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1. Introduction

1.1. Complex geometry and ergodic theory

For an introduction to Teichmüller theory and global Torelli theorem, please see §1.2.
The basic notions of hyperkähler geometry are recalled in §2. Here we assume that a
reader knows the basic definitions.

The Teichmüller space is defined as the space of complex structures up to isotopies:
Teich:=Comp/Diff0. The mapping class group (also known as the group of diffeotopies) is
the group Γ:=Diff/Diff0 of connected components of the diffeomorphism group. Clearly,
Γ acts on the Teichmüller space in a natural way.

It turns out that in some important geometric situations (for the hyperkähler man-
ifolds with b2>3 and the complex tori of dimension >2) the mapping group action on
Teich is ergodic. This is surprising, at least to the author of the present paper, because in
this case the moduli space Teich/Γ of these geometric objects is extremely pathological.
In fact this quotient is so much non-Hausdorff that any two non-empty open subsets of
Teich/Γ intersect (see Remark 3.12).

Complex structures with dense Γ-orbits are called ergodic (see Definition 1.12). From
the description of the moduli in terms of homogeneous spaces and Moore’s theorem on
ergodic actions it follows that the set of non-ergodic complex structures on hyperkähler
manifolds with b2>3 and complex tori of dimension >2 has measure zero (Theorem 3.9).
Applying Ratner theory, we prove that the set of non-ergodic complex structures is in fact
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countable: a complex structure is non-ergodic if and only if its Picard rank is maximal
(Corollary 4.12).

The density of particular families of hyperkähler manifolds in Teich/Γ has been
used many times since the early 1970s. Piatetski–Shapiro and Shafarevich used density
of the family of Kummer surfaces in the moduli of K3 surfaces to prove the local Torelli
theorem [PS]. This theorem was generalized to a general hyperkähler manifold M with
b2>5 in [AnV]. Here it was proven that any divisorial family defined by an integer class
in H2(M,Z) is dense in Teich/Γ. In [KamV] this approach was used further to study
the Lagrangian fibrations on hyperkähler manifolds. Using the density argument and
existence of Lagrangian fibrations it was proven that all known hyperkähler manifolds
are non-hyperbolic.(1) In [MM], Markman and Mehrota show that the Hilbert space of
K3 surfaces is dense in the corresponding deformation space, and prove a similar result
about the generalized Kummer varieties.

Existence of ergodic complex structures leads to some interesting results about var-
ious complex-analytic quantities, such as the Kobayashi pseudometric. As a model situ-
ation, consider a function ϕ on the set of equivalence classes of complex manifolds which
is continuous on deformations. Since the ergodic orbit Γ·I is dense in the Teichmüller
space, and ϕ is constant on Γ·I, this implies that ϕ is constant.

In practice, such an application is hard to come by, because functions which contin-
uously depend on the complex structure are sowewhat rare. However, there are many
semicontinuous functions, and a semicontinuous function has to be constant on ergodic
complex structures. Indeed, let I, J∈Teich be two ergodic complex structures, that is,
complex structures with dense Γ-orbits, and ϕ: Teich!R be a semicontinuous (say, up-
per semicontinuous) Γ-invariant function. Since I is a limiting point of the dense set
Γ·J , semicontinuity implies ϕ(I)>ϕ(J). By the same reason, ϕ(J)>ϕ(I), and hence ϕ
is constant on the set of all ergodic complex structures.

This remark can be applied to several questions of complex hyperbolicity (see §1.4).

1.2. Teichmüller spaces and hyperkähler geometry

We recapitulate briefly the definition of the Teichmüller space of the hyperkähler mani-
folds, following [V3].

Definition 1.1. LetM be a compact complex manifold, and Diff0(M) be a connected
component of its diffeomorphism group (the group of isotopies). Denote by Comp the
space of complex structures on M , equipped with the structure of a Fréchet manifold,

(1) In the present paper we generalize this further to all hyperkähler manifolds with b2>3.
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and let Teich:=Comp/Diff0(M) be its quotient, equipped with the quotient topology.
We call it the Teichmüller space.

Remark 1.2. In many important cases, such as for Calabi–Yau manifolds [Cat], Teich
is a finite-dimensional complex space; usually it is non-Hausdorff.

Definition 1.3. Let Diff(M) be the group of orientable diffeomorphisms of a com-
plex manifold. The quotient Comp/Diff=Teich/Γ is called the moduli space of complex
structures on M . Typically, it is very non-Hausdorff. The set Comp/Diff corresponds
bijectively to the set of isomorphism classes of complex structures.

Definition 1.4. A hyperkähler structure on a manifold M is a Riemannian structure
g and a triple of complex structures I, J and K, satisfying quaternionic relations

I �J =−J �I =K,

such that g is Kähler for I, J and K.

Remark 1.5. One could define a hyperkähler structure in terms of the complex
geometry of its twistor space (see Definition 5.9). This was discovered in [HKLR]; see
[V2] for a few historical remarks and further development of this approach.

Remark 1.6. A hyperkähler manifold is holomorphically symplectic: ωJ+iωK is a
holomorphic symplectic form on (M, I). This is easily seen using a simple linear-algebraic
calculation [Bes].

Theorem 1.7. (Calabi–Yau; see [Y], [Bea] and [Bes]) A compact, Kähler, holomor-
phically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

Remark 1.8. The term “hyperkähler manifold” can mean many different things. In
the literature, it denotes either a manifold equipped with a hyperkähler structure, or
a complex manifold admitting a hyperkähler structure, or a Riemannian manifold with
holonomy in Sp(n). In the present paper, we shall by a hyperkähler manifold mean a
compact, complex manifold admitting a Kähler structure and a holomorphically sym-
plectic structure. Such a complex structure is called a complex structure of hyperkähler
type. We also assume tacitly that all hyperkähler manifolds are of maximal holonomy
(or irreducibly holomorphically symplectic), in the sense of Definition 1.9 below.

Definition 1.9. A hyperkähler manifold M is of maximal holonomy if π1(M)=0 and
H2,0(M)=C. In the literature, such manifolds are often called irreducibly holomorphically
symplectic, or irreducibly symplectic varieties.

This definition is motivated by the following theorem of Bogomolov.
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Theorem 1.10. ([Bog1], [Bea]) Any hyperkähler manifold admits a finite covering
which is a product of a torus and several maximal holonomy hyperkähler manifolds.

Remark 1.11. Further on, all hyperkähler manifolds are assumed to be of maximal
holonomy, Comp is the space of all complex structures of hyperkähler type on M , and
Teich its quotient by Diff0(M).

1.3. Ergodic complex structures

The main object of this paper is the following notion.

Definition 1.12. Let M be a complex manifold, Teich be its Teichmüller space, and
I∈Teich be a point. Consider the set ZI⊂Teich of all I ′∈Teich such that (M, I) is
biholomorphic to (M, I ′) (clearly, ZI=Γ·I, where Γ=Diff(M)/Diff0(M) is a mapping
group acting on Teich). A complex structure is called ergodic if the corresponding orbit
ZI is dense in Teich.

Remark 1.13. The origins of this term are explained in §3.1. It is well known that
almost all orbits of an ergodic action are dense (Claim 3.3). However, for a hyperkähler
manifold with b2>3 and a complex torus of dimension >2, the mapping group action on
Teich is ergodic (see Theorem 3.9 and Remark 3.10). Notice that the definition of ergodic
action does not require one to fix a particular measure on the space (Remark 3.2).

In many situations, the mapping class group action on the Teichmüller space is
ergodic. This implies that the non-ergodic complex structures form a set of measure
zero.

Theorem 1.14. Let M be a maximal holonomy hyperkähler manifold or a compact
complex torus of dimension >2. Then the set Teichne of non-ergodic points has measure
zero in the corresponding Teichmüller space Teich.

Proof. See Theorem 3.9 below.

Remark 1.15. The notion of a measure-zero subset of a manifold is independent of
the choice of a smooth measure. Therefore, to state Theorem 1.14, it is not necessary to
fix a particular measure on Teich.

This result follows from the ergodicity of the mapping class group action on Teich,
which follows from the global Torelli theorem and the ergodicity of an arithmetic action on
homogeneous spaces due to Moore [Moo]. It is not very explicit, and for a considerable
period of time, no explicit examples of ergodic complex structures were known. This
problem was solved by an application of a powerful theorem of Ratner (Theorem 4.2).
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Theorem 1.16. Let M be a maximal holonomy hyperkähler manifold or a compact
complex torus of dimension >2, and I be a complex structure on M . Then I is non-
ergodic if and only if the Néron–Severi lattice of (M, I) has maximal possible rank. This
means that

rkNS(M, I) =
{
b2(M)−2, if M is hyperkähler,
(dimC M)2, if M is a torus.

Proof. See Corollary 4.12 below.

1.4. Kobayashi pseudometric on hyperkähler manifolds

The ergodic properties of the mapping group action have many applications to Kobayashi
hyperbolicity. For the definition of Kobayashi pseudometric, basic properties and the
further reference, please see §5. For the purposes of the present paper, Kobayashi pseu-
dometric is important because it is a complex-analytic invariant which is upper semi-
continuous as a function of a complex structure [Ko], [Vo]. This suggests the following
conjecture.

Conjecture 1.17. Let I, J∈Teich be ergodic complex structures on M , and dI and
dJ be the corresponding Kobayashi pseudometrics. Then (M,dI) is isometric to (M,dJ).

Remark 1.18. Since the Γ-orbit of I is dense in Teich, any K∈Teich can be obtained
as a limit of ν∗j I (see Remark 3.5), and one has dK>dI by semicontinuity of K. In
principle, this should give dJ>dI>dJ , because both I and J are ergodic. To make
this heuristic argument rigorous, one should make the dependency of dI and dJ on
diffeomorpisms νj explicit.

A Kobayashi hyperbolic manifold is a hyperbolic manifold with non-degenerate Ko-
bayashi pseudometric. The set of Kobayashi hyperbolic complex structures is open in
holomorphic families. Moreover, given a holomorphic family of Kobayashi hyperbolic
manifolds, the Kobayashi pseudometric is continuous in this family [Vo]. In the presence
of an ergodic complex structure, the argument used in the sketch of Conjecture 1.17 would
imply that all hyperbolic complex structures on M are isometric, and that the mapping
class group acts by isometries. However, the isometry group of a compact metric space is
always compact, and the image of the mapping class group in cohomology is usually non-
compact. This can be used to prove non-hyperbolicity for manifolds admitting ergodic
complex structures.

However, for hyperkähler manifolds, there exists a very simple and direct argument
proving non-hyperbolicity.
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The non-hyperbolicity of hyperkähler (and, more generally, Calabi–Yau) manifolds
was a subject of long research, but until recently the only general result was a theorem
by Campana proven in [Cam3].

A twistor space of a hyperkähler manifold (see Definition 5.9) is a total space of
a fibration obtained from a hyperkähler rotation of a complex structure. Campana
observed that the space of rational curves on Tw(M) transversal to the fibers is never
compact (in fact it is holomorphically convex, as shown in [KalV]; see also [V4] and
[DLM]). Then the limit of a sequence of rational curves in Tw(M) would contain an
entire curve in one of the twistor fibers. This implies the Campana non-hyperbolicity
theorem (Theorem 5.10): at least one of the fibers of the twistor family is not Kobayashi
hyperbolic.

Another approach to non-hyperbolicity was used in [KamV]. In this paper it was
shown that for all known examples of hyperkähler manifolds, the manifolds admitting a
holomorphic Lagrangian fibration are dense in the moduli space. Such manifolds contain
entire curves, and hence they are non-hyperbolic. However, the set of non-hyperbolic
complex structures is closed in the relevant deformation space by Brody’s lemma (The-
orem 5.4). This is how non-hyperbolicity was proven in [KamV].

In the present paper we go by a different route, using ergodic methods and the
non-hyperbolicity result of Campana. The explicit description of the set of non-ergodic
complex structures (Corollary 4.12) allows one to find a twistor family with all fibers
ergodic (Claim 5.11). By Campana’s theorem, one of these fibers is non-hyperbolic.
This gives a non-hyperbolic ergodic complex structure I∈Teich. Then all points of the
set Γ·I⊂Teich are also non-hyperbolic. However, this set is dense, and hence its closure
Γ·I is the whole of Teich. Finally, we observe that the set of non-hyperbolic complex
structures is closed in Teich, and therefore it contains Γ·I=Teich.

2. Hyperkähler manifolds

In this section, we state the global Torelli theorem for hyperkähler manifolds, following
[V3].

2.1. Bogomolov–Beauville–Fujiki form

The Bogomolov–Beauville–Fujiki form was defined in [Bog2] and [Bea], but it is easiest
to describe it using the Fujiki formula, proven in [F].



ergodic complex structures on hyperkähler manifolds 167

Theorem 2.1. (Fujiki) Let M be a maximal holonomy hyperkähler manifold, let
η∈H2(M) and n= 1

2 dimM . Then
∫
M
η2n=cq(η, η)n, where q is a primitive integral

quadratic form on H2(M,Z), and c>0 is a rational number.

Remark 2.2. Fujiki formula (Theorem 2.1) determines the form q uniquely up to a
sign. For odd n, the sign is unambiguously determined as well. For even n, one needs
the following explicit formula, which is due to Bogomolov and Beauville:

λq(η, η) =
∫
X

η∧η∧Ωn−1∧	Ωn−1−n−1
n

(∫
X

η∧Ωn−1∧	Ωn
)(∫

X

η∧Ωn∧	Ωn−1

)
, (2.1)

where Ω is the holomorphic symplectic form, and λ>0.

Definition 2.3. Let q∈Sym2(H2(M,Z)∗) be the integral form defined by Theo-
rem 2.1 and formula (2.1). This form is called the Bogomolov–Beauville–Fujiki form.

2.2. Mapping class group

Definition 2.4. Let Diff(M) be the group of oriented diffeomorphisms of M , and
Diff0(M) be the group of isotopies, that is, the connected component of Diff(M). We
call Γ:=Diff(M)/Diff0(M) the mapping class group of M .

For Kähler manifolds of dimension >3, the mapping class group can be computed
using the following theorem by Sullivan.

Theorem 2.5. (Sullivan; [Su]) Let M be a compact, simply connected Kähler mani-
fold, with dimC M>3. Denote by Γ0 the group of automorphisms of the algebra H∗(M,Z)
preserving the Pontryagin classes pj(M). Then the natural map Diff(M)/Diff0!Γ0 has
finite kernel, and its image has finite index in Γ0.

Definition 2.6. Two groups G and G′ are commensurable if there exist subgroups
G1⊂G and G′

1⊂G1 of finite index, and finite normal subgroups G2⊂G1 and G′
2⊂G′

1

such that G1/G2 is isomorphic to G′
1/G

′
2. An arithmetic group is a group which is

commensurable to an integer lattice in a rational Lie group.

Remark 2.7. Sullivan’s theorem claims that the mapping class group of any Kähler
manifold is arithmetic.(2)

Using the results of [V1], the group of automorphisms of the algebra H∗(M,Z) can
be determined explicitly, up to commensurability. This gives the following theorem,
proven in [V3].

(2) In fact, Sullivan proved the arithmeticity of the mapping class group for any compact smooth
manifold of dimension >5.
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Theorem 2.8. Let M be a maximal holonomy hyperkähler manifold, and Γ0 be the
group of automorphisms of H∗(M,Z) preserving the Pontryagin classes pj(M). Consider

the restriction map Γ0
ψ−!GL(H2(M,Z)). Then ψ has finite kernel, its image lies in the

orthogonal group O(H2(M,Z), q), and ψ(Γ0) has finite index in that group.

2.3. Global Torelli theorem

Remark 2.9. LetM be a hyperkähler manifold (as usual, we assumeM to be of max-
imal holonomy). Recall that in this situation Teich was defined as the set of all complex
structures of hyperkähler type on M (Remark 1.11). For any J in the same connected
component of Teich, (M,J) is also a maximal holonomy hyperkähler manifold, because
the Hodge numbers are constant in families. Therefore, H2,0(M,J) is 1-dimensional.

Definition 2.10. Let
Per: Teich−!PH2(M,C)

map J to the line H2,0(M,J)∈PH2(M,C). The map Per is called the period map.

Remark 2.11. The period map Per maps Teich into an open subset of a quadric,
defined by

Per := {l∈PH2(M,C) : q(l, l) = 0 and q(l, l̄ )> 0}.

It is called the period space of M . Indeed, any holomorphic symplectic form l satisfies
the relations q(l, l)=0 and q(l, l̄ )>0, as follows from formula (2.1).

Proposition 2.12. The period space Per is identified with the quotient

SO(b2−3, 3)
SO(2)×SO(b2−3, 1)

,

which is a Grassmannian Gr++(H2(M,R)) of positive oriented 2-planes in H2(M,R).

Proof. This statement is well known, but we shall sketch its proof to illustrate the
constructions given below.

Step 1. Given l∈PH2(M,C), the space generated by Im l and Re l is 2-dimensional,
because q(l, l)=0, and q(l, l̄ )>0 implies that l∩H2(M,R)=0.

Step 2. This 2-dimensional plane is positive, because

q(Re l,Re l) = q(l+ l̄, l+ l̄ ) = 2q(l, l̄ )> 0.

Step 3. Conversely, for any 2-dimensional positive plane V ∈H2(M,R), the quadric

{l∈V ⊗RC : q(l, l) = 0}

consists of two lines; a choice of a line is determined by orientation.
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Definition 2.13. Let M be a topological space. We say that two points x, y∈M are
non-separable (denoted x∼y) if for any open sets V 3x and U3y, one has U∩V 6=∅.

Theorem 2.14. (Huybrechts; [H1], [H2]) Two points I, I ′∈Teich are non-separable
if there exists a bimeromorphism (M, I)!(M, I ′).

Definition 2.15. The space Teichb :=Teich/∼ is called the birational Teichmüller
space of M .

Theorem 2.16. (Global Torelli theorem; [V3]) The period map Per: Teichb!Per is
an isomorphism for each connected component of Teichb.

Definition 2.17. Let M be a hyperkähler manifold, let Teichb be its birational Te-
ichmüller space, and let Γ be the mapping class group. The quotient Teichb /Γ is called
the birational moduli space of M . Its points are in bijective correspondence with the
complex structures of hyperkähler type on M up to a bimeromorphic equivalence.

Remark 2.18. The word “space” in this context is misleading. In fact, the quotient
topology on Teichb /Γ is extremely non-Hausdorff, e.g. every two non-empty open sets
intersect (Remark 3.12).

The global Torelli theorem can be stated as a result about the birational moduli
space.

Theorem 2.19. ([V3, Theorem 7.2 and Remark 7.4]) Let (M, I) be a hyperkähler
manifold, and W be a connected component of its birational moduli space. Then W

is isomorphic to Per/ΓI , where Per=SO(b2−3, 3)/SO(2)×SO(b2−3, 1) and ΓI is an
arithmetic group in O(H2(M,R), q), called the monodromy group of (M, I).

Remark 2.20. The monodromy group of (M, I) can be also described as a subgroup
of the group O(H2(M,Z), q) generated by the monodromy transform maps for the Gauss–
Manin local systems obtained from all deformations of (M, I) over a complex base ([V3,
Definition 7.1]). This is how this group was originally defined by Markman [M1], [M2].

Remark 2.21. Caution: usually the global Torelli theorem is understood as a theo-
rem about Hodge structures. For K3 surfaces, the Hodge structure on H2(M,Z) deter-
mines the complex structure. For dimC M>2, this is false.

Remark 2.22. We shall freely identify Per and Teichb.

Remark 2.23. By [M2, Proposition 5.14], the fibers of the natural projection

Per: Teich−!Teich
b

can be identified with a set of “Kähler chambers”, which are open subsets of the space
H1,1(M, I). Therefore, each fiber is countable or finite.
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Remark 2.24. By [V3, Remark 4.28], outside of a countable union of complex divisors
on Teichb, the map Per: Teich!Teichb is bijective.

Remark 2.25. We will be interested in ergodic (that is, measure-theoretic) properties
of Teich and Teichb. By Remarks 2.24 and 2.23, the map Per is bijective outside of a
measure-zero set. Therefore, any ergodicity result proven for Teich remains true for
Teichb, and vice versa.

3. Ergodic complex structures on hyperkähler manifolds and tori

3.1. Ergodicity: basic definitions and results

Definition 3.1. Let (M,µ) be a space with measure, and G be a group acting on M
preserving the sigma-algebra of measurable subsets, and mapping measure-zero sets to
measure-zero sets. This action is ergodic if all G-invariant measurable subsets M ′⊂M
satisfy µ(M ′)=0 or µ(M \M ′)=0.

Remark 3.2. When one defines an ergodic action, it is usually assumed that the
action of G preserves the measure. However, this is not necessary. In fact, any manifold
is equipped with a sigma-algebra of Lebesgue measurable sets and, moreover, the notion
of a measure-zero subset set is independent of the choice of a Lebesgue measure. This
means that one can define “ergodic action of a group” on a manifold not specifying the
measure.

Claim 3.3. Let M be a manifold, µ be a Lebesgue measure, and G be a group acting
on (M,µ) ergodically. Then the set of points with non-dense orbits has measure zero.

Proof. Consider a non-empty open subset U⊂M . Then µ(U)>0, and so M ′ :=G·U
satisfies µ(M \M ′)=0. For any orbit G·x not intersecting U , x∈M \M ′. Therefore the
set of such points has measure zero.

Definition 3.4. Let M be a complex manifold, Teich be its Techmüller space, and
Γ be the mapping group acting on Teich. An ergodic complex structure is a complex
structure with dense Γ-orbit.

Remark 3.5. Let (M, I) be a manifold with ergodic complex structure, and I ′ be
another complex structure. Then there exists a sequence of diffeomorphisms νj such that
ν∗j (I) converges to I ′ in the usual (Fréchet) topology on the space of complex structure
tensors. This property is clearly equivalent to ergodicity of I.

We shall need the following result about ergodicity of an arithmetic group action
on a homogeneous space. This result will be applied to a mapping class group (which
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is arithmetic by Theorem 2.8) and a period space, which is homogeneous (by Proposi-
tion 2.12).

Definition 3.6. Let G be a Lie group, and Γ⊂G be a discrete subgroup. Consider
the pushforward of the Haar measure to G/Γ. We say that Γ has finite covolume if the
Haar measure of G/Γ is finite. In this case Γ is called a lattice subgroup.

Remark 3.7. Borel and Harish-Chandra proved that an arithmetic subgroup of a
reductive group G over Q is a lattice whenever G has no non-trivial characters over Q
(see e.g. [VGS]). In particular, all arithmetic subgroups of a semi-simple group defined
over Q are lattices.

Theorem 3.8. (Moore, [Moo, Theorem 7]) Let Γ be a lattice subgroup (such as an
arithmetic subgroup) in a non-compact simple Lie group G with finite center, and H⊂G
be a non-compact Lie subgroup. Then the left action of Γ on G/H is ergodic.

3.2. Ergodic action on the Teichmüller space for hyperkähler manifolds and
tori

Theorem 3.9. Let Per be a component of a birational Teichmüller space of a hy-
perkähler manifold M , with b2(M)>3, and ΓI be its monodromy group acting on Per.
Consider the set Z⊂Per of all points with non-dense orbits. Then the action of ΓI on
Per is ergodic, and Z has measure zero in Per.

Proof. Step 1. LetG=SO(b2−3, 3), H=SO(2)×SO(b2−3, 1), and Γ⊂G be an arith-
metic subgroup. Then the Γ-action on G/H is ergodic, by Moore’s theorem.

Step 2. The space Per is identified withG/H (Proposition 2.12), and the monodromy
group is an arithmetic subgroup of G by Theorems 2.8 and 2.19. Then ΓI acts on Per

ergodically, and the set of points with non-dense orbits has measure zero (Claim 3.3).

Remark 3.10. As explained in Remark 2.25, the space Teichb=Per is identified with
Teich up to measure-zero subsets. Therefore, the set of non-ergodic complex structures
on a hyperkähler manifold has measure zero in Teich.

A similar result is true for a compact torus. Here the Teichmüller space is the space
of complex structure operators on R2n, identified with the quotient SL(2n,R)/SL(n,C),
and the mapping class group is SL(2n,Z) ([Cat]). For n>2, the group SL(n,C) is non-
compact. Thus, Theorem 3.8 can be applied, and we obtain the following statement.
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Theorem 3.11. Let W :=SL(2n,R)/SL(n,C), n>2, be the Teichmüller space of
an n-dimensional compact torus, equipped with an action of the mapping class group
Γ=SL(2n,Z). Then the action of Γ on W is ergodic. In particular, the set of non-
ergodic complex tori has measure zero in the corresponding Teichmüller space.

Remark 3.12. Existence of erdogic complex structures means that the quotient
Teich/Γ (considered with the quotient topology) is extremely non-Hausdorff. Indeed,
any two non-empty open sets in Teich contain points in a dense orbit Γ·I, and hence
their images in Teich/Γ intersect. We obtain that any two open subsets in the moduli
space Teich/Γ intersect.

4. Ratner orbit closure theorem and ergodic complex structure

4.1. Lie groups generated by unipotent elements

Here we state the basic facts of Ratner theory. We follow [KSS] and [Mor].

Definition 4.1. Let G be a Lie group, and g∈G be any element. We say that g is
unipotent if g=eh for a nilpotent element h in its Lie algebra. A group G is generated by
unipotent elements if G is multiplicatively generated by unipotent elements.

Theorem 4.2. (Ratner orbit closure theorem) Let H⊂G be a Lie subroup generated
by unipotent elements, and Γ⊂G be a lattice. Then the closure of any H-orbit in G/Γ
is the orbit of a closed, connected subgroup S⊂G, such that S∩Γ⊂S is a lattice in S.

Proof. See [Mor, §1.1.15 (2)].

Remark 4.3. Theorem 4.2 is true if H=H0×H1, where H0 is generated by unipotent
elements, and H1 is compact. Indeed, for each x∈G/Γ, one has H ·x=H1 ·H0 ·x. The
inclusion H ·x⊃H1 ·H0 ·x is obvious. The converse inclusion would follow if we prove
that H1 ·H0 ·x is closed. However, the orbit of a closed set under a compact Lie group is
always closed.

Example 4.4. Let V be a real vector space with a non-degenerate bilinear symmetric
form of signature (3, k), k>0. Also let G:=SO+(V ) be a connected component of the
isometry group, H⊂G be a subgroup fixing a given positive 2-dimensional plane,

H ∼=SO+(1, k)×SO(2),

and Γ⊂G be an arithmetic lattice. Consider the quotient Per:=H\G. Then
(i) a point J∈Per has closed Γ-orbit if and only if the orbit H ·J in the quotient

G/Γ is closed;
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(ii) the closure of H ·J in G/Γ is the orbit of a closed connected Lie group S⊃H:

H ·J =S ·J ⊂Per .

For arithmetic groups, the Ratner orbit closure theorem can be stated in a more
precise way, as follows.

Theorem 4.5. Let G be a real algebraic group defined over Q and with no non-
trivial characters. Also let W⊂G be a subgroup generated by unipotent elements, and
Γ⊂G be an arithmetic lattice. For a given g∈G, let H be the smallest real algebraic
Q-subgroup of G containing g−1Wg. Then the closure of Wg in G/Γ is Hg.

Proof. See [KSS, Proposition 3.3.7] or [Sh, Proposition 3.2].

4.2. Ratner theorem for Teichmüller spaces

In §4.4, we prove the following two elementary theorems.

Theorem 4.6. Let G=SO+(3, k), k>1, and H∼=SO+(1, k)×SO(2)⊂G. Then any
closed connected Lie subgroup S⊂G containing H coincides with G or with H.

Proof. See Theorem 4.15.

Theorem 4.7. Let G=SL(2n,R), n>2, and H∼=SL(n,C)⊂G. Then any closed
connected Lie subgroup S⊂G containing H coincides with G or with H.

Proof. See Theorem 4.17.

Now we can apply these theorems to characterize the ergodic and non-ergodic com-
plex structures.

Theorem 4.8. Let M be a hyperkähler manifold, Per be its period space, and

I ∈Per =Gr++(H2(M,R))

be a point associated with a positive 2-plane V ⊂H2(M,R). Then the Γ-orbit of I is
dense in Per unless the plane V is rational, that is, it satisfies dimQ(V ∩H2(M,Q))=2.

Proof. Let Γ⊂G be the monodromy group of M , that is, the image of the mapping
class group in G, where G=SO+(H2(M,R), q). Γ is an arithmetic lattice in G, as shown
in Theorem 2.8. Since I is non-ergodic, the closure Γ·I of Γ·I is strictly smaller than Per.
By Ratner’s theorem, there exists a subgroup S G containing H such that Γ·I=S ·I,
and S∩Γ is a lattice in S. Theorem 4.6 implies that S=H. Since S∩Γ is a lattice, this
set is Zariski dense in S. By Theorem 4.5, S=H is a rational subgroup of G. Conversely,
if H is rational, its image is closed in G/Γ as follows from Theorem 4.5.
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Theorem 4.9. Let M be a compact complex torus of dimension n>2, Teich be its
Teichmüller space, Teich=SL(2n,R)/SL(n,C), and I∈Teich be a point associated with
a complex structure, I∈End(R2n). Then we have that the point I is non-ergodic if and
only if H1,1(M,R)⊂H2(M,R) is a rational subspace.

Proof. Let Γ=SL(2n,Z) be the mapping class group of M . A point I is non-ergodic
if its Γ-orbit in Teich=SL(2n,R)/SL(n,C) is not dense. By the Ratner orbit closure
theorem, Γ·I=S ·I, where S⊃SL(n,C) is a connected Lie subgroup of SL(2n,R). Since an
intermediate subgroup SL(2n,R)⊃S⊃SL(n,C) is equal to either SL(2n,R) or SL(n,C),
the point I is non-ergodic if and only if S=SL(n,C) and the orbit Γ·I is closed. By
Theorem 4.5, this happens if and only if the stabilizer St(I)∼=SL(n,C) of I is a rational
subgroup of SL(2n,R). The centralizer Z(St(I)) is a group RI∼=U(1)=cos t+sin t·I, and
Z(Z(St(I))=St(I). Hence rationality of St(I) is equivalent to rationality of RI .

However, the space H2(M)RI of RI -invariants is H1,1(M), and, conversely, RI is
a subgroup of SL(2n,R)=SL(H1(M,R)) acting trivially on H1,1(M). Therefore, RI is
rational if and only if H1,1(M)⊂H2(M,R) is rational.

We have just proven density of certain orbits of Γ in the period space, but for
geometric applications, one would need density of orbits in the Teichmüller space. This
is already true for a torus, because for the torus the period space coincides with the
Teichmüller space. For a hyperkähler manifold with rational curves, a similar result can
be obtained directly.

Corollary 4.10. Let (M, I) be a hyperkähler manifold with Picard group of non-
maximal rank. Assume that (M, I) contains no rational curves. Then I is an ergodic
complex structure.

Proof. Let Teich0⊂Teich be the set of all Hausdorff points in Teich. By Theo-
rem 2.14, Teich0 is the set of all complex structures on M admitting no non-trivial
birational models. However, any birational map between complex manifolds with trivial
canonical bundle must blow down some subvariety, and hence such maps do not exist
when one has no rational curves. Therefore, I∈Teich0. Now, the period map restricted
to Teich0 is a homeomorphism, and Γ·Per(I) is dense in Per by Theorem 4.8. Therefore,
Γ·I is dense in an appropriate connected component of Teich0, but Teich0 is dense in
Teich by Remark 2.24.

Corollary 4.10 is already sufficient for many applications dealing with hyperbolicity;
indeed, to prove that a manifold is non-hyperbolic, it suffices to show that it contains
rational curves. However, for many applications a full strength ergodicity result is re-
quired.
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Theorem 4.11. Let M be a hyperkähler manifold, and I be a complex structure of
non-maximal Picard rank. Then I is ergodic.

Proof. See §4.3.

Corollary 4.12. Let M be a hyperkähler manifold or a complex torus of complex
dimension >2. Then M is non-ergodic if and only if its Néron–Severi lattice has max-
imal possible rank. In particular, there are only countably many non-ergodic complex
structures.

Proof. By definition, the Néron–Severi lattice is a lattice of integer (1,1)-classes in
H2(M). It is easy to see that it has maximal possible rank if and only if Per(I) is
rational (for hyperkähler manifolds). For complex tori, the argument is given in the
proof of Theorem 4.9. The countability of the set of such complex structures is also well
known and easy to check.

4.3. Density of non-Hausdorff orbits

Fix a connected component of a Teichmüller space of hyperkähler manifold. Abusing the
notation, we denote it by Teich, and denote the subgroup of the mapping class group
fixing Teich by Γ.

Let [I]∈Per be a point in the period space ofM . The Hodge decomposition ofH2(M)
is determined by the periods, and we denote the corresponding (1,1)-space by H1,1([I]).
The positive cone Pos([I]) is the set of all real (1,1)-classes v∈H1,1([I]) satisfying q(v, v)>
0. A subset K⊂Pos([I]) is called a Kähler chamber if it is a Kähler cone for some
I∈Teich satisfying Per(I)=[I]. We have already used the following result, which is due
to Markman.

Proposition 4.13. Different Kähler chambers of [I] do not intersect, and Pos([I])
is the closure of their union. Moreover, there is a bijective correspondence between points
of Per−1([I]) in one Teichmüller component and the set of Kähler chambers of [I].

Proof. See [M2, Proposition 5.14].

Consider the set Hyp of pairs I∈Teich and ω∈Kah(M, I), where Kah(M, I) denotes
the Kähler cone. One should think of Hyp as of the Teichmüller space of all hyperkähler
metrics on a holomorphically symplectic manifold. Let F be the set of all pairs [I]∈Per

and ω∈Pos([I]). Consider the period map Perh: Hyp!F mapping (I, ω) to (Per(I), ω).
By Proposition 4.13, Perh is injective with dense image.

To prove that Γ·I is dense in Teich is the same as to show that

Γ·(I,Kah(M, I))
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is dense in Hyp⊂F (Proposition 4.13). We consider F as a homogeneous space of an
appropriate Lie group. To show that Γ·(I,Kah(M, I)) is dense in F , we show that
Kah(M, I) contains an orbit of its Lie subgroup and apply Ratner’s theorem to this
homogeneous space.

Our arguments are based on the following lemma.

Lemma 4.14. Let (M, I) be a hyperkähler manifold, ω∈Kah(M, I) be a Kähler class,
H1,1
I (M,Q) be the space of rational (1, 1)-classes, and l∈H1,1

I (M,Q)⊥ be a (1, 1)-class
orthogonal to H1,1

I (M,Q). Then V ∩Pos(M, I)⊂Kah(M, I), where V =〈ω, l〉 is a 2-
dimensional space generated by l and ω.

Proof. As follows from [H3] and [Bou] (see [AmV, Theorem 1.19] for a precise state-
ment), Kah(M, I) is a subset of the positive cone given by a set of linear inequalities

Kah(M, I) = {ω ∈Pos(M, I) : q(ω, lj)> 0},

where lj is a countable set of rational (1, 1)-classes. This means that for any ω∈Kah(M, I)
and any l∈H1,1

I (M,Q)⊥, the sum l+ω also belongs to Kah(M, I), as long as it has a
positive square.

Proof of Theorem 4.11. As we have already observed, to prove Theorem 4.11 it
would suffice to show that Γ·(I,Kah(M, I)) is dense in F . Consider the set F1 of all
([I], η)∈F such that q(η, η)=1. Clearly,

F1 =
SO(3, b2−3)

SO(2)×SO(b2−3)
.

Indeed, F1 is identified with the set of pairs

{(W,ω) :W ∈Gr++(H2(M,R)), ω ∈W⊥ and q(ω, ω)> 0}.

By Lemma 4.14, for any ω∈Kah(M, I) and any l∈H1,1
I (M,Q)⊥, the whole set

Pos(M, I)∩〈ω, l〉 belongs to Kah(M, I). Choose l in such a way that q(l, l)<0; since
Pic(M) is not of maximal rank, this is always possible. Consider the group H0 of ori-
ented isometries of V :=〈ω, l〉; we extend its action to H2(M,R) by requiring H0 to
act trivially on V ⊥. By Lemma 4.14, H0 preserves Kah(M, I). To prove density of
Γ·(I,Kah(M, I)) in F1, it would suffice to show that a Γ-orbit of the set (I,H0 ·ω) is
dense in F1. This is the same as to show that a Γ-orbit of an appropriate point in

SO(3, b2−3)
H0 ·(SO(2)×SO(b2−3))

=
SO(3, b2−3)

SO(2)×SO(1, b2−3)

is dense.
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We have arrived at the situation described in Theorems 4.6 and 4.8. Here it was
shown that any orbit of Γ is either closed or dense. For this orbit to be closed, the
stabilizer of a pair

[I]∈Gr++(H2(M,R)) and V = 〈ω, l〉

has to be rational; since [I] is irrational, this is impossible. This proves Theorem 4.11.

4.4. Maximal subgroups of Lie groups

Theorem 4.15. Let (V, q) be a real vector space equipped with a non-degenerate
quadratic form. Let G=SO+(V ) be the connected component of the group of isometries
of V and W⊂V be a subspace with q|W non-degenerate. Consider the subgroup H⊂G
consisting of all isometries preserving W⊂V . Then any closed connected Lie subgroup
S G containing H coincides with H.

Proof. Let h, g and s be the Lie algebras of H, G and S, respectively. Then h=
so(W )⊕so(W⊥). The quotient g/h is identified with Hom(W,W⊥), and hence it is an
irreducible representation of h. Since s/h is a proper h-subrepresentation of g/h, it is
equal to 0.

Remark 4.16. The proof of Theorem 4.15 is intuitively very clear: any isometry fix-
ingW is contained inH; if we add an isometry which movesW , the resulting group should
contain all isometries. A similar argument works for the pair SL(n,C)⊂SL(2n,R), if we
think of SL(n,C) as of a group fixing a subspace of (1, 0)-vectors in the complexification
of Cn.

Theorem 4.17. Let W be a complex vector space, G=SL(W,R) be the group of its
real volume-preserving automorphisms, and H∼=SL(W,C)⊂G be the group of complex
volume-preserving automorphisms of W . Then any closed connected Lie subgroup S G
containing H coincides with H.

Proof. Let hC, gC and sC be the complexified Lie algebras of H, G and S, re-
spectively. Consider the space WC :=W⊗RC, and let WC :=W 1,0⊕W 0,1 be its Hodge
decomposition. Then

hC = sl(W 1,0)⊕sl(W 0,1)

and
gC/hC =Hom(W 1,0,W 0,1)⊕Hom(W 0,1,W 1,0).

Both the components Hom(W 1,0,W 0,1) and Hom(W 0,1,W 1,0) are irreducible represen-
tations of hC. Since sC/hC is a proper hC-subrepresentation of gC/hC, it is equal to
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Hom(W 1,0,W 0,1) or Hom(W 0,1,W 1,0) or 0. However, s is real, and hence sC/hC is fixed
by the anticomplex involution exchanging W 1,0 and W 0,1. Therefore, the components
Hom(W 1,0,W 0,1) and Hom(W 0,1,W 1,0) can only be contained in sC/hC together. Since
sC⊂gC is a proper subalgebra, sC/hC must be empty.

5. Twistor spaces and Kobayashi pseudometric

5.1. Kobayashi pseudometric and Brody lemma

This subsection is a brief introduction to the subject. For more details, please see [L],
[Vo] and [D].

Definition 5.1. Let M be a complex manifold, x, y∈M be points, and dP be the
Poincaré metric on the unit disk ∆⊂C. Define

d̃(x, y) := sup
f :∆!M

dP (f−1(x), f−1(y)),

where the supremum is taken over all holomorphic maps f :∆!M from the disk ∆ to
M such that f(∆)⊃{x, y}. The maximal pseudometric d satisfying d(x, y)6d̃(x, y) is
called the Kobayashi pseudometric. The manifold M is called Kobayashi hyperbolic if the
Kobayashi pseudometric is non-degenerate ([Ko]).

For a compact manifold, hyperbolocity can be interpreted as non-existence of entire
curves.

Definition 5.2. An entire curve in a complex manifold M is the image of a non-
constant holomorphic map C!M .

The following two theorems are fundamental in hyperbolic geometry; for details
and the proofs, see again [L], [Vo] and [D]. They follow from a remarkable result on
convergence of disks and entire curves on complex manifolds, called Brody’s lemma [Br].

Theorem 5.3. Let M be a compact complex manifold. Then M contains an entire
curve if and only if it is not Kobayashi hyperbolic.

Theorem 5.4. Let Ij be a sequence of non-hyperbolic complex structures on a com-
pact manifold M , and I be its limit. Then (M, I) is also non-hyperbolic.

The main result of this section is the following theorem.

Theorem 5.5. Any compact hyperkähler manifold M satisfying b2(M)>3 is non-
hyperbolic.

Proof. See §5.2.
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Remark 5.6. For all known examples of hyperkähler manifolds, this theorem is al-
ready known, due to Kamenova and Verbitsky [KamV].

Remark 5.7. To prove Theorem 5.5, it would suffice to show that there exists an
ergodic complex structure I which is non-hyperbolic. Indeed, in this case the orbit of
I is dense. This implies that any complex structure can be obtained as a limit of non-
hyperbolic ones (see Remark 3.5).

5.2. Twistor spaces and Campana’s theorem

Definition 5.8. Let I, J,K, g be a hyperkähler structure on a manifold M . Induced
complex structures on M are complex structures of the form

S2 ∼= {L := aI+bJ+cK : a2+b2+c2 =1}.

Definition 5.9. A twistor space Tw(M) of a hyperkähler manifold is a complex
manifold obtained by gluing induced complex structures into a holomorphic family over
CP 1. More formally:

Let Tw(M):=M×S2. Consider the complex structure Im:TmM!TmM on M in-
duced by J∈S2⊂H. Let IJ denote the complex structure on S2=CP 1. The operator
ITw=Im⊕IJ :Tx Tw(M)!Tx Tw(M) satisfies I2

Tw=− Id. It defines an almost complex
structure on Tw(M). This almost complex structure is known to be integrable ([O] and
[Sa]; see [Kal] for a modern proof ).

Rational curves on twistor spaces were studied by Campana in a series of papers
([Cam1] and [Cam2]); among the results of this study, Campana proved the following
theorem.

Theorem 5.10. ([Cam3]) Let M be a hyperkähler manifold, equipped with a hy-
perkähler structure, and Tw(M) π−!CP 1 be its twistor space. Then there exists an entire
curve in some fiber of π.

Claim 5.11. Let M be a hyperkähler manifold, b2(M)>4. Then there exists a
twistor family on M which has only ergodic fibers.

Proof. By Corollary 4.12, there are only countably many complex structures which
are not ergodic. The space T of all twistor families is identified with the set of hyperkähler
metrics up to a constant multiplier. Therefore, it has real dimension 1

6b2(b2−1)(b2−2),
as follows from Bogomolov’s local Torelli theorem and the Calabi–Yau theorem (The-
orem 1.7). The space of twistor families passing through a given complex structure is
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parameterized by the projectivization of a Kähler cone, and hence its real dimension is
b2−3. There is a countable number of non-ergodic complex structures. Thus the set T0 of
twistor families passing through non-ergodic complex structures is a union of countably
many (b2−3)-dimensional families. For b2>3, one has dimR T >b2−3, and hence T0 has
measure zero in T .

Non-hyperbolicity of a hyperkähler manifold follows immediately from this claim.
Indeed, let π:S!CP 1 be a twistor family with all fibers ergodic. Theorem 5.10 implies
that at least one fiber of π is non-hyperbolic. Denote this fiber by M . Since M is ergodic,
there is a dense family of manifolds biholomorphic to M in the Teichmüller space Teich.
Since non-hyperbolic complex structures are closed in Teich (Theorem 5.4), this implies
that all points in Teich correspond to non-hyperbolic complex structures.
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