7], a different type of PW theorem in Cm is proved
by using the heat kernel. In [3], through imbedding Rm into Rm

1 , in the complex
structure induced by the generalized Cauchy–Riemann operator, an inhomogeneous
codimension-1 result is proved. This latter result is viewed as a precise analogy to
the classical result in which R is imbedded into the complex plane C=R1

1.
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The standard CK extension (Cauchy–Kovalevsky extension) ([1] and [2]) as-
serts that any real-analytic function in an open set Q of Rq may be extended to
become a one-sided-monogenic function in an open set of Rq

1 that contains Q. This
will be regarded as the inhomogeneous codimension-1 CK extension. The authors
of [2] further obtain the homogeneous codimension-p CK extension that extends any
real-analytic function in an open set Q of Rq into a one-sided-monogenic function
in an open set of the homogeneous space Rp⊕Rq containing the set Q. When p=1
this reduces to the homogeneous codimension-1 CK extension from Rq to Rq+1.

The codimension-p CK extension is made more general in [2] through incorporating
a k-left-inner monogenic weight function in Rp, and called generalized CK extension
or homogeneous codimension-p CK extension with a k-monogenic function. In this
paper, with homogeneous codimension-p and generalized CK extensions of ei〈y,t〉

from Rq into Rp⊕Rq we prove the corresponding PW theorems in Rm=Rp⊕Rq,
m=p+q. We further extend the PW theorem in terms of generalized Taylor series.

In Section 1 we recall the basic notation and terminology used in the paper.
This section also serves as a survey on the theory of CK type and “generalized-
CK type” extensions of real-analytic functions, as well as generalized Taylor series.
In Section 2 we obtain the homogeneous codimension-p generalized CK extension
of ei〈y,t〉 in Rm=Rp⊕Rq, where y, t∈Rq. In Section 3 we formulate and prove
the corresponding codimension-p PW theorems. Furthermore, we obtain the PW
theorems in terms of monogenic extensions given by generalized Taylor series. The
proofs of the results in this work are based on the inhomogeneous codimension-1
PW theorem obtained in [3].

1. Preliminaries

The reader is supposed to know the basic material on Clifford algebras, Dirac
operators, Cauchy–Riemann operator and so on. The basic knowledge and notation
in relation to Clifford algebras are referred to [1], [2] and [4].

The unit sphere {x∈Rm :|x|=1} is denoted by Sm−1. We use B(x, r) for the
open ball in Rm centered at x with radius r, and B(x, r) for the topological closure
of B(x, r).

Let k∈N, where N denotes the set of non-negative integers. Denote by
M+(m, k,C(m)) the space of k-homogeneous monogenic polynomials in Rm, called
k-monogenic of degree k.

Below by saying that f is analytic at a certain point we mean that f can
be expanded into a Taylor series in a neighborhood of the point. Let f(x) be
a given analytic function in U⊂Rq. When we say that f∗ is an inhomogeneous CK
extension of f , we mean that there exist an open set U∗ of Rq

1 containing U and
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a function f∗, left-monogenic with respect to the inhomogeneous Dirac operator ∂x,
such that f∗|x0=0=f in U. By a homogeneous CK extension of f to Rq+1 we mean
a function f∗, left-monogenic with respect to the homogeneous Dirac operator ∂x

in an open set U∗ in Rq+1 containing U , such that f∗|x0=0=f in U. The existence
of such CK extensions are referred to [1] and [2].

The Fourier transform of functions in Rm is defined by

f̂(ξ)=
∫
Rm

e−i〈x,ξ〉f(x) dx

and the inverse Fourier transform by

ǧ(x)=
1

(2π)m

∫
Rm

ei〈x,ξ〉g(ξ) dξ,

where ξ=ξ1e1+...+ξmem.
To extend the domain of the Fourier transform to Rm

1 , we first need to extend
the exponential function ei〈x,ξ〉. Set, for x=x0e0+x,

e(x, ξ)= ei〈x,ξ〉e−x0|ξ|χ+(ξ)+ei〈x,ξ〉ex0|ξ|χ−(ξ),(1)

where

χ±(ξ)=
1
2

(
1±i

ξe0

|ξ|

)
.

It is easy to verify that the functions χ± satisfy the properties of projections:

χ−χ+ = χ+χ− = 0, and χ2
± = χ±, χ++χ− = 1.

For any fixed ξ, e(x, ξ) is two-sided-monogenic in x∈Rm
1 . The above extension is

the inhomogeneous codimension-1 CK extension of e(x, ξ) to Rm
1 . Replacing e0 by

em+1 in (1), where em+1 is a basis element added to the collection e1, ..., em, with
e2

m+1=−1 and anti-commutativity with the other ej , j=1, ..., m, one obtains the
homogeneous codimension-1 CK extension of ei〈x,ξ〉 in Rm+1. Generalizations of
the exponential function of these types can be first found in F. Sommen’s work [5].

We will be concerned with the direct sum decomposition of the space Rm into
Rp⊕Rq, where Rp is the real-linear span of e1, ..., ep, and Rq is the real-linear span
of ep+1, ..., em. We call Rq the codimension-p space in Rp⊕Rq.

Codimension-p CK extension concerns the following question. Suppose we are
given a function f(y) that is analytic in an open subset U⊂Rq. Then the question
is: Is there a left-monogenic function f∗(x, y) in some domain in Rp⊕Rq containing
U such that f∗|x=0=f in U?

The answer to this question is positive, but, when p>1, the solution is not
unique. For instance, f(y) can first have a homogeneous codimension-1 CK exten-
sion in Rq+1 which is also left-monogenic in Rp⊕Rq.
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Before answering the question in full, we first need to distinguish different
types of monogenic extensions. In both the homogeneous and inhomogeneous
codimension-1 cases there will be only one type, viz. the standard CK type, as
the extension is unique. The CK extension from U⊂Rq to U∗⊂Rq

1 corresponds to
the series expansion of

f(x0, y)= e−x0∂yA(y)=
∞∑

j=0

(−1)j

j!
xj

0∂y
jA(y),

where ∂y is the Dirac operator in the homogeneous Euclidean space Rq.

The codimension-p, p>1, CK extension of a function A(y), y∈U⊂Rq, being
the case k=0 in Lemma 1 ([2]), is a modification of the series obtained from the
exponential expression e−x0∂y A(y). Lemma 1 answers the question in a more gen-
eral context, called a generalized CK extension, where an extension is related to
a k-monogenic function in M+(p, k,C(p)). The participation of the k-monogenic
function makes the extension having the role of monomial functions zk in one com-
plex variable, which enables one to further formulate generalized Taylor series.

Lemma 1. (The Generalized CK Extension: Homogeneous Codimension-p
CK extension Associated With Pk [2, p. 265]) Let Pk∈M+(p, k,C(p)) be given and
A0(y) be a Clifford C(q)-valued analytic function in U. Then there exists a unique
sequence (Al(y))l>0 of analytic functions such that the series

fPk
(x, y)=

∞∑
l=0

xlPk(x)Al(y)(2)

is convergent in an SO(p)-invariant domain U∗⊂Rm, which is a neighborhood of U ,
and the sum f is left-monogenic in U∗. The functions Al(y), l>1, are uniquely
determined by the formulas

Pk(x)A2l(y)=
(−1)lΓ(k+p/2)∂2l

y [Pk(x)A0(y)]

22ll!Γ(l+k+p/2)
,

and

Pk(x)A2l+1(y)=
(−1)lΓ(k+p/2)∂2l+1

y [Pk(x)A0(y)]

22l+1l!Γ(l+k+p/2+1)
.

We call fPk
(x, y) the generalized CK extension in relation to Pk of A0(y) and

A0(y) the initial value of fPk
(x, y). Denote by TPk

(U) the space of all functions of
the form (2).

From [2] we know, if f(x, y), x=ρω∈Rp, y∈Rq, is left-monogenic in Rm=
Rp⊕Rq, that Tk(f)(ω, y)=limρ!0 ρ−kP (k)f(ρ, ω, y) is the generalized Taylor coef-
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ficient of f of order k, which can be decomposed in a unique way as

Tk(f)(ω, y)=
∑

α∈Ik

Pk,α(ω)Tk,α(f)(y),

where Tk,α(f)(y) are real-analytic functions.
Denote the generalized CK extension, corresponding to Pk,α(ω)Tk,α(f)(y), by

Tk,α(x, y), then we have

f(x, y)=
∞∑

k=0

∑
α∈Ik

Tk,α(x, y),(3)

where

Tk,α(x, y)=
∞∑
l=0

xlPk,α(x)T (l)
k,α(y).

The expansion (3) is called a generalized Taylor series.

2. The generalized CK extension of ei〈y,t〉 in Rm=Rp⊕Rq

In [1] and [4], the homogeneous codimension-1 CK extension of ei〈y,t〉 is given
by

e(x1e1, y, t)= ei〈y,t〉
[
cosh(x1|t|)+i sinh(x1|t|)e1

t

|t|

]
.

It is easy to see that for all y,t∈Rq, |e(x1e1, y, t)|≤Ce|x1||t|, where C is a constant.
Now we study the extension for all cases p≥1 and k≥0, for Pk∈M+(p, k,C(p))

given. Let x=rω∈Rp. In Lemma 1, setting A0(y)=ei〈y,t〉, we obtain the general-
ized, homogeneous codimension-p CK extension of ei〈y,t〉 in TPk

, denoted by εp
Pk

,
with the expression

εp
Pk

(x, y, t)= Γ
(
k+

p

2
)
ei〈y,t〉rk

(
r|t|
2

)−k−p/2+1

(4)

×
[
Pk(ω)Ik+p/2−1(r|t|)+iωPk(ω)Ik+p/2(r|t|)

t

|t|

]
,

where

Iv(x)= i−vJv(ix)=
∞∑

k=0

1
k!Γ(v+k+1)

(x

2
)v+2k

is a kind of Bessel function ([8]). Note that e(x1e1, y, t)=ε1
1(x1e1, y, t).
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Next we will estimate εp
Pk

(x, y, t).
From [8] we know that the generating function of In is

eu(t+1/t)/2 =
∞∑

n=−∞
tnIn(u).

Taking t=1, we get eu=
∑∞

n=−∞ In(u).
Using In(−u)=In(u), we get eu=2

∑∞
n=1 In(u)+I0(u). As In(u)>0 when u>0,

we have
∞∑

n=0

In(x)≤ ex, when x> 0.(5)

When |t|≤Ω, using (4) and (5) we have

|εp
Pk

(x, y, t)| ≤C

(
2
Ω

)k(
rΩ
2

)−p/2+1

[Ik+p/2−1(rΩ)+Ik+p/2(rΩ)]

≤C[Ik(rΩ)+Ik+1(rΩ)]≤CerΩ,

(6)

where C is a constant independent of y.
On the other hand, when k=0 and Pk=1 we have the generalization of ei〈y,t〉

in T1(Rq),

εp
1(x, y, t)= Γ

(p

2
)
ei〈y,t〉

(
r|t|
2

)−p/2+1[
Ip/2−1(r|t|)+iIp/2(r|t|)ω

t

|t|

]
.

Since for any u>0,

(u

2

)−v

Iv(u)=
∞∑

k=0

1
k!Γ(v+k+1)

(u

2

)2k

≤C

∞∑
k=0

u2k

(2k)!
≤Ceu,

and

(u

2

)−v+1

Iv(u)=
∞∑

k=0

1
k!Γ(v+k+1)

(u

2

)2k+1

≤C

∞∑
k=0

u2k+1

(2k+1)!
≤Ceu.

We therefore have

|εp
1(x, y, t)| ≤Cer|t| for any y, t∈Rq,(7)

where C is a constant independent of y. The estimate is stronger than (6) where it
is under the restriction |t|≤Ω.
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3. Paley–Wiener theorems in Rm=Rp⊕Rq

We first study the codimension-1 case. The following result is obtained in [3].

Lemma 2. (Inhomogeneous codimension-1 PW theorem) Let F be analytic,
defined in Rq, taking values in C(q), the complex Clifford algebra generated by
e2, ..., eq+1, and F ∈L2(Rq). Let Ω be a positive real number. Then the following
two conditions are equivalent :

(1) F can be left-monogenically extended to a function defined on Rq
1, denoted

by f , and there exists a constant C such that

|f(y)| ≤CeΩ|y| for any y∈Rq
1.

(2) supp(F̂ )⊂B(0, Ω).
Moreover, if one of the above conditions holds, then we have

f(y)=
1

(2π)q

∫
Rq

e(y, ξ)F̂ (ξ) dξ, y ∈Rq
1,

where e(y, ξ) is given in (1) with e0=1.

With the difference e2
1=−1 in place of e2

0=1 in the above result, we now prove the
following result.

Theorem 1. (Homogeneous codimension-1 PW theorem) Let F be analytic,
defined in Rq, taking values in C(q), the complex Clifford algebra generated by
e2, ..., eq+1, and F∈L2(Rq), and let Ω be a positive real number. Then the fol-
lowing two conditions are equivalent :

(1) F can be left-monogenically extended to a function defined on Rq+1, denoted
by f , and there exists a constant C such that

|f(x1e1, y)| ≤CeΩ|x1e1+y| for any x1 ∈R and y ∈Rq.

(2) supp(F̂ )⊂B(0, Ω).
Moreover, if one of the above conditions holds, then we have

f(x1e1, y)=
1

(2π)q

∫
Rq

e(x1e1, y, t)F̂ (t) dt, x1 ∈R, y∈Rq.

While the proof of Lemma 2 ([3]) may be adapted step by step to give a proof of
Theorem 1, we, however, prefer to show that the main part of the theorem may be
concluded from Lemma 2.
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Proof. (2)⇒(1) Let

G(x1e1, y)=
1

(2π)q

∫
Rq

e(x1e1, y, t)F̂ (t) dt.

Because supp(F̂ )⊂B(0, Ω), we have

G(x1e1, y)=
1

(2π)q

∫
B(0,Ω)

e(x1e1, y, t)F̂ (t) dt.

The estimate of ε1
1(x1e1, y, t) implies

|G(x1e1, y)| ≤C‖F̂‖2e
Ω|x1|‖χB(0,Ω)‖2 ≤CeΩ|x1e1+y|.

Since F (y) and G(0, y) agree in Rq, both being left-monogenic in Rq+1, we conclude
that f(x1e1, y)=G(x1e1, y).

(1)⇒(2) Since f(x1e1, y) is the homogeneous codimension-1 CK extension of
f(0, y)=F (y), and

|f(x1e1, y)| ≤CeΩ|x1e1+y|, x1e1 ∈R1, y ∈Rq,

we have

|f(x1e1, y)|=
∣∣∣∣
∞∑

l=0

Γ
(

1
2

)
|x1|2l∂2l

y [A0(y)]

(2l)!
+

∞∑
l=0

Γ
(

1
2

)
|x1|2lx1e1∂

2l+1
y [A0(y)]

(2l+1)!

∣∣∣∣
≤CeΩ|x1e1+y|,

where f(0, y)=A0(y).
Since the first and the second summations are expanded, respectively, over

different groups of reduced products of the basis elements of R1⊕Rq, we have
∣∣∣∣
∞∑

l=0

Γ
(

1
2

)
|x1|2l∂2l

y [A0(y)]

(2l)!

∣∣∣∣≤CeΩ|x1e1+y|,

and
∣∣∣∣
∞∑
l=0

Γ
(

1
2

)
|x1|2lx1e1∂

2l+1
y [A0(y)]

(2l+1)!

∣∣∣∣≤CeΩ|x1e1+y|.

On the other hand, F (y) has an inhomogeneous codimension-1 CK extension
f1(x1, y)∈Rq

1 with f1(0, y)=F (y) and

f1(x1, y)=
∞∑

l=0

|x1|2l∂2l
y [A0(y)]

(2l)!
−

∞∑
l=0

|x1|2lx1∂
2l+1
y [A0(y)]

(2l+1)!
.
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Then the last two inequalities imply that

|f1(x1, y)| ≤
∣∣∣∣
∞∑
l=0

|x1|2l∂2l
y [A0(y)]

(2l)!

∣∣∣∣+
∣∣∣∣
∞∑

l=0

|x1|2lx1∂
2l+1
y [A0(y)]

(2l+1)!

∣∣∣∣
≤CeΩ|x1e1+y| = CeΩ|x1+y|.

Invoking Lemma 2, we conclude that supp(F̂ )⊂B(0, Ω). �

Below we study the homogeneous codimension-p PW theorem in Rm=Rp⊕
Rq (for p>1) for CK extensions involving an initial value function. We need the
following lemma.

Lemma 3. Let

∂xn = ∂xn1
1 ...∂xnl

l , |n|= n1+n2+...+nl,

where n=(n1, ..., nl)∈Nl is an l-dimensional multi-index. Let

E(x)=
x

|x|l , x∈Rl.

Then ∣∣∣∣ ∂
|n|

∂xn
E(x)

∣∣∣∣≤ (l−1)l...(l+|n|−2)
|x|l+|n|−1

.

The lemma can be easily proved by direct computation.

Lemma 4. (Technical lemma) Assume that f(x, y) is left-monogenic in Rp⊕Rq,
and

|f(x, y)| ≤CeΩ|x|, x∈Rp, y ∈Rq,

where Ω is a positive real number. Let f1(x1e1, y) be the homogeneous codimension-1
CK extension satisfying f1(0, y)=f(0, y). Then for any ε>0, there exists a constant
Cε>0 such that

|f1(x1e1, y)| ≤Cεe
(Ω+ε)|x1|, x1e1 ∈R1, y ∈Rq.

Proof. Since f(x, y) is left-monogenic in Rm=Rp⊕Rq, by Cauchy’s formula,
we have

f(x, y)=
1

ωm−1

∫
∂B(x+y,ρ)

E(t−(x+y)) dσ(t)f(t),

where ρ is any positive real number.
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Then

f(0, y)=
1

ωm−1

∫
∂B(y,ρ)

E(t−y) dσ(t)f(t).

By Lemma 3 and the condition |f(x, y)|≤CeΩ|x|, we have

|∂l
yf(0, y)| ≤C

(m−1)m...(m+l−2)
ρl

eΩρ.(8)

Since f1 is the homogeneous codimension-1 CK extension and f(0, y)=f1(0, y), the
above estimate (8) implies that

|f1(x1e1, y)| ≤
∞∑

l=0

|x1|l|∂l
y[f(0, y)]|
l!

≤
∞∑

l=0

|x1|l(m−1)m...(m+l−2)
l!ρl

eΩρ.(9)

For any ε>0, set l0=[2Ω(m−2)/ε]+1. Then l>l0 will imply that (m−2)/l<ε/2Ω.
Thus, if l>l0, then 1+(m−2)/l<1+ε/2Ω, and from (9) we get

|f1(x1e1, y)| ≤C

∞∑
l=0

|x1|l(m−1)m...(m+l−2)
l!ρl

eΩρ

≤C

l0∑
l=0

|x1|l(m−1)m...(m+l−2)
l!ρl

eΩρ+Cε

∞∑
l=l0

|x1|l(1+ε/2Ω)l−l0

ρm+l−1
eΩρ,

where Cε=(m−1)(m/2)...(m+l0−2)/l0.
Taking ρ=|x1|(1+ε/Ω), we have

|f1(x1e1, y)| ≤Cεe
(Ω+ε)|x1|.

The proof is complete. �

Theorem 2. (Homogeneous codimension-p PW Theorem) Let F be analytic,
defined in Rq, taking values in C(q), the complex Clifford algebra generated by
ep+1, ..., ep+q, and F∈L2(Rq), and let Ω be a positive real number. Then the fol-
lowing two assertions are equivalent :

(1) F has a homogeneous codimension-p CK extension to Rp+q, denoted by f ,
and there exists a constant C such that

|f(x, y)| ≤CeΩ|x| for any x∈Rp and y ∈Rq.

(2) supp(F̂ )⊂B(0, Ω).
Moreover, if one of the above conditions holds, we have

f(x, y)=
1

(2π)q

∫
Rq

εp
1(x, y, t)F̂ (t) dt for any x∈Rp and y ∈Rq.
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Proof. (2)⇒(1) Set

G(x, y)=
1

(2π)q

∫
Rq

εp
1(x, y, t)F̂ (t) dt.

As supp(F̂ )⊂B(0, Ω), we have

G(x, y)=
1

(2π)q

∫
B(0,Ω)

εp
1(x, y, t)F̂ (t) dt.(10)

Owing to the estimate (7) of εp
1(x, y, t), we have

|G(x, y)| ≤C‖F̂‖2e
Ω|x|‖χB(0,Ω)‖2 ≤CeΩ|x| for any x∈Rp and y∈Rq.

Since εp
1 is the codimension-p CK extension of ei〈y,t〉, through the integral repre-

sentation (10), the function G(x, y) is the codimension-p CK extension of F (y). As
both G(x, y) and f(x, y) are codimension-p CK extensions from the same function
F (y) on Rq, they have to be identical on Rp+q.

(1)⇒(2) Set A0(y)=F (y). Let f1(x1e1, y) be the homogeneous codimension-1
CK extension satisfying f1(0, y)=A0(y)=f(0, y). Lemma 4 then asserts that for any
ε>0, x1e1∈R1, y∈Rq,

|f1(x1e1, y)| ≤Cεe
(Ω+ε)|x1| ≤Cεe

(Ω+ε)|x1e1+y|.

By invoking Theorem 1, we get supp(F̂ )⊂B(0, Ω+ε). Letting ε!0, we conclude
that supp(F̂ )⊂B(0, Ω). The proof is complete. �

The following variation of Theorem 2 holds.

Theorem 3. Let F be analytic, defined in Rq, taking values in C(q), the com-
plex Clifford algebra generated by ep+1, ..., ep+q, and F ∈L2(Rq). Let Ω be a positive
real number. Then the following assertions hold :

(1) If supp(F̂ )⊂B(0, Ω), then F has a homogeneous codimension-p CK exten-
sion to Rp+q, denoted by f , and there exists a constant C such that

|f(x, y)| ≤CeΩ|x+y|, x∈Rp, y∈Rq.

(2) If there exists a homogeneous codimension-p CK extension of F to Rp+q,
denoted by f and a constant C such that

|f(x, y)| ≤CeΩ|x+y|, x∈Rp, y∈Rq,

then supp(F̂ )⊂B(0,
√

2Ω).
Moreover, in each of the above cases, we have

f(x, y)=
1

(2π)q

∫
Rq

εp
1(x, y, t)F̂ (t) dt, x∈Rp, y ∈Rq.
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Proof. The assertion (1) is the easy part. We only indicate how to prove (2).
Note that, if in Lemma 4, instead of the assumption

|f(x, y)| ≤CeΩ|x|

one adopts the weaker assumption

|f(x, y)| ≤CeΩ|x+y|, x∈Rp, y∈Rq,

then the inequality (8) becomes

|∂l
yf(0, y)| ≤C

(m−1)m...(m+l−2)
ρm+l−1

e
√

2Ω|ρ+y|.

This will modify the inequality (9). By taking ρ=|x1|(1+ε/Ω) in the modified
inequality, we have, for any ε>0,

|f(x1e1, y)| ≤Cεe
√

2(Ω+ε)|x1e1+y|, x1e1 ∈R1, y∈Rq.

The proof is complete by invoking Theorem 1. �

Next we extend Theorem 2 to the generalized CK extension case involving
a k-monogenic weight function.

Lemma 5. Let Pk(x)∈M+(p, k,C(p)) be given. Denote by fPk
(x, y) the gen-

eralized CK extension of F (y) in relation to Pk, which is left-monogenic in Rm.
Assume that

|fPk
(x, y)| ≤CeΩ|x|, x∈Rp, y ∈Rq,

where Ω is a positive real number. Let f1(x1e1, y) be the homogeneous codimension-
1 CK extension of the same initial value f1(0, y)=F (y). Then for any ε>0, there
exists a constant Cε>0 such that

|f1(x1e1, y)| ≤Cεe
(Ω+ε)|x1| for any x1e1 ∈R1 and y∈Rq.

Proof. Since fPk
(x, y) is the generalized CK extension of F (y) in relation to Pk,

we have

fPk
(x, y)=

∞∑
l=0

xlPk(x)Fl(y),

where

F2l(y)=
(−1)lΓ(k+p/2)∂2l

y F (y)

22ll!Γ(l+k+p/2)
,(11)
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and

F2l+1(y)=
(−1)lΓ(k+p/2)∂2l+1

y F (y)

22l+1l!Γ(l+k+p/2+1)
.(12)

On the other hand, since fPk
is left-monogenic in Rm=Rp⊕Rq, by Cauchy’s inte-

gral formula, we have

fPk
(x, y)=

1
ωm−1

∫
∂B(x+y,ρ)

E(t−(x+y)) dσ(t)fPk
(t),

where ρ is any positive real number.
Then

∂l+k

∂xl+k
1

fPk
(x, y)=

1
ωm−1

∂l+k

∂xl+k
1

∫
∂B(x+y,ρ)

E(t−(x+y)) dσ(t)fPk
(t).

By Lemma 3 and the assumption |fPk
(x, y)|≤CeΩ|x|, we have

∣∣∣∣ ∂l+k

∂xl+k
1

fPk
(x, y)

∣∣∣∣≤C
(m−1)m...(m+l+k−2)

ρl+k
eΩ(|x|+ρ).

Therefore,

|Fl(y)|= lim
|x|!0

1
l!

∣∣∣∣ ∂l+k

∂xl+k
1

fPk
(x, y)

∣∣∣∣≤C
1
l!

(m−1)m...(m+l+k−2)
ρl+k

eΩρ.(13)

Using (11), (12) and the above estimate (13), we have

|f1(x1e1, y)| ≤
∞∑

l=0

|x1|l|∂l
y[F (y)]|
l!

≤
∞∑

l=0

(
l+k+

p

2
)k+p/2 |x1|l(m−1)m...(m+l+k−2)

l!ρl+k
eΩρ.

For any ε>0, set l0=[2Ω(m+k−2)/ε]+1, then l>l0 implies (m+k−2)/l<ε/2Ω.
Thus, if l>l0, then 1+(m+k−2)/l<1+ε/2Ω, so

|f1(x1e1, y)| ≤C

∞∑
l=0

(
l+k+

p

2
)k+p/2 |x1|l(m−1)m...(m+l+k−2)

l!ρl+k
eΩρ

≤C

l0∑
l=0

(
l+k+

p

2
)k+p/2 |x1|l(m−1)m...(m+l+k−2)

l!ρl+k
eΩρ

+Cε

∞∑
l=l0

(
l+k+

p

2
)k+p/2 |x1|l(1+ε/2Ω)l−l0

ρl+k
eΩρ,

where Cε=(m−1)m...(m+k+l0−2)/l0!.
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When |x1|>1, taking ρ=|x1|(1+ε/Ω)2, we have

|f1(x1e1, y)| ≤Cεe
(Ω+ε)|x1|.(14)

When |x1|<1, taking ρ=2, we get that fPk
is bounded. So the inequality (14) also

holds. The proof is complete. �

Theorem 4. (Generalized codimension-p Paley–Wiener Theorem) Let Pk∈
M+(p, k;C(p)) be given, F be analytic, defined in Rq, taking values in C(q), the com-
plex Clifford algebra generated by ep+1, ..., ep+q, and F ∈L2(Rq). Let Ω be a positive
real number. Then the following two assertions are equivalent :

(1) F has a homogeneous codimension-p generalized CK extension to Rp+q,
denoted by fPk

, and there exists a constant C such that

|fPk
(x, y)| ≤CeΩ|x| for any x∈Rp and y ∈Rq.

(2) supp(F̂ )⊂B(0, Ω).
Moreover, if one of the above conditions holds, then we have

fPk
(x, y)=

1
(2π)q

∫
Rq

εp
Pk

(x, y, t)F̂ (t) dt for any x∈Rp and y ∈Rq.

Proof. (2)⇒(1) Set

GPk
(x, y)=

1
(2π)q

∫
Rq

εp
Pk

(x, y, t)F̂ (t) dt.

Using the same method as in the first part of Theorem 2, we can easily prove this
implication.

(1)⇒(2) Let A0(y)=F (y). By CK extension, using A0(y), we can construct
another left-monogenic function f1(x1e1, y) which satisfies f1(0, y)=A0(y)=f(0, y).
If we can prove that for any ε>0, x1e1∈R1, y∈Rq,

|f1(x1e1, y)| ≤Cεe
(Ω+ε)|x1e1+y|,(15)

by Theorem 1, we get supp(F̂ )⊂B(0, Ω+ε). Letting ε!0, we get supp(F̂ )⊂B(0, Ω).
We are thus reduced to show inequality (15).
Since

f1(x1e1, y)=
∞∑

l=0

(x1e1)lAl(y)=
∞∑

l=0

(−1)l(x1e1)l∂l
y[A0(y)]

l!
,

and

|f(x, y)| ≤CeΩ|x| for any x∈Rp and y ∈Rq,
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by Lemma 5, for any ε>0, we have

|f1(x1e1, y)| ≤Cεe
(Ω+ε)|x1e1+y| for any x1e1 ∈R1 and y∈Rq.

So inequality (15) holds. The proof is complete. �
The rest of this section will deal with a PW theorem in relation to generalized

Taylor series.

Lemma 6. Assume that f(x, y) is left-monogenic in Rm=Rp⊕Rq with the
form (3) and such that

|f(x, y)| ≤CeΩ|x|, x∈Rp, y ∈Rq,(16)

where Ω is a positive real number. Then for all k≥0 and α∈Ik, we have

|Tk,α(x, y)| ≤CeΩ|x|, x∈Rp, y∈Rq,

where C depends on k and α.

Proof. Based on (3) and using the orthogonality on the sphere between Pk(ω)
and Pl(ω) (l 	=k), and that between Pk(ω) and ωPl(ω) for any k and l, we have

∫
Sp−1

P k,α(ω)f(|x|ω, y) dSω =
∞∑
l=0

(−1)l|x|2l+kT
(2l)
k,α (y).

According to the condition (16), we obtain∣∣∣∣
∞∑
l=0

x2lPk(x)T (2l)
k,α (y)

∣∣∣∣≤C

∣∣∣∣
∞∑

l=0

(−1)l|x|2l+kT
(2l)
k,α (y)

∣∣∣∣≤CeΩ|x|.

Similarly, we have
∫

Sp−1
ωP k,α(ω)f(|x|ω, y) dSω =

∞∑
l=0

(−1)l|x|2l+1+kT
(2l+1)
k,α (y).

Using the condition (16), we also obtain∣∣∣∣
∞∑

l=0

x2l+1Pk(x)T (2l+1)
k,α (y)

∣∣∣∣≤C

∣∣∣∣
∞∑

l=0

(−1)l|x|2l+1+kT
(2l+1)
k,α (y)

∣∣∣∣≤CeΩ|x|.

Thus we have

|Tk,α(x, y)|=
∣∣∣∣
∞∑

l=0

xlPk,α(x)T (l)
k,α(y)

∣∣∣∣

≤
∣∣∣∣
∞∑

l=0

x2lPk,α(x)T (2l)
k,α (y)

∣∣∣∣+
∣∣∣∣
∞∑

l=0

x2l+1Pk,α(x)T (2l+1)
k,α (y)

∣∣∣∣
≤CeΩ|x|, x∈Rp, y∈Rq. �
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We will need the following lemma.

Lemma 7. ([1, p. 281]) Assume that f(x) is left-monogenic in Rm and that
Ω is a positive number. If there exists a constant C, such that

|f(x)| ≤CeΩ|x|, x= rω,

then

|P (k)(f)(ω)| ≤C(1+k)m Ωk

k!
,

where P (k) is the projection onto M+(m, k,C(m)).

Theorem 5. Assume that f(x, y) is left-monogenic in Rm=Rp⊕Rq with the

form (3). For any k≥0 and α∈Ik, let Tk,α(y)=T
(0)
k,α(y) be analytic, defined in Rq,

taking values in C(q), the complex Clifford algebra generated by ep+1, ..., ep+q, and
Tk,α(y)∈L2(Rq). Assume also that

∣∣∣
∞∑

k=0

∑
α∈Ik

Pk,α(x)T̂k,α(t)
∣∣∣≤CeΩ|x| for any x∈Rp and t∈Rq,(17)

where Ω is a positive real number. Then the following two assertions are equivalent :
(1) There exists a constant C such that

|f(x, y)| ≤CeΩ|x| for any x∈Rp and y ∈Rq.

(2) supp(T̂k,α)⊂B(0, Ω) for any k≥0 and α∈Ik.
Moreover, if one of the above conditions holds, we have

f(x, y)=
1

(2π)q

∞∑
k=0

∑
α∈Ik

∫
Rq

εp
Pk,α

(x, y, t)T̂k,α(t) dt for any x∈Rp and y∈Rq.

Proof. (2)⇒(1) The first part of the proof of Theorem 2 may be closely fol-
lowed. In fact, for any k≥0 and α∈Ik, set

Gk,α(x, y)=
1

(2π)q

∫
Rq

εp
Pk

(x, y, t)T̂k,α(t) dt.

As supp(T̂k,α)⊂B(0, Ω), we have

Gk,α(x, y)=
1

(2π)q

∫
B(0,Ω)

εp
Pk,α

(x, y, t)T̂k,α(t) dt.

Since εp
Pk,α

is the generalized CK extension of ei〈y,t〉 in TPk
, the generalized Taylor

coefficient of Gk,α(x, y) is Tk,α(y). That is Tk,α(x, y) and Gk,α(x, y) have the same
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generalized Taylor coefficient Tk,α(y), so Tk,α(x, y)=Gk,α(x, y). Thus

f(x, y)=
∞∑

k=0

∑
α∈Ik

Tk,α(x, y)

=
1

(2π)q

∞∑
k=0

∑
α∈Ik

∫
B(0,Ω)

εp
Pk,α

(x, y, t)T̂k,α(t) dt

=
1

(2π)q

∞∑
k=0

∫
B(0,Ω)

εp
k(x, y, t)rk

[ ∑
α∈Ik

Pk,α(ω)T̂k,α(t)
]

dt.

Using condition (17) and Lemma 7, we have

∣∣∣ ∑
α∈Ik

Pk,α(ω)T̂k,α(t)
∣∣∣≤C(1+k)p Ωk

k!
.

Adding to the inequality (5), we have

|f(x, y)| ≤ 1
(2π)q

∞∑
k=0

∫
B(0,Ω)

|εp
k(x, y, t)|rk

∣∣∣ ∑
α∈Ik

Pk,α(ω)T̂k,α(t)
∣∣∣|dt|

≤C
∞∑

k=0

(1+k)p rkΩk

k!

(
rΩ
2

)−k−p/2+1[
Ik+p/2−1(rΩ)+Ik+p/2(rΩ)

]

≤C

∞∑
k=0

(1+k)p2k

k!

(
rΩ
2

)−p/2+1[
Ik+p/2−1(rΩ)+Ik+p/2(rΩ)

]

≤C

∞∑
k=0

[Ik(rΩ)+Ik+1(rΩ)]

≤CerΩ

= CeΩ|x|.

(1)⇒(2) For any k≥0, and α∈Ik, by the generalized CK extension, using
Tk,α(y), we can construct a series of left-monogenic functions Tk,α(x1e1, y)∈Rq+1

satisfying Tk,α(0, y)=Tk,α(y). If we can prove that for any ε>0, x1e1∈R1 and
y∈Rq we have

|Tk,α(x1e1, y)| ≤Cεe
(Ω+ε)(|x1e1+y|),(18)

by Theorem 1, we get supp(T̂k,α)⊂B(0, Ω+ε). Letting ε!0, we get supp(T̂k,α)⊂
B(0, Ω).

We therefore are reduced to proving inequality (18).
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Since

|f(x, y)| ≤CeΩ|x| for any x∈Rp and y ∈Rq.

Combining Lemmas 5 and 6, for any ε>0, we have

|Tk,α(x1e1, y)| ≤Cεe
(Ω+ε)(|x1e1+y|) for any x1e1 ∈R1 and y ∈Rq.

The proof is complete. �
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