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1. Introduction

It is well known that the problem of finding the number of real solutions to algebraic sys-
tems is very difficult, and not many results are known; see [16]. In this paper we address
the counting of real points in intersections of Schubert varieties associated with osculat-
ing flags in the Grassmannian of n-dimensional planes in a d-dimensional space. These
problems are parameterized by partitions λ(1), ..., λ(k) and ν with at most n parts sat-
isfying the condition |ν|+

∑k
i=1 |λ(i)|=n(d−n), and distinct complex numbers z1, ..., zk.

In this parametrization, λ(1), ..., λ(k) and ν are respectively paired with z1, ..., zk and
infinity.

Equivalently, we count n-dimensional real vector spaces of polynomials that have
ramification points z1, ..., zk with respective ramification conditions λ(1), ..., λ(k) and are
spanned by polynomials of degrees d−i−νn+1−i, i=1, ..., n, see §3 for details.

The same number is obtained by counting real monic monodromy-free Fuchsian
differential operators with singular points z1, ..., zk and infinity, exponents λ

(i)
n , λ

(i)
n−1+1,

..., λ
(i)
1 +n−1 at the zi’s, i=1, ..., k, and exponents νn+1−d, νn−1+2−d, ..., ν1+n−d at

infinity.
The number of complex solutions to the above-mentioned algebraic systems is read-

ily given by the Schubert calculus and equals the multiplicity of the irreducible gln-
module Lµ of highest weight µ=(d−n−νn, d−n−νn−1, ..., d−n−ν1) in the tensor prod-
uct Lλ(1)⊗...⊗Lλ(k) of irreducible gln-modules of highest weights λ(1), ..., λ(k).

The Shapiro–Shapiro conjecture proved in [4] for n=2 and in [13] for all n asserts
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that, if all z1, ..., zk are real, then all solutions of the Schubert problem associated with
osculating flags are real. Therefore, in this case, the number of real solutions is the
maximum possible.

Next we wonder how many real solutions we can guarantee in other cases. For
the Schubert problem to have real solutions, the set z1, ..., zk should be invariant under
complex conjugation and the ramification conditions at complex conjugate points should
be the same. This can be readily seen, for example, from the above-mentioned counting
of real monic monodromy-free Fuchsian differential operators. In this case we say that the
data z1, ..., zk and λ(1), ..., λ(k) are invariant under complex conjugation. In general, the
number of real solutions is not known, and based on extensive computer experimentation,
see [8], the answer to this question should be very interesting.

Prior to this paper, there were several approaches in order to obtain lower bounds.
First, one can compute the real topological degree of the Wronski map, and it gives
bounds for the case when all λ(1), ..., λ(k) are one-box partitions, see [2]. The lower
bound can be extended to the case when all partitions but one consist of one box, see
[15]. While this method gives non-trivial bounds, it has several serious drawbacks—the
answer does not depend on the number of real points among z1, ..., zk, does not apply to
general ramification conditions, and is far from being sharp in many cases.

Another method is to consider parity conditions. It is proved in [9] that if all
partitions are symmetric, the number of solutions can change only by 4. Unfortunately,
this is also a very special situation and the only lower bound one can obtain this way
is 2. Finally, in some cases, see [7, Theorem 7], the required spaces of polynomials can
be described relatively explicitly to estimate the number of solutions. This estimate is
sharp, that is, it is attained for some choice of z1, ..., zk, but it works only for very special
choices of λ(1), ..., λ(k).

We propose one more way to attack the problem. The proof of the Shapiro–Shapiro
conjecture in [12] and [13] is based on the identification of the spaces of polynomials
with points of the spectrum of a remarkable family of commuting linear operators known
as higher Gaudin Hamiltonians. For real z1, ..., zk, these operators are self-adjoint with
respect to a positive definite Hermitian form, and hence have real eigenvalues. Eventually,
this shows that the spaces of polynomials with real ramification points are real.

If some of z1, ..., zk are not real, but the data z1, ..., zk and λ(1), ..., λ(k) are invariant
under complex conjugation, then the higher Gaudin Hamiltonians are self-adjoint with
respect to a non-degenerate Hermitian form, but this form is indefinite. Since the number
of real eigenvalues of such operators is at least the absolute value of the signature of the
Hermitian form, see Lemma 6.1, this gives a lower bound for the number of real solutions
to the Schubert problem in question.
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We reduce the computation of the signature of the form to the computation of values
of characters of products of symmetric groups on products of commuting transpositions.
There is a formula for such characters, see Proposition 2.1, similar to the Frobenius for-
mula [5]. Thus, we obtain a lower bound for all possible choices of partitions λ(1), ..., λ(k)

and ν, and the obtained bound depends on the number of real points among z1, ..., zk,
see Corollary 7.3.

We check the obtained lower bound against the available results and computer ex-
periments, see §8. We find that our bound is sharp in many cases. For example, all
available data for n=2 match our bound. However, our bound is not sharp in general.
We hope that the bound can be improved in some cases by modifying the Hermitian
form given in this paper so that higher Gaudin Hamiltonians remain self-adjoint relative
to the new form.

The paper is organized as follows. We start with computations of characters of
symmetric groups in §2, see Proposition 2.1. Then we prepare notation and definitions
for osculating Schubert calculus in §3. We recall definitions and properties of higher
Gaudin Hamiltonians in §4 and their symmetries in §5. We discuss the key facts from
linear algebra about self-adjoint operators with respect to indefinite Hermitian forms
in §6. In §7 we prove our main statement, see Theorem 7.2 and Corollary 7.3. In §8 we
compare our bounds with known data and results.

2. Characters of the symmetric groups

The study of characters of the symmetric groups is a classical subject which goes back
to Frobenius [5]. In this section we deduce a formula for characters of a product of the
symmetric groups appearing in a tensor product of irreducible gln-modules.

Let Sk be the group of all permutations of a k-element set, GLn be the group of all
non-degenerate n×n matrices, and gln be the Lie algebra of n×n matrices.

Let λ=(λ1, λ2, ..., λn) be a partition with at most n parts, λ1>λ2>...>λn>0. We
use the notation |λ|=

∑n
i=1 λi.

For each partition λ with at most n parts, denote by Lλ the irreducible finite-
dimensional gln-module of highest weight λ. We call the module corresponding to λ=
(1, 0, ..., 0) the vector representation.

Let

∆n =
n∏

i,j=1
i>j

(xi−xj) =det(xn−j
i )n

i,j=1 ∈C[x1, ..., xn] (2.1)

be the Vandermonde determinant. Let Sλ∈C[x1, ..., xn] be the Schur polynomial given
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by

Sλ(x1, ..., xn) =
det(xλj+n−j

i )n
i,j=1

∆n
. (2.2)

The Schur polynomial is a symmetric polynomial in x1, ..., xn. It is well known that the
character of the module Lλ is given by the Schur polynomial:

Sλ(x1, ..., xn) = trLλ
X,

where X=diag(x1, ..., xn)∈GLn.
Consider the tensor product of gln-modules

Lλ =L⊗k1
λ(1)⊗L⊗k2

λ(2)⊗...⊗L⊗ks

λ(s) (2.3)

and its decomposition into irreducible gln-submodules:

Lλ =
⊕

µ

Lµ⊗Mλ,µ. (2.4)

Notice that the multiplicity space Mλ,µ is trivial unless

|µ|=
s∑

i=1

ki|λ(i)|. (2.5)

The product of symmetric groups Sk=Sk1×Sk2×...×Sks
acts on Lλ by permuting the

corresponding tensor factors. Since the Sk-action commutes with the gln-action, the
group Sk acts on the multiplicity space Mλ,µ for all µ. If s=1 and all tensor factors are
vector representations, λ(1)=(1, 0, ..., 0), by the Schur–Weyl duality, the space Mλ,µ is
the irreducible representation of Sk1 corresponding to the partition µ. In general, Mλ,µ

is a reducible representation of Sk.
For σ=σ1×σ2×...×σs∈Sk, σi∈Ski , let χλ,µ(σ)=trMλ,µ

σ be the value of the char-
acter of Sk corresponding to the representation Mλ,µ on σ. Writing σi as a product of
disjoint cycles, denote the number of cycles in the product by ci and the lengths of cycles
by lij , j=1, ..., ci. We have li,1+...+li,ci =ki.

Proposition 2.1. The character value χλ,µ(σ) equals the coefficient of the mono-
mial xµ1+n−1

1 xµ2+n−2
2 ... xµn

n in the polynomial

∆n ·
s∏

i=1

ci∏
j=1

Sλ(i)(xlij

1 , ..., xlij
n ).
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Proof. Let V be a vector space, P∈End(V ⊗V ) be the flip map, and A,B∈End(V ).
Then (id⊗ trV )((A⊗B)P )=AB∈End(V ).

Let σ=(1 2 ... l) be a cycle permutation and X=diag(x1, ..., xn)∈GLn. Using the
presentation σ=(1 2)(2 3) ... (l−1 l), we get

trL⊗l
λ

(X×σ) = trLλ
(X l) =Sλ(xl

1, ..., x
l
n). (2.6)

For any σ∈Sk and X∈GLn, formulae (2.3) and (2.6) yield

trLλ
(X×σ) =

s∏
i=1

ci∏
j=1

Sλ(i)(xlij

1 , ..., xlij
n ),

and formulae (2.4) and (2.2) give

trLλ
(X×σ) =

∑
µ

χλ,µ(σ)Sµ(x1, ..., xn) =
1

∆n

∑
µ

χλ,µ(σ) det(xµj+n−j
i )n

i,j=1.

The proposition follows.

For the case of vector representations, that is s=1 and λ(1)=(1, 0, ..., 0), the Schur
polynomial is Sλ(1)(x1, ..., xn)=x1+x2+...+xn and Proposition 2.1 reduces to the famous
Frobenius formula [5] for characters of irreducible representations of the symmetric group.

3. Osculating Schubert calculus

In this section we recall the problem of computing intersections of Schubert varieties
corresponding to osculating flags.

Let n and d be positive integers such that d>n. Let V be a d-dimensional complex
vector space. We realize V as the space of polynomials in a variable x of degree less
than d: V =Cd[x]. The Grassmannian Gr(n, d) of n-dimensional planes in V is a smooth
projective variety of dimension n(d−n). A point of Gr(n, d) is called real if the corre-
sponding space of polynomials has a basis consisting of polynomials with real coefficients.
We also call such spaces of polynomials real.

For z∈C we define a full flag F�(z) in V as follows:

F�(z) = {F1(z)⊂F2(z)⊂ ...⊂Fd−1(z)⊂Fd(z) =V },

where Fi(z)=(x−z)d−iCi[x] is the subspace of polynomials vanishing at z to the order at
least d−i. Clearly, Fi(z) has a basis (x−z)d−i, ..., (x−z)d−1 and dimFi(z)=i. We also
define a full flag F�(∞)={F1(∞)⊂F2(∞)⊂...⊂Fd−1(∞)⊂Fd(∞)=V }, where Fi(∞)=
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Ci[x] is the subspace of polynomials of degree less than i. The subspace Fi(∞) has a
basis 1, x, ..., xi−1.

Given z∈C∪{∞} and a partition λ with at most n parts, the corresponding Schubert
variety is

Ωλ(z) = {W ∈Gr(n, d) : dim W∩Fd−λn−i−i(z) >n−i for i=0, ..., n−1}.

The Schubert variety Ωλ(z)⊂Gr(n, d) has codimension |λ|. For z∈C, the Schubert variety
Ωλ(z) consists of n-dimensional spaces of polynomials W⊂V that have a basis f1, ..., fn

such that fj has a root at z of order at least λn+1−j +j−1. The Schubert variety Ωλ(∞)
consists of n-dimensional spaces of polynomials W⊂V that have a basis f1, ..., fn such
that deg fj 6d−j−νn+1−j ,

Given partitions λ(1), ..., λ(k) and ν with at most n parts such that

|ν|+
k∑

i=1

|λ(i)|=n(d−n), (3.1)

and distinct complex numbers z1, ..., zk, the corresponding osculating Schubert problem
asks to find the intersection of Schubert varieties

Ω(λ, ν,z) =
k⋂

i=1

Ωλ(i)(zi)∩Ων(∞). (3.2)

Lemma 3.1. The intersection Ω(λ, ν,z) consists of n-dimensional spaces of poly-
nomials W⊂V such that

(a) the space W has a basis f1,0, ..., fn,0 such that deg fj,0=d−j−νn+1−j , and
(b) for each i=1, ..., k, the space W has a basis f1,i, ..., fn,i such that fj,i has a root

at zi of order exactly λ
(i)
n+1−j +j−1.

Proof. Let w(x) be the Wronski determinant of a basis of W . Clearly, w(x) does
not depend on a choice of basis up to a non-zero multiplicative constant. The lemma
follows from equality (3.1) by comparing deg w(x) with the number of zeros of w(x).

According to Schubert calculus on Grassmannians, see [6], the set Ω(λ, ν,z) is finite,
and the number m(λ, ν) of points in Ω(λ, ν,z) counted with multiplicities equals the
multiplicity of the irreducible gln-module Lµ in the tensor product Lλ(1)⊗...⊗Lλ(k) ,
where the partition µ is the complement of ν in the n×(d−n) rectangle:

µ=(d−n−νn, d−n−νn−1, ..., d−n−ν1). (3.3)

It is known that for generic complex numbers z1, ..., zk, all points of intersection
are multiplicity-free. Moreover, for distinct real z1, ..., zk, all points of intersection are
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multiplicity-free as well, and all the corresponding spaces of polynomials are real, see
[13]. That is, for distinct real z1, ..., zk the osculating Schubert problem has m(λ, ν) real
solutions.

Let us make two pertinent remarks. First, notice that m(λ, ν)=m(λ̃, ∅), where λ̃

is the (k+1)-tuple λ(1), ..., λ(k), ν and ∅=(0, ..., 0) is the empty partition.
Second, fix partitions λ(1), ..., λ(k) and µ such that |µ|=

∑k
i=1 |λ(i)|, take d>n+µ1,

and set

ν =(d−n−µn, ..., d−n−µ1). (3.4)

Then the spaces of polynomials that are points of Ω(λ, ν,z) do not depend on d.

4. Gaudin model

Let Eij , i, j=1, ..., n, be the standard basis of gln: [Eij , Ekl]=δjkEil−δilEkj . The current
Lie algebra gln[t] is spanned by the elements Eij⊗tr, i, j=1, ..., n, r∈Z>0, satisfying
the relations [Eij⊗tr, Ekl⊗ts]=δjkEil⊗tr+s−δilEkj⊗tr+s. We identify gln with the
subalgebra in gln[t] by the rule Eij 7!Eij⊗1, i, j=1, ..., n.

Given z∈C, define the evaluation homomorphism εz: gln[t]!gln, Eij⊗tr 7!Eijz
r.

For a gln-module L, the evaluation gln[t]-module L(z) is the pull-back of L through the
evaluation homomorphism εz.

For g∈gln, define the formal power series in x−1: g(x)=
∑∞

s=0(g⊗ts)x−s−1. The
series g(x) acts in the evaluation module L(z) as g(x−z)−1.

Let ∂x be the differentiation with respect to x. Set Xij =δij∂x−Eij(x), i, j=1, ..., n.
Define the formal differential operator D by the rule

D=
∑

σ∈Sn

Xσ(1),1Xσ(2),2 ... Xσ(n),n = ∂n
x +

n∑
i=1

∞∑
j=i

Bijx
−j∂n−i

x , (4.1)

where the Bij ’s are elements of the universal enveloping algebra U(gln[t]). The operator
D is called the universal operator.

The unital subalgebra of U(gln[t]) generated by Bij , i=1, ..., n, j∈Z>i, is called the
Bethe subalgebra and denoted by Bn. Also, Bn is called the algebra of higher Gaudin
Hamiltonians.

Proposition 4.1. ([17]) The subalgebra Bn is commutative and commutes with gln.

For partitions λ(1), ..., λ(k) and distinct complex numbers z1, ..., zk, consider the
tensor product Lλ(z)=Lλ(1)(z1)⊗...⊗Lλ(k)(zk) of evaluation gln[t]-modules. For every
g∈gln, the series g(x) acts on Lλ(z) as a rational function of x.
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As a gln-module, Lλ(z) does not depend on z1, ..., zk and equals

Lλ =Lλ(1)⊗...⊗Lλ(k) .

Let Lλ=
⊕

µ Lµ⊗Mλ,µ be its decomposition into irreducible gln-submodules. Recall that
the multiplicity space Mλ,µ is trivial unless

|µ|=
k∑

i=1

|λ(i)|. (4.2)

As a subalgebra of U(gln[t]), the algebra Bn acts on Lλ(z). Since Bn commutes
with gln, this action descends to the action of Bn on each multiplicity space Mλ,µ. For
b∈Bn, denote by b(λ, µ,z)∈End(Mλ,µ) the corresponding linear operator.

Given a common eigenvector v∈Mλ,µ of the operators b(λ, µ,z), we let b(λ, µ,z; v)
denote the corresponding eigenvalues, and define the scalar differential operator

Dv = ∂n
x +

n∑
i=1

∞∑
j=i

Bij(λ, µ,z; v)x−j∂n−i
x . (4.3)

One can check that Dv is a Fuchsian differential operator with singular points at the
points z1, ..., zk and infinity. Moreover, for every i=1, ..., k, the exponents of Dv at the
point zi are λ

(i)
n , λ

(i)
n−1+1, ..., λ

(i)
1 +n−1, the exponents of Dv at infinity are −µ1+1−n,

−µ2+2−n, ...,−µn, and the kernel of Dv is spanned by polynomials, see [11].
Theorem 4.2 below connects Schubert calculus and the Gaudin model. Let a parti-

tion µ satisfy (4.2). Take d>n+µ1, and define the partition ν by (3.4). Let Ω(λ, ν,z)
be the intersection of Schubert varieties (3.2).

Theorem 4.2. ([13]) There is a bijective correspondence τ between common eigen-
vectors of the operators b(λ, µ,z)∈End(Mλ,µ), b∈Bn, and points of Ω(λ, ν,z) such that
τ(v) is the kernel of the scalar differential operator Dv. For generic z, the operators
b(λ, µ,z) are diagonalizable and have simple joint spectrum.

In particular, Theorem 4.2 implies that if for a common eigenvector v all eigenval-
ues Bij(λ, µ,z; v) are real, then the point τ(v)∈Ω(λ, ν,z)⊂Gr(n, d) is real, because the
operator Dv, see (4.3), has real coefficients.

Remark. Denote by Bn(λ, µ,z)⊂End(Mλ,µ) the commutative subalgebra, gener-
ated by the operators b(λ, µ,z), b∈Bn. It is proved in [13] that for all z=(z1, ..., zk)
with distinct coordinates, Bn(λ, µ,z) is a maximal commutative subalgebra of dimen-
sion dim Mλ,µ, and for a generic vector w∈Mλ,µ, the map

Bn(λ, µ,z)−!Mλ,µ,

b(λ, µ,z) 7−! b(λ, µ,z)w,

is an isomorphism of vector spaces.
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5. Shapovalov form

For any partition λ with at most n parts, the irreducible gln-module Lλ admits a positive
definite Hermitian form ( · , ·)λ such that (Eijv, w)λ=(v,Ejiw)λ for any i, j=1, ..., n and
any v, w∈Lλ. Such a form is unique up to multiplication by a positive real number. We
will call this form the Shapovalov form.

For partitions λ(1), ..., λ(k) we define the positive definite Hermitian form ( · , ·)λ

on the tensor product Lλ=Lλ(1)⊗...⊗Lλ(k) as the product of Shapovalov forms on the
tensor factors. For each multiplicity space Mλ,µ, the form ( · , ·)λ induces a positive
definite Hermitian form ( · , ·)λ,µ on Mλ,µ.

Proposition 5.1. For any i=1, ..., n, j∈Z>i, and any v, w∈Mλ,µ,

(Bij(λ, µ,z)v, w)λ,µ =(v,Bij(λ, µ, z̄)w)λ,µ, (5.1)

where the elements Bij are defined by (4.1), z̄=(z̄1, ..., z̄k) and the bar stands for complex
conjugation.

Proof. The claim follows from [10, Theorem 9.1].

If some of the partitions λ(1), ..., λ(k) coincide, then the operators b(λ, µ,z) have
additional symmetry. Assume that λ(i)=λ(i+1) for some i. Let Pi∈End(Lλ) be the flip
of the ith and (i+1)-st tensor factors and z̃(i)=(z1, ..., zi−1, zi+1, zi, zi+2, ..., zk).

Lemma 5.2. For any b∈Bn, we have Pib(λ, µ,z)Pi=b(λ, µ, z̃(i)).

6. Self-adjoint operators with respect to indefinite Hermitian forms

In this section we discuss some key statements from linear algebra.
Given a finite-dimensional vector space M , a linear operator A∈EndM , and a num-

ber α∈C, let MA(α)=ker(A−α)dim M . When MA(α) is not trivial, it is the subspace of
generalized eigenvectors of A with eigenvalue α.

Lemma 6.1. Let M be a complex finite-dimensional vector space having a non-
degenerate Hermitian form of signature m, and let A be a self-adjoint operator. Let
R=

⊕
α∈R MA(α) be the subspace of generalized eigenvectors of A with real eigenvalues.

Then the restriction of the Hermitian form on R is non-degenerate and has signature m.
In particular, dim R>|m|.

Proof. Since A is self-adjoint, MA(α)⊥=
⊕

β 6=�α MA(β). In particular, if α is an
eigenvalue of A that is not real, then the restriction of the Hermitian form on the subspace
MA(α)⊥⊕MA(�α) is non-degenerate and has zero signature. Thus, the restriction of the
Hermitian form on the subspace R is non-degenerate and has signature m.
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Corollary 6.2. Let M be a complex finite-dimensional vector space with a non-
degenerate Hermitian form of signature m, and let A⊂End(M) be a commutative sub-
algebra over R, whose elements are self-adjoint operators. Let R=

⋂
A∈A

⊕
α∈R MA(α).

Then the restriction of the Hermitian form on R is non-degenerate and has signature m.
In particular, dim R>|m|.

Proof. Let A1, ..., Ak be a basis of A. Clearly,

R =
k⋂

i=1

⊕
α∈R

MAi(α).

Let M1=
⊕

α∈R MA1(α). The subspace M1 is A-invariant and the restriction of the
Hermitian form on M1 is non-degenerate and has signature m by Lemma 6.1. The
corollary follows by induction.

In fact, Lemma 6.1 can be strengthened.

Lemma 6.3. ([14]) Under the assumption of Lemma 6.1, the operator A has at least
m linearly independent eigenvectors with real eigenvalues: dim

⊕
α∈R ker(A−α)>m.

Contrary to the case of a positive definite Hermitian form, Lemma 6.3 does not
extend to a pair of commuting self-adjoint operators. A counterexample is given by the
multiplication operators in the ring C[x, y]/(x2=y2, xy=0) with the usual Grothendieck
residue form. Explicitly, we have a 4-dimensional commutative real unital algebra of
linear operators in C4 generated by two matrices

x=


0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0

 and y =


0 0 0 0
0 0 0 0
0 0 0 1
1 0 0 0

 ,

that satisfy the relations x2=y2 and x3=y3=xy=yx=0. In particular, both x and y

have the only eigenvalue that equals zero: M=Mx(0)=My(0). Clearly,

dim kerx=dim ker y =2 and dim(ker x∩ker y) = 1.

The Hermitian form is given by the matrix

J =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .
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It is non-degenerate and has signature 2. Since xtJ=Jx̄ and ytJ=Jȳ, the operators x

and y are self-adjoint and commuting, but have only one common eigenvector.

The given counterexample is minimal. If in addition to the assumption of Corol-
lary 6.2, for each character %:A!C we have dim

⋂
A∈A MA(%(A))<4, then there are

at least m linearly independent common eigenvectors of the elements of A with real
eigenvalues:

dim
⋂

A∈A

⊕
α∈R

ker(A−α) >m.

7. The lower bound

In this section we prove our main theorem—the lower bound for the number of real
solutions to osculating Schubert problems, see Theorem 7.2 and Corollary 7.3.

Recall the notation from §3. For positive integers n and d such that d>n we consider
the Grassmannian of Gr(n, d) of n-dimensional planes in the space Cd[x] of polynomials
of degree less than d. Recall that W∈Gr(n, d) is called real if it has a basis consisting of
polynomials with real coefficients.

Given partitions λ(1), ..., λ(k) and ν with at most n parts satisfying (3.1), and dis-
tinct complex numbers z1, ..., zk, denote by d(λ, ν,z) the number of real points counted
with multiplicities in the intersection of Schubert varieties Ω(λ, ν,z)⊂Gr(n, d). Clearly,
d(λ, ν,z)=0 unless the set {z1, ..., zk} is invariant under complex conjugation and λ(i)=
λ(j) whenever zi=z̄j . In what follows we denote by c the number of complex conjugate
pairs in the set {z1, ..., zk} and without loss of generality assume that z1=z̄2, ..., z2c−1=z̄2c

while z2c+1, ..., zk are real. We will also always assume that λ(1)=λ(2), ..., λ(2c−1)=λ(2c).

For the sake of clarity, let us emphasize that by generic we always mean on a
non-empty Zariski-open subset of Ck. Recall that for any λ, ν and generic complex z,
the intersection of Schubert varieties is transversal, that is, all points of Ω(λ, ν,z) are
multiplicity-free. The same holds true under the reality condition on z and λ imposed
above for any c.

Let Lλ=Lλ(1)⊗...⊗Lλ(k) be the tensor product of irreducible gln-modules and let
Mλ,µ be the multiplicity space of Lµ in Lλ, see §4. Since λ(2i−1)=λ(2i) for i=1, ..., c,
the flip P2i−1 of the (2i−1)-st and 2i-th tensor factors of Lλ commutes with the gln-
action and thus acts on Mλ,µ. Denote by Pλ,µ,c∈End(Mλ,µ) the action of the product
P1P3 ... P2c−1 on Mλ,µ.

The operator Pλ,µ,c is self-adjoint relative to the Hermitian form ( · , ·)λ,µ on Mλ,µ

given in §5. Define a new Hermitian form ( · , ·)λ,µ,c on Mλ,µ by the rule: for any
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v, w∈Mλ,µ,

(v, w)λ,µ,c =(Pλ,µ,cv, w)λ,µ.

Denote by q(λ, µ, c) the signature of the form ( · , ·)λ,µ,c.

Proposition 7.1. The signature q(λ, µ, c) equals the coefficients of the monomial
xµ1+n−1

1 xµ2+n−2
2 ... xµn

n in the polynomial

∆n ·
c∏

i=1

Sλ(2i)(x2
1, ..., x

2
n)

k∏
j=2c+1

Sλ(j)(x1, ..., xn).

Here ∆n is the Vandermonde determinant (2.1) and Sλ are the Schur polynomials (2.2).

Proof. Since P 2
λ,µ,c=1, we have q(λ, µ, c)=trMλ,µ

Pλ,µ,c, and the claim follows from
Proposition 2.1.

Theorem 7.2. We have d(λ, ν,z)>|q(λ, µ, c)|, where µ is the complement of ν in
the n×(d−n) rectangle, µ=(d−n−νn, d−n−νn−1, ..., d−n−ν1); cf. (3.3).

Proof. By Proposition 5.1 and Lemma 5.2, the operators Bij(λ, µ,z)∈End(Mλ,µ)
are self-adjoint relative to the form ( · , ·)P

λ,µ. By Corollary 6.2,

dim
( ⋂

i,j

⊕
α∈R

MBij(λ,µ,z)(α)
)

> |q(λ, µ, c)|.

By Theorem 4.2, for any λ, ν and generic complex z the operators Bij(λ, µ,z) are
diagonalizable. The same holds true under the reality condition on z and λ imposed
in this section for any c. Thus, for generic z, the operators Bij(λ, µ,z) have at least
|q(λ, µ, c)| common eigenvectors with real eigenvalues, which provides |q(λ, µ, c)| distinct
real points in Ω(λ, ν,z). Hence, d(λ, ν,z)>|q(λ, µ, c)| for generic z, and therefore, for
any z, due to counting with multiplicities.

Corollary 7.3. We have d(λ, ν,z)>|a(λ, ν, c)|, where a(λ, ν, c) is the coefficient
of the monomial xd−1−νn

1 x
d−2−νn−1
2 ... xd−n−ν1

n in the polynomial

∆n ·
c∏

i=1

Sλ(2i)(x2
1, ..., x

2
n)

k∏
j=2c+1

Sλ(j)(x1, ..., xn).

Here ∆n is the Vandermonde determinant (2.1) and Sλ are the Schur polynomials (2.2).

Proof. The claim follows from Theorem 7.2 and Proposition 7.1.
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Recall that the total number of points in Ω(λ, ν,z) equals dim Mλ,µ=q(λ, µ, 0). It is
proved in [13] that for real z1, ..., zk all points in Ω(λ, ν,z) are real and multiplicity-free.
The proof of Theorem 7.2 here is a modification of the reasoning used in [13].

Let λ̃ be the (k+1)-tuple λ(1), ..., λ(k), ν and δ=(d−n, ..., d−n) be the rectangular
partition with n rows. There is a natural isomorphism of the multiplicity spaces Mλ,µ

and Mλ̃,δ that is consistent with the forms ( · , ·)λ,µ and ( · , ·)λ̃,δ and intertwines the
operators Pλ,µ,c and Pλ̃,δ,c. Therefore, q(λ, µ, c)=q(λ̃, δ, c) and a(λ, ν, c)=a(λ̃, ∅, c),
where ∅=(0, ..., 0) is the empty partition.

The corresponding statement in the osculating Schubert calculus is as follows. Let
F be a Möbius transformation mapping the real line to the real line and such that ∞6∈
{F (z1), ..., F (zk), F (∞)}. Set z̃=(F (z1), ..., F (zk), F (∞)). Then F defines an isomor-
phism of Ω(λ, ν,z) and Ω(λ̃, ∅, z̃) that maps real points to real points, and d(λ, ν,z)=
d(λ̃, ∅, z̃).

Consider the transposed partitions (λ(1))′, ..., (λ(k))′, ν′, and treat them as partitions
with at most d−n parts, adding extra zero parts if necessary. Denote by λ′ be the k-tuple
(λ(1))′, ..., (λ(k))′. By the Lagrangian involution for the osculating Schubert problems,
see [9, §4], the intersections of Schubert varieties Ω(λ, ν,z)⊂Gr(n, d) and Ω(λ′, ν′,z)⊂
Gr(d−n, d) are isomorphic by taking the orthogonal complements in Cd[x] relative to
the following bilinear form: 〈xp/p!, xq/q!〉=(−1)pδp+q,d−1, p=0, ..., d−1. In particular,
d(λ, ν, c)=d(λ′, ν′, c).

On the other hand, define the multiplicity space Mλ′,µ′ using the Lie algebra gld−n.
There is a natural isomorphism of the spaces Mλ,µ and Mλ′,µ′ that is consistent with
the forms ( · , ·)λ,µ and ( · , ·)λ′,µ′ and intertwines the operators Pλ,µ,c and (−1)mPλ′,µ′,c,
where m=

∑c
i=1 |λ(2i)|. Therefore,

q(λ, µ, c) = (−1)mq(λ′, µ′, c) and a(λ, ν, c) = (−1)ma(λ′, ν′, c).

8. Comparison with the available results and data

In this section we will compare the lower bound for the number of real solutions of the
osculating Schubert problem provided by Corollary 7.3 against other available data.

Recall that we consider the Grassmannian Gr(n, d), so the partitions λ(1), ..., λ(k)

and ν have at most n non-zero parts and satisfy (3.1).
We discuss bounds that are independent of z1, ..., zk and say that a bound is sharp if

it is attained for some values of z1, ..., zk. We assume that the set {z1, ..., zk} is invariant
under complex conjugation and λ(i)=λ(j) whenever zi=z̄j . The number of complex
conjugate pairs in {z1, ..., zk} is denoted by c.
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To save writing, we will indicate only non-zero parts in partitions and omit zeros. We
call the osculating Schubert problem for the case of λ(1)=...=λ(k)=(1) and arbitrary ν,
the vector Schubert problem.

The topological degree of a real Wronski map gives a lower bound for the number
of real solutions for the vector Schubert problem. This degree was computed in [2] and
extended in [15] to the case of λ(1)=...=λ(k−1)=(1) and arbitrary λ(k) and ν. The result
is given in terms of the sign-imbalance of the skew Young diagram µ/λ(k), where the
partition µ is the complement of ν in the n×(d−n) rectangle, see (3.3). For λ(k)=(1)
and empty ν, so that k=n(d−n), the sign-imbalance was computed in [18]. The results
is 0 for even d and (

1
2n(d−n)

)
!(

1
2 (d−1)

)
!

n−1∏
i=1

i!(d−n−i)!
(d−2n+2i)!

(
1
2 (d−2n−1)+i

)
!

(8.1)

for odd d. Unlike Corollary 7.3, this bound is independent of the number of complex
conjugate pairs among z1, ..., zk.

This bound is not sharp for the case n=3, d=6, k=9, as shown in [9]. It is proved
there that the problem has at least two real solutions. For this case, Corollary 7.3 gives
lower bounds a=42, 0, 2, 0, 6 for c=0, 1, 2, 3, 4 respectively. Thus our bound is not sharp
for c=1, 3, but, according to the computer data, see [8], it is sharp for c=0, 2, 4.

On the other hand, for the case of n=3, d=8, k=15, the topological bound of [2]
gives zero, the results of [9] are not applicable, and Corollary 7.3 yields

a=6006, 858, 198, 42, 6, 10, 10, 70 for c=0, 1, 2, 3, 4, 5, 6, 7, respectively.

In particular, it shows that the real Wronski map GrR(3, 8)!RP15, which sends 3-
dimensional subspaces of R8[x] to their Wronski determinants, is surjective; see [3] for
discussion of surjectivity of real Wronski maps.

In another example, n=3, d=9, k=18, the topological bound (8.1) is 12, and Corol-
lary 7.3 gives

a=87516, 15444, 3432, 792, 180, 60, 0, 0, 140, 420 for c=0, ..., 9, respectively.

Thus the topological bound is better for c=6, 7, while Corollary 7.3 wins in the other
cases.

For the case n=2, k=2(d−2), c=d−3, the bounds of (8.1) and Corollary 7.3 coin-
cide: both equal zero for even d and (2s)!/s!(s+1)! for odd d=2s+3. The bounds are
known to be sharp in this case and the examples attaining the bounds can be obtained
for the points z1, ..., zk located on a circle, see [1].
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A large amount of computer generated data is available at [8], and we have tested the
bound given by Corollary 7.3 against them. It coincides with the computer prediction in
amazingly many cases. For example, out of eleven computer generated tables presented
in [7], the bound given by Corollary 7.3 is sharp in all the cases except for the second
row of Table 5 corresponding to the vector Schubert problem with k=7, ν=(3, 3, 3), for
Gr(4, 8). In this case, Corollary 7.3 gives the bounds a=20, 0, 4, 0 for c=0, 1, 2, 3, and
the computer data are 20, 8, 4, 0, indicating a possible deficiency for c=1.

Also, for the case of n=2, there are sixty computer generated bounds with nineteen
of them being non-zero. All of them match the bounds given by Corollary 7.3.

Call the osculating Schubert problem symmetric if λ(i)=(λ(i))′ for all i=1, ..., k, and
ν=ν′. In this case, the numbers of real solutions for different c are often congruent
modulo four, see [9]. Since the number of real solutions for c=0 is known, it gives
under some additional assumptions a lower bound of two for the number of real solutions
whenever the number of complex solutions is not divisible by four. It seems that many,
though not all, discrepancies we found between the bound given by Corollary 7.3 and the
computer data happen in symmetric problems. For example, the remark at the end of
§7 shows that a(λ, ν, c)=0 for the symmetric Schubert problem if

∑c
i=1 |λ2i| is odd, but

in some of those cases the zero bound is not sharp according to the computer generated
data.

Finally, consider the vector Schubert problem with ν=(k−n, ..., k−n) having n−1
non-zero parts, for the Grassmannian Gr(n, k+1). The number of real solutions of this
problem for given z1, ..., zk has been found in [7] and is given by the coefficient r(k, n, s)
of the monomial xk−nyn−1 in the polynomial (x+y)k−1−2s(x2+y2)s, where k−1−2s is
the number of real roots of the polynomial

g(u) =
d

du

k∏
i=1

(u−zi).

It is easy to check that r(k, n, s−1)>r(k, n, s) if 16s< 1
2k. By Rolle’s theorem,

s6c if 2c<k, and s6c−1 if 2c=k. Thus, either r(k, n, c) or r(k, n, c−1) gives the lower
bound for the number of real solutions of the Schubert problem in question, depending
on whether 2c<k or 2c=k. These lower bounds are sharp because the equalities s=c for
2c<k and s=c−1 for 2c=k are attained, as the following examples show.

Example. Let s=c and 2c<k. For sufficiently small real ε, the polynomial

c∏
i=1

(u2+1−εi)
k−2c∏
j=1

(u−εj)

has exactly k−2c real roots and its derivative has exactly k−1−2c real roots.
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Example. Let s=c−1 and 2c=k. The polynomial (x2+1)c has no real roots and its
derivative has exactly one real root.

For n=3, k=14, and c=0, ..., 7, the sharp lower bounds respectively equal 78, 56, 38,
24, 14, 8, 6, 6, while the bounds given by Corollary 7.3 are 78, 54, 34, 18, 6, 2, 6, 6. Similarly,
for n=4, k=11, and c=0, ..., 5, the sharp lower bounds are 120, 64, 32, 16, 8, 0 versus the
bounds 120, 48, 8, 8, 8, 0 given by Corollary 7.3.
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