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1. Introduction

An integer is said to be square-free if it is not divisible by the square d2 of any integer
d greater than 1. It is easy to prove that for f(x)=mx+a, a,m∈Z, there are infinitely
many integers n such that mn+a is square-free—provided, of course, that gcd(a,m) is
square-free.

For f quadratic, the infinity of integers n such that f(n) is square-free was proved by
Estermann [7] in 1931. (Again, there are necessary conditions that have to be fulfilled:
f should not have repeated roots (i.e., for deg f=2, f should not be a constant times a
square) and f(x) 6≡0 mod q2 should have a solution in Z/q2Z for every prime q.)

For f cubic, the fact that there are infinitely many integers n such that f(n) is
square-free was proven by Erdős [6]. (See also [15, Chapter IV].) It can be argued that
Erdős’ proof wittily avoids several underlying issues, some of which are diophantine
problems that are far from trivial. Perhaps because of this, Erdős posed the problem
of proving that f(p) is square-free for infinitely many primes p. The diophantine issues
then become unavoidable, and the problem becomes much harder.

The paper [12] settled the issue for f cubic with Galois group Alt(3). Unfortunately,
most cubics have Galois group Sym(3).

The present paper solves the problem for all f cubic.

Main theorem. Let f∈Z[x] be a cubic polynomial without repeated roots. Then
the number of prime numbers p6N such that f(p) is square-free is

(1+of (1))
∏

q prime

(
1− %f (q2)

φ(q2)

)
N

log N
+O(1), (1.1)

where %f (q2) is the number of solutions to f(x)≡0 mod q2 in (Z/q2Z)∗.
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Here, as usual, of (1) is a quantity that goes to 0 as N!∞ (at a rate that may
depend on f∈Z[x]), whereas O(1) is an absolute constant.

It is easy to show that, if f(x) 6≡0 mod q2 has at least one solution in (Z/q2Z)∗ for
every prime q smaller than a constant depending only on f , then the infinite product in
(1.1) converges to a non-zero value (see the remark at the end of §2). In other words,
we have a necessary and sufficient condition for the product in (1.1) to be non-zero, and
this condition is such that it can be checked explicitly in time Of (1).

The analogous problem—namely, proving that, for a polynomial f of degree k satis-
fying the necessary conditions as above, there is an infinite number of primes p such that
f(p) has no divisors of the form dk−1, d>1—was solved by Nair [20] for k>7. Several
cases with k=3, 4, 5, 6 were solved in [12]; see the list in [12, (1.3)]. A summary of the
proof in this paper appeared previously in [13]. Since then, the cases of k=5, 6 have been
settled by Browning [4, Theorem 2], building in part on arguments by Salberger [21] and
Heath-Brown [10]. As a consequence, only the case of polynomials f of degree k=4 with
Galois group Alt(4) or Sym(4) remains open.

The author’s interest in the problem was first sparked by his work on root numbers of
elliptic curves. There are indeed many problems in number theory where matters become
much simpler technically if one assumes one is working with square-free numbers. This
is the natural domain of application of the results in this paper.

1.1. Notation

In this paper, p and q always denote primes. We write ω(d) for the number of prime
divisors of an integer d, and τk(d) for the number of tuples of positive integers (m1, ...,mk)
such that d=m1m2 ...mk. Given a prime p and a non-zero integer n, the valuation vp(n)
is the largest non-negative integer r such that pr |n. Given positive integers n and m, we
write gcd(n, m∞) for

∏
p|m pvp(n). Let π(N) be the number of primes 6N .

Let K be a number field with Galois group Gal(K/Q). We write ωK(d) for the
number of prime ideals dividing d in the number field K. Given a rational prime p

unramified in K/Q, we denote by Frobp⊂Gal(K/Q) the Frobenius symbol of p; it is
always a conjugacy class in Gal(K/Q). For g∈Galf , we write ωCl(g)(n) for the number
of prime divisors p|n such that Frobp=Cl(g), where Cl(g) is the conjugacy class of g.

1.2. Acknowledgements

Thanks are due to M. Dimitrov, G. Harcos and M. Hindry for answering my questions
regarding a possible conditional generalisation of the present paper to the case of poly-
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nomials of higher degree, and to S. Ganguly and M. Hindry for very useful discussions.
The results in this paper were largely proven at the Université de Montréal towards

the end of the author’s stay as a CRM-ISM fellow. The paper itself was written in
part during a stay at EPFL, Lausanne, Switzerland. The author is thankful to both
A. Granville and P. Michel for having provided good working environments.

2. Reduction to the problem of large square factors q2 |f(x), q prime

We wish to reduce the problem of estimating the number of primes p6N such that f(p)
is square-free to the problem of bounding from above the number of primes p6N such
that f(p) has a square factor of the form q2, q prime, q>N(log N)−ε. If we cared about
minimising the error term, this would be a non-trivial problem; see the treatment in [11,
§3]. As it happens, the error terms we will get later from other sources will be fairly
large anyhow, and thus we can afford to carry out things in this section in a way that is
easy and classical. (See [15, Chapter IV] or [9], for instance.)

In what follows, p and q always range over the primes. We have

|{p 6N : f(p) is square-free}|

=
∣∣{p 6N : q2 | f(p)⇒ q > 1

3 log N
}∣∣

+O
(∣∣{p 6N : there exists q such that q2 | f(p) and q > 1

3 log N
}∣∣).

By the inclusion-exclusion principle and the Bombieri–Vinogradov theorem,∣∣{p 6N : q2 | f(p)⇒ q > 1
3 log N

}∣∣= ∑
d

q|d⇒q<(log N)/3

µ(d)
∣∣{p 6N : d2 | f(p)}

∣∣
=

∑
d

q|d⇒q<(log N)/3

µ(d)%f (d2)
π(N)
φ(d2)

+O

(
N

(log N)100

)

=
∏

q prime

q<(log N)/3

(
1− %f (q2)

φ(q2)

)
π(N)+O

(
N

(log N)100

)

=
∏

q prime

(
1− %f (q2)

φ(q2)

)
π(N)+O

(
N

(log N)2

)
.

Recall as well that

π(N) =
N

log N
+O

(
N

(log N)2

)
(the prime number theorem).
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At the same time,∣∣{p 6N : there exists q such that q2 | f(p) and q > 1
3 log N

}∣∣
6
∣∣{p 6N : there exists q such that q2 | f(p) and 1

3 log N 6 q <N1/3}|

+
∣∣{p 6N : there exists q such that q2 | f(p) and N1/3 6 q <N(log N)−ε

}∣∣
+
∣∣{p 6N : there exists q such that q2 | f(p) and q >N(log N)−ε

}∣∣
6

∑
(log N)/36q<N1/3

O

(
N/log N

q(q−1)

)
+O

(
N

(log N)100

)

+
∑

N1/36q<N(log N)−ε

O

(
N

q2
+1
)

+
∣∣{p 6N : there exists q such that q2 | f(p) and q >N(log N)−ε}

∣∣,
where we have used the Brun–Titchmarsh theorem (or any upper-bound sieve) to justify
the second inequality, and where, as per our convention, q ranges only over the primes.
The series on the right-hand side sum up to O(N/(log N)2) and O(N/(log N)1+ε), re-
spectively; hence∣∣{p 6N : there exists q such that q2 | f(p) and q > 1

3 log N
}∣∣

6
∣∣{p 6N : there exists q such that q2 | f(p) and q >N(log N)−ε}

∣∣+O

(
N

(log N)1+ε

)
.

Therefore

|{p 6N : f(p) is square-free}|

=
∏

q prime

(
1− %f (q2)

φ(q2)

)
N

log N
+O

(
N

(log N)1+ε

)
+
∣∣{p 6N : there exists q such that q2 | f(p) and q >N(log N)−ε}

∣∣
(2.1)

for any ε>0.
The only thing that remains is to bound∣∣{p 6N : there exists q such that q2 | f(p) and q >N(log N)−ε}

∣∣.
This problem will occupy us in the rest of the paper.

In the meantime, let us note that %f (q2)6deg f for every q larger than a constant
depending only on f (by Hensel’s lemma). Hence the infinite product in (2.1) is non-zero
provided that %f (q2)<φ(q2) (i.e., provided that f(x) 6≡0 mod q2 has at least one solution
in (Z/q2Z)∗) for every q smaller than a constant depending only on f . If there is a q

such that f(x) 6≡0 mod q2 has no solutions in (Z/q2Z)∗, then f(p) can be square-free
only when gcd(p, q2) 6=1; obviously, gcd(p, q2) 6=1 can happen for at most one value of p,
namely, p=q. (This is where the term O(1) in (1.1) comes from.)



square-free values of f(p), f cubic 111

3. Integer points on a typical quadratic twist of an elliptic curve

Consider two points (x1, y1) and (x2, y2) (xi, yi∈Z) on the curve dy2=f(x). This is an
elliptic curve. It is well known that points with integer coordinates on an elliptic curve
tend to repel each other; this was already used in the present context in [11] (see also the
earlier work [22]). As was pointed out in [14], two points repel each other more strongly
if their coordinates are congruent to each other modulo some large integer. (This is a
somewhat intuitive description; we will do things rigorously below.)

In [12], I used this phenomenon on the curve dy2=f(x). I first showed by elementary
means that most integers d6N have large factors d0 |d, d0>N1−ε, such that d0 has few
prime divisors. It is then the case that the x-coordinates of the points (x, y) on the
curve fall into few congruence classes modulo d0 (because d0 has few prime divisors).
Moreover, by the argument on elliptic curves just given, there can be only few points
whose x-coordinates are in a given congruence class modulo d0 (because d0 is large, and
makes points in such a congruence class repel each other strongly). It follows that there
are few points (x, y) (x, y∈Z, 16x, y6N) on the curve dy2=f(x), unless d is in some
small exceptional set.

We carry out this argument again, largely just by citing [11] and [12].

Proposition 3.1. Let f∈Z[x] be a polynomial of degree 3 with no repeated roots.
Let d be a square-free integer. Then, for any N, the number of integer solutions (x, y)∈Z2

to dy2=f(x) with N1/2<x6N is at most

Of (Cω(d)), (3.1)

where C is an absolute constant.

This bound is an immediate consequence of [22, Theorem A], which is already based
on the idea of repelling points (and does not require the condition N1/2<x6N). The
alternative proof in [11, Corollary 4.18] provides an explicit value for C by means of
sphere-packing bounds [18].

Proof. By [11, Corollary 4.18] (applied with ε= 1
2 ) and any rank bound obtained by

descent, e.g., the standard bound in [5, Proposition 7.1] (namely,

rank 6ωK(d)−ω(d)+Of (1)6 2ω(d)+Of (1),

where K=Q(α) and α is a root of f(α)=0).

Proposition 3.2. Let f∈Z[x] be a polynomial of degree 3 with no repeated roots.
Let d6X be a positive integer. Suppose that d has an integer divisor d0>X1−ε, ε>0.
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Assume furthermore that gcd(d0, 2 Disc f)=1. Then the number of integer solutions
(x, y)∈Z2 to dy2=f(x) with X1−ε<x6X is at most

Of,ε(eOf (εω(d))3ω(d0)). (3.2)

This bound uses the divisor d0 in order to increase repulsion in the way outlined
above. If a d0 with few prime divisors is chosen, the bound (3.2) will be much smaller
than (3.1).

Proof. This is a special case (deg f=3, k=2 and c=2) of [12, Proposition 4.3].

We now need two lemmas on the integers.

Lemma 3.3. Let f∈Z[x] be a polynomial. For any A>0 and for all but

OA(N(log N)−A)

integers n between 1 and N , the number of prime divisors ω(f(n)) of f(n) is

OA,f (log log N).

Proof. This is standard. If f(n) has >C log log N prime factors, then it has

>
C

deg f
log log N

prime factors (namely, the (C/deg f) log log N smallest ones) whose product is �f N .
Their products give us >2(C/deg f) log log N =(log N)C log 2/deg f divisors d�f N of f(n).
At the same time,

∑
n6N

∑
d6N

d|f(n)

1 =
∑
d6N

∑
n6N

d|f(n)

1 6
∑
d6N

(
N

d
+1
)

(deg f)ω(d)�N(log N)B ,

where B=Of (1). Thus, there can be at most N(log N)−(C log 2/deg f−B) integers n6N

such that f(n) has >C log log N prime factors. We set C so that (C log 2)/deg f−B>A

and we are done.

Lemma 3.4. Let f∈Z be a polynomial. For any A>0, ε>0 and m>0, it is the
case that, for all but OA,ε,m(N(log N)−A) integers n between 1 and N , there is a divisor
d1 |f(n) such that d1<Nε/2, ω(f(n)/d1)<ε log log X and gcd(f(n)/d1,m)=1.
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Proof. Let δ(N) be as in [12, Lemma 5.2] with 1
4ε instead of ε. (That is, we let

δ(N)=(log N)−ε/4re2r

, where r=deg f .) Let

d1 =gcd(f(n),m∞)
∏

p|f(n)

p -m
p6Nδ(N)

p.

By definition, gcd(f(n)/d1,m)=1. Also, by [12, Lemma 5.2], we know that

ω(f(n)/d1) <ε log log N and
∏
p|n

p6Nδ(N)

p <Nε/4

for all but OA,ε(N(log N)−A) integers n between 1 and N .
Now,∑

n6N

gcd(n, m∞) 6
∑

d|m∞

∑
n6N

d|n

d 6
∑

d|m∞

d6N

N 6N
∏
p|m

∑
α>1

pα6N

1�N(log N)ω(m)�m,ε N1+ε/8.

It follows that, for all but Om,ε(N1−ε/8) integers n between 1 and N ,

gcd(f(n),m∞) 6Nε/4.

Hence, d16Nε/2.

Proposition 3.5. Let f∈Z[x] be a polynomial of degree 3 with no repeated roots.
Let D be a set of positive integers. Then the total number of integers x with 16x6N

such that
dy2 = f(x)

for some integer y>N(log N)−ε and some d∈D is at most

Of,ε(|D|(log N)ε)+Of,A,ε(N(log N)−A) (3.3)

for arbitrary A and ε>0.

Proof. Let ε>0 be a small parameter to be set later. If dy2=f(x) for some integer y

and some integer d<N1−ε/4, then d′(y′)2=f(x) for some integer y′ and some square-free
integer d′<N1−ε/4. By Proposition 3.1 and Lemma 3.3, the total number of x6N satis-
fying such an equation is (log N)Of,A(1)N1−ε/4+OA(N(log N)−A)�A,f,εN(log N)−A for
A arbitrarily large.

Let, then, dy2=f(x), d>N1−ε/4, x6N and y>N(log N)−ε. By Lemma 3.3, we may
assume that ω(d)�A,f log log N (taking out at most OA(N(log N)−A) values of x). By
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Lemma 3.4, we may assume (taking out at most OA,f,ε(N(log N)−A) values of x) that
there is a d1 |f(x) such that

d1 <Nε/2, ω

(
f(n)
d1

)
<ε log log N and gcd

(
f(n)
d1

, 2 Disc(f)
)

=1.

Let d0=d/gcd(d, d1). Then d0>d/Nε/2>N1−3ε/4, ω(d0)<ε log log N , ω(d)�A,f log log N

and gcd(d0, 2 Disc(f))=1.
As y>N(log N)−ε and d=f(x)/y2, we have d6CfN(log N)2ε for some constant Cf .

We apply Proposition 3.2 with X=CfN(log N)2ε. (The condition d0>X1−ε is fulfilled
by d0>N1−3ε/4 provided N is larger than a constant cf,ε depending only on f and ε; we
may assume that N is larger than cf,ε because conclusion (3.3) is otherwise trivial.) We
obtain that the number of integer solutions to dy2=f(x) is at most

�f,ε |D|eOf,A(ε) log log N3ε log log N

(taking out at most �A,f,εN(log N)−A+X1−ε�A,f,εN(log N)−A values of x). For ε

small enough in terms of f , A and ε, this is 6|D|(log N)ε, as desired.

In view of (3.3), what remains is to show that we can eliminate most possible values
of d in dq2=f(p), p6N , q>N(log N)−ε, where we allow ourselves to take out first a
proportion o(1) of all possible values of p6N .

4. Typical properties of f(q) and d=f(p)/y2

Les α be a root of f(α)=0. Let Galf =Gal(Q(α)/Q). For g∈Galf , let ωCl(g)(n) be the
number of prime divisors p|n unramified in Q(α)/Q such that Frobp=Cl(g). Let αCl(g) be
the number of fixed points of any representative g of Cl(g), considered as a permutation
map on the roots of f(x)=0 in C. It is a standard fact that αCl(g) equals the number of
roots x∈Z/pZ of f(x)≡0 mod p for any p unramified in Q(α)/Q such that Frobp=Cl(g).

As is usual, we write the number of points on the curve y2=f(x) mod p as p+1−ap,
where ap is an integer.

Our aim in this section is to show that, for a proportion 1+o(1) of all primes q6N ,
(a)

ωCl(g)(f(q))= (αCl(g)+o(1))
|Cl(g)|
Galf

log log N

for every g∈Galf , and
(b) ∑

p6z

ap

p

(
f(q)

p

)
=(1+o(1))

∑
p6z

−a2
p

p2

for 1/o(1)6z6N δ, where δ>0 is smaller than a constant.
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Here (a) is unsurprising; it is clear that the probability of p|f(q) for p fixed and q

prime and random is αf/p, and the sum

∑
p6N

Frobp=Cl(g)

1
p

is (1+o(1))
|Cl(g)|
|Galf |

log log N

by Chebotarev’s density theorem.
As for statement (b), the number of points on y2=f(x) mod p is

p+1−ap =
∑

x∈Z/pZ

(
1+
(

f(x)
p

))
= p+

∑
x∈Z/pZ

(
f(x)

p

)
.

(Here and throughout the paper, ( ·/ ·) stands for the Jacobi symbol.) Hence, the ex-
pected value of (f(q)/p) for p fixed and q prime and random should be

1
p−1

(
1−ap−

(
f(0)

p

))
=−ap

p
+ error term.

Thus, the expected value of

∑
p6z

ap

p

(
f(q)

p

)
should be about

∑
p6z

−a2
p

p2
.

As elsewhere in this paper, we will carry out our arguments as is customary in
analytic number theory, inspired by the probabilistic reasoning detailed above. (Alter-
natively, one could start by proving probabilistic statements and deduce statements in
number theory from them, as in [12, §5 and §6]. That option generally takes more space
and work.)

Part of the point in estimating ωCl(g)(f(q)) and (f(q)/p) is that neither quantity
changes much when f(p) is divided by the square of a prime: if d=f(q)/y2, y being a
prime, then

ωCl(g)(f(p))−1 6ωCl(g)(d) 6ωCl(g)(f(p))(
d

p

)
=
(

f(q)
p

)
for p 6= y.

(4.1)

Therefore, what follows will help us to later determine what form any d satisfying
dy2=f(q) must take, where y can be any prime and q can be any prime 6N outside a
set of density 0.

We will prove both (a) and (b) using, in essence, bounds on variances and Cheby-
shev’s inequality.
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Lemma 4.1. Let f∈Z[x] be a polynomial irreducible over Q[x]. Let g∈Galf . Let
z=z(N) be such that limN!∞ z(N)=∞ and z<N1/4−ε, ε>0. Then∑

p6z

p unramified

Frobp=Cl(g)

p|f(q)

1 = (αCl(g)+of (1))
|Cl(g)|
|Galf |

log log z

for a proportion 1+of,ε(1) of all primes q6N .

The proof will not be very different from Turán’s classical proof that the average
number of prime divisors of an integer 6N is ∼log log N .

Proof. In what follows, our sums over p range only over primes p unramified in
Q(α)/Q, α being a root of f , whereas our sums over q range over all primes. We will
give a variance bound, i.e., we will show that

V =
∑
q6N

∣∣∣∣∣ ∑
p6z

Frobp=Cl(g)

p|f(q)

1−R

∣∣∣∣∣
2

(4.2)

is small, where
R =

∑
p6z

Frobp=Cl(g)

αCl(g)

p
.

Expanding (4.2), we get

V =R2π(N)−2R
∑
p6z

Frobp=Cl(g)

∑
q6N

p|f(q)

1

+
∑
p16z

Frobp1=Cl(g)

∑
p26z

Frobp2=Cl(g)

p1 6=p2

∑
q6N

p1p2|f(q)

1+
∑
p6z

Frobp=Cl(g)

∑
q6N

p|f(q)

1.
(4.3)

Now ∑
p6z

Frobp=Cl(g)

∑
q6N

p|f(q)

1 =
∑
p6z

Frobp=Cl(g)

|{x∈ (Z/pZ)∗ : f(x) = 0 mod p}|π(N)
φ(p)

+O

(
z+
∑
p6z

max
a mod p

gcd(a,p)=1

(
|{q 6N : q≡ a mod p}|− π(N)

φ(p)

))
.
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By the Bombieri–Vinogradov theorem (as in [2, Theorem 0]),

∑
m6N1/2−δ

max
a mod m

gcd(a,m)=1

(
|{q 6N : q≡ a mod m}|− π(N)

φ(m)

)
�A,δ

N

(log N)A

for all A, δ>0. We also have |{x∈(Z/pZ)∗ :f(x)=0}|=αCl(g) for all (unramified) p with
Frobp=Cl(g). Hence∑

p6z

Frobp=Cl(g)

∑
q6N

p|f(q)

1 =π(N)
∑
p6z

Frobp=Cl(g)

αCl(g)

p−1
+OA(N(log N)−A)

=π(N)

(
O(1)+

∑
p6z

Frobp=Cl(g)

αCl(g)

p

)
=π(N)(R+O(1)).

Similarly, we have∑
p16z

Frobp1=Cl(g)

∑
p26z

Frobp2=Cl(g)

∑
q6N

p1p2|f(q)

1 =π(N)
∑
p16z

Frobp1=Cl(g)

∑
p26z

Frobp2=Cl(g)

αCl(g)

(p1−1)(p2−1)

+OA(N(log N)−A) =π(N)(R+O(1))2.

Hence, we conclude from (4.3) that

V =R2π(N)−2R(R+O(1))π(N)+π(N)(R+O(1))2+π(N)(R+O(1))= O(Rπ(N)).

Now, if ∣∣∣∣∣ ∑
p6z

Frobp=Cl(g)

p|f(q)

1−R

∣∣∣∣∣>δR (4.4)

for some q6N and δ>0, then that value makes a contribution greater than δ2R2 to (4.2).
Hence there are at most

O(R)π(N)
δ2R2

=O

(
1

δ2R
π(N)

)
primes q6N for which (4.4) is the case. By the Chebotarev density theorem,

R =(1+of (1))|Cl(g)|αCl(g) log log z.

Thus R!∞ as N!∞, and so the statement of the lemma follows.

We will need a large-sieve lemma of a rather standard kind.
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Lemma 4.2. For any N and any ε>0,

∑
r6N1/2−ε

∑
χ mod r

χ primitive

∣∣∣∣∣ ∑
q6N

q prime

χ(q)

∣∣∣∣∣
2

�ε
N2

(log N)2
. (4.5)

This is a special case of [17, Problem 7.19].

Proof. By the triangle inequality, the square root of the left-hand side of (4.5) is at
most √√√√√√ ∑

r6N1/2−ε

∑
χ mod r

χ primitive

∣∣∣∣∣ ∑
q6
√

N
q prime

χ(q)

∣∣∣∣∣
2

(which is �
√

N1−2ε(
√

N/log N)2�N/log N) plus the square-root of

∑
r6N1/2−ε

∑
χ mod r

χ primitive

∣∣∣∣∣ ∑
√

N<q6N
q prime

χ(q)

∣∣∣∣∣
2

. (4.6)

By [1, Theorem 8] with Q=
√

N , (4.6) is at most

1
log(

√
N/N1/2−ε)

(N+Q2)
∑

√
N<q6N
q prime

1�ε
N2

(log N)2
.

Lemma 4.3. Let f∈Z[x] be a polynomial irreducible over Q[x]. For every prime p,
write p+1−ap for the number of points in P2(Z/pZ) on the curve y2=f(x). Let z=z(N)
be such that z<N1/4−ε, ε>0 and

lim
N!∞

∑
p6z

a2
p

p2
=∞.

Then, for a proportion 1+o(1) of all primes q6N as N!∞,

∑
p6z

ap

p

(
f(q)

p

)
=(1+o(1))

∑
p6z

−a2
p

p2
, (4.7)

where the implied constants depend only on ε.

Again, the proof will proceed by a variance bound.
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Proof. Define

V =
∑

q 6 N

(∑
p6z

ap

p

((
f(q)

p

)
+

ap

p

))2
, (4.8)

where, as per our convention, q ranges only over the primes. Changing the order of
summation, we obtain

V =
∑
p16z

ap1

p1

∑
p26z

ap2

p2

∑
q6N

((
f(q)
p1

)
+

ap1

p1

)((
f(q)
p2

)
+

ap2

p2

)
. (4.9)

Expanding, we see that

V =(R2+O(R))π(N)+2R
∑
p6z

ap

p

∑
a mod p

(
f(a)

p

)
|{q 6N : q≡ a mod p}|

+
∑
p16z

∑
p26z

p1 6=p2

ap1

p1

ap2

p2

∑
a mod p1p2

(
f(a)
p1p2

)
|{q 6N : q≡ a mod p1p2}|,

(4.10)

where R=
∑

p6z a2
p/p2 and π(N) is the number of primes 6N . (The term O(R)π(N)

comes from the diagonal terms p1=p2 left out of the triple sum on the second line.)
We wish to approximate |{q6N :q≡a mod p}| (and |{q6N :q≡a mod p1p2}|) by

π(N)/φ(p)=π(N)/(p−1) for a coprime to p (and, respectively, by π(N)/φ(p1p2) for a

coprime to p1p2). Now the absolute value of

∑
p6z

ap

p

( ∑
a mod p

p -a

(
f(a)

p

)∣∣∣∣|{q 6N : q≡ a mod p}|− π(N)
p−1

∣∣∣∣
+
(

f(0)
p

)
|{q 6N : q≡ 0 mod p}|

)

is at most ∑
p6z

∣∣∣∣ap

p

∣∣∣∣ ∑
a mod p

p -a

∣∣∣∣|{q 6N : q≡ a mod p}|− π(N)
p−1

∣∣∣∣+∑
p6z

∣∣∣∣ap

p

∣∣∣∣.
By the trivial bound |ap|�p, the second sum is O(z) (and thus will be negligible). We
apply the Cauchy–Schwarz inequality twice to obtain that the first sum is at most√√√√∑

p6z

a2
p

p2

√√√√√√∑p6z

(p−1)
∑

a mod p

p -a

∣∣∣∣|{q 6N : q≡ a mod p}|− π(N)
p−1

∣∣∣∣2. (4.11)
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The expression under the first square root is now R, which is �log z�log N . By a brief
calculation, the expression under the second square root equals∑

p6z

∑
χ mod p

χ non-principal

|S(χ)|2 (4.12)

for S(χ)=
∑

q6N χ(q), where q runs over the primes, as usual. By Lemma 4.2 (with
ε= 1

2 ), (4.12) is O(π(N)2). Hence (4.11) is at most O(
√

Rπ(N)). Therefore

∑
p6z

ap

p

∑
a mod p

(
f(a)

p

)
|{q 6N : q≡ a mod p}|

=
∑
p6z

ap

p

∑
a mod p

p -a

(
f(a)

p

)
π(N)
p−1

+OA(
√

Rπ(N)).

Now,

∑
a mod p

p -a

(
f(a)

p

)
=

∑
a mod p

(
f(a)

p

)
−
(

f(0)
p

)

=
∑

a mod p

|{y ∈Z/pZ : y2 = f(a)}|−p−
(

f(0)
p

)

=(p+1−ap)+O(1)−p−
(

f(0)
p

)
=−ap+O(1),

(4.13)

where the implied constant is absolute. Thus

∑
p6z

ap

p

∑
a mod p

p -a

(
f(a)

p

)
π(N)
p−1

=π(N)
∑
p6z

ap

p

1
p−1

(−ap+O(1))

=π(N)
(∑

p6z

−a2
p

p2
+O

(∑
p6z

(
a2

p

p3
+

ap

p2

)))
=π(N)(−R+O(1)),

where we use the Weil bound |ap|�
√

p in the last step.
Let us now estimate the sum in the second line of (4.10). Since the only primes q not

coprime to p1 or p2 are q=p1 and q=p2, the contribution of the terms with gcd(a, p1p2) 6=1
is at most

2
∑
p16z

∑
p26z

ap1

p1

ap2

p2
� z,
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which is negligible. We write

∑
p16z

∑
p26z

p1 6=p2

ap1

p1

ap2

p2

∑
a mod p1p2

gcd(a,p1p2)=1

(
f(a)
p1p2

)
|{q 6N : q≡ a mod p1p2}| (4.14)

=
∑
p16z

∑
p26z

p1 6=p2

ap1

p1

ap2

p2

×
∑

a mod p1p2

gcd(a,p1p2)=1

(
f(a)
p1p2

)
π(N)

φ(p1p2)
+O

( ∑
p16z

∑
p26z

p1 6=p2

|ap1 |
p1

|ap2 |
p2

∑
a mod p1p2

gcd(a,p1p2)=1

∆a,p1p2

)

+
∑
p16z

∑
p26z

p1 6=p2

ap1

p1

ap2

p2

∑
a mod p1p2

gcd(a,p1p2)=1

(
f(a)
p1p2

)(
1

φ(p1)
|{q 6N : q≡ a mod p2}|−

π(N)
φ(p1p2)

)

+
∑
p16z

∑
p26z

p1 6=p2

ap1

p1

ap2

p2

∑
a mod p1p2

gcd(a,p1p2)=1

(
f(a)
p1p2

)(
1

φ(p2)
|{q 6N : q≡ a mod p1}|−

π(N)
φ(p1p2)

)
,

where

∆a,p1p2 = |{q 6N : q≡ a mod p1p2}|−
1

φ(p1)
|{q 6N : q≡ a mod p2}|

− 1
φ(p2)

|{q 6N : q≡ a mod p1}|+
1

φ(p1p2)
π(N).

The first sum on the right-hand side of (4.14) is the main term; by (4.13), it equals

π(N)
∑
p16z

∑
p26z

p1 6=p2

ap1

p1

ap2

p2

(−ap1 +O(1))(−ap2 +O(1))
φ(p1p2)

=π(N)(R2+O(R)).

By the Cauchy–Schwarz inequality, the second sum in (4.14) (the sum within O(...))
is at most √√√√√∑

p16z

∑
p26z

p1 6=p2

a2
p1

p2
1

a2
p2

p2
2

√√√√√√∑
p16z

∑
p26z

p1 6=p2

∣∣∣∣∣ ∑
a mod p1p2

gcd(a,p1p2)=1

∆a,p1p2

∣∣∣∣∣
2

. (4.15)

The expression under the first square root is 6R2. By another application of the Cauchy–



122 h. a. helfgott

Schwarz inequality and a brief calculation (cf. [1, §2, Theorem 5]), we get∣∣∣∣∣ ∑
a mod p1p2

gcd(a,p1p2)=1

∆a,p1p2

∣∣∣∣∣
2

6φ(p1p2)
∑

a mod p1p2

gcd(a,p1p2)=1

|∆a,p1p2 |2

=φ(p1p2)
∑

a mod p1p2

gcd(a,p1p2)=1

|{q 6N : q≡ a mod p1p2}|2

−φ(p1)
∑

a mod p1

gcd(a,p1)=1

|{q 6N : q≡ a mod p1}|2

−φ(p2)
∑

a mod p2

gcd(a,p2)=1

|{q 6N : q≡ a mod p2}|2+π(N)2

=
∑

χ mod p1p2

χ primitive

|S(χ)|2.

We apply Lemma 4.2, and obtain that (4.15) is �ε

√
R2
√

π(N)2=Rπ(N).
By (4.13), the next to last line of (4.14) is∑

p16z

ap1

p1

−ap1 +O(1)
p1−1

∑
p26z

p2 6=p1

∑
a mod p2

p2 -a

(
|{q 6N : q≡ a mod p2}|−

π(N)
p2−1

)

6

(
−
∑
p16z

a2
p1

p2
+O(1)

) ∑
p26z

∑
a mod p2

p2 -a

∣∣∣∣|{q 6N : q≡ a mod p2}|−
π(N)
p2−1

∣∣∣∣.
The first factor is −R+O(1), whereas the second factor was already shown before to be
O(
√

Rπ(N)). Hence the next to last line of (4.14) is O(R3/2π(N)). Obviously the same
is true of the last line of (4.14).

Putting everything together, we see that (4.10) has become

V =(R2+R)π(N)+2R(−Rπ(N)+O(
√

Rπ(N)))+(R2+Oε(R3/2))π(N)

=Oε(R3/2π(N)).

Now, if ∣∣∣∣(∑
p6z

ap

p

(
f(q)

p

))
−(−R)

∣∣∣∣>δR (4.16)

for some q6N and δ>0, then that value of q makes a contribution greater than δ2R2 to
V (see (4.8)).
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Hence there are at most

� R3/2π(N)
δ2R2

=
π(N)
δ2
√

R

primes q6N for which (4.16) is the case. As limN!∞R=∞, we see that

π(N)
δ2
√

R
= oδ,ε(π(N))

for any δ>0. Since δ is arbitrarily small, the statement of the lemma follows.

5. Rarity of typical twists: large deviations and higher moments

We have seen (Lemmas 4.1 and 4.3, plus (4.1)) that, if q is a prime 6N lying outside a
set containing a proportion o(1) of all primes 6N , and dy2=f(q), where y is a prime,
then d has some special properties:

(a) ωCl(g)(d) must be of roughly a given size for each g∈Galf , and
(b) ∑

p6z

ap

p

(
d

p

)
∼−

∑
p6z

a2
p

p2
, (5.1)

i.e., d will have a slight tendency to be a quadratic residue mod p when ap is negative,
and a non-residue when ap is positive.

We will see in this section that only a small minority of all integers d�N(log N)2ε

satisfy these properties. Here “small minority” actually means

“fewer than O((log N)−(1+δ))”,

where δ>0 is fixed. This will be crucial later.
Let us first examine how one would bound separately the number of integers satisfy-

ing (a) and the number of integers satisfying (b), i.e., equation (5.1). (We will eventually
have to bound the number of integers satisfying both (a) and (b).)

One way of bounding |{d�N(log N)2ε :d satisfies (a)}| is to translate large-deviation
estimates from probability theory. This was the approach followed in [12]. Here we will
follow what would look like a more familiar approach to an analytic number theorist,
though its content is essentially the same: we will bound expressions of the form∑

d

e
∑

i αiωSi
(d), (5.2)

where αi∈R will be chosen at will, ωSi
={p∈Si :p|d} and Si is a set of primes (in our

case, all unramified primes with Frobp equal to a fixed element of the Galois group). The
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bounds will be the same as those given by large-deviation theory—in particular, there
will be relative entropies in the exponents.

How should we bound |{d�N(log N)2ε :d satisfies (5.1)}|? A variance bound would
not be good enough for our purposes. If we could truly handle reduction modulo distinct
primes as so many independent random variables, we would use an exponential moment
bound. As mutual independence does not truly hold, we will use instead a high moment,
i.e., we will bound ∑

d

(∑
p6z

ap

p

(
d

q

))2k

(5.3)

for k large.

As we said, we would actually like to bound the number of integers d�N(log N)2ε

satisfying both (a) and (b) (i.e., equation (5.1)). Getting an estimate that combines
information from both sources is, as we shall see, a technically delicate task, to be
achieved by the enveloping use of a sieve.

The following lemma will allow us to work with small primes only without much of
a loss in our estimates.

Lemma 5.1. For any A>0, ε>0 and every N , there is a z=z(N,A, ε) with

log log z > (1−ε) log log N

and z<Nε such that, for all but OA,ε(N(log N)−A) integers n between 1 and N ,
(a)

∏
p|n:p6z pvp(n)<Nε,

(b) ω(n)−
∑

p|n:p6z 1<ε log log z.

Proof. Apply [12, Lemma 5.2] with f(x)=x and 1
2ε instead of ε; let z=N δ(N). Then

log log z = log log N−log log δ(N) >
(
1− 1

2ε
)
log log N.

Furthermore, z=NoA,ε(1/log log N)<Nε if (as we may assume) N is larger than a constant
depending on A and ε.

By conclusion (a) in [12, Lemma 5.2],
∏

p|n:p6z p<Nε/2. It is also the case that
the largest square factor in n is 6Nε/2 for all but O(N1−ε/4) integers between 1 and
N . Part (a) of the statement follows. Conclusion (b) in [12, Lemma 5.2] implies that
ω(n)−

∑
p|n:p6z 1< 1

2ε log log N ; since log log z>
(
1− 1

2ε
)
log log N> 1

2 log log N , part (b)
of the statement follows immediately.

The next lemma is both elementary and of a very classical type.
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Lemma 5.2. Let S be a set of primes; define Sz={p∈S :p6z}. Assume that∑
p∈Sz

1
p

6β log log z+C,

C being a constant. Let Nz denote the set of all positive integers that are products of
primes in Sz alone. Let η>1. Then∑

n∈Nz

ω(n)>ηβ log log z

1
n
�C,η (log z)β(η−η log η).

The lemma would still be true for η<1 positive, but the exponent on the right would
no longer be optimal.

Proof. Recall that
∑

n>1 1/n2=π2/6. For any α>0,(
π2

6

)α ∏
p∈Sz

(
1+

1
p

)α
>
∏

p∈Sz

(
1+

1
p

+
1
p2

+...

)α
>
∏

p∈Sz

(
1+

α

p
+

α

p2
+...

)
=
∑

n∈Nz

αω(n)

n
.

Hence, ∑
n∈Nz

ω(n)>ηβ log log z

1
n

6
1

αηβ log log z

∑
n∈Nz

αω(n)

n
6

1
αηβ log log z

(
π2

6

)α ∏
p∈Sz

(
1+

1
p

)α

�C,α
1

αηβ log log z
eαβ log log z =(log z)(α−η log α)β .

To minimise α−η log α, we set α=η. Then (log z)(α−η log α)β=(log z)β(η−η log η).

Lemma 5.3. Let S and S′ be sets of primes with
(1) S⊂S′;
(2)

∑
p∈S:p6z 1/p6β log log z+C for all z>e, where C is a constant ;

(3)
∑

n6z:p|n⇒p∈S′ 1/n>C ′(log z)β′ for all z>e, where C ′ is a constant.
Let N be a positive integer, and η>1. Let B be the set of all integers n6N having

at least ηβ log log N divisors in S, but no divisors in S′\S. Then, for all ε>0 and every
A>0, there is a sequence of non-negative reals {bn}n6N such that

(a) bn6τ5(n) for every nC ;
(b) |{n∈B :bn<1}|�A,εN/(log N)A;
(c)

∑
n6N bn�C,C′,ηN/(log N)(1−ε/4)(β′+(β−ε/4)(η log η−η));

(d) ∑
n6N

n≡a mod m

bn =
1

φ(m)

∑
n6N

gcd(n,m)=1

bn+Oε(Nε)

for every m6N1−ε and every a coprime to m.
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The sequence bn is a variant of what is sometimes called an enveloping sieve; here,
as per (b), the sequence bn almost “envelops” (i.e., majorises the characteristic function
of) B, but not quite.

Proof. Let z be as in Lemma 5.1 with 1
4ε instead of ε; in particular, z<Nε/4. Let

λd, d6Nε/2, be the weights in Selberg’s sieve(1) when used to sieve out prime factors
p6Nε/4 in S. (Here we are using λd to denote the sequence of non-negative reals λd

(where λd=0 for d>Nε/2) obtained by the identity
∑

d|m λd=
(∑

d|m %d

)2, where %d is as
in, say, [8, (7.15)]. In particular, λ1=1 and |λd|61 for all d. Note that some other texts
use an opposite convention, exchanging the roles of λd and %d.)

Define

bn =
∑
m|n

m∈Nz(S)

ω(m)>(η−ε/4)β log log z

m6Nε/4

∑
d|n/m

d∈Nz(S′)

λd, (5.4)

where, for a set P of primes, Nz(P ) is the set of all positive integers that are products
of primes in {p∈P :p6z} alone.

Since λd6τ3(d), conclusion (a) is immediate. Let n∈B. Then

bn >
∑
m|n

m∈Nz(S)

ω(m)>(ηβ−ε/4) log log z

m6Nε/4

p|n/m⇒p/∈S

1,

since the condition p|n/m⇒p /∈S ensures (given that n has no divisors in S′\S, due to
n∈B) that the inner sum in (5.4) has λ1 (which equals 1) as its only term. By n∈B and
the definition of B, n has at least ηβ log log z divisors in S. Hence bn can be less than
1 only if, for m=

∏
p|n,p∈S:p6z pvp(n), either m>Nε/4, or ω(n)−ω(m)> 1

4ε log log z. By
Lemma 5.1, at most OA,ε(N(log N)−A) satisfy either statement (where A>0 is arbitrary).
Hence conclusion (b) holds.

Now ∑
n6N

bn =
∑

m6Nε/4

m∈Nz(S)

ω(m)>(ηβ−ε/4) log log z

∑
n6N/m

∑
d|n

d∈Nz(S′)

λd.

(1) Brun’s (non-pure) sieve or the Iwaniec–Rosser sieve (as in [8, §6] and [8, §11], respectively)
would do just as well as Selberg’s sieve in this context. In fact, it would do slightly better, in that the
subscript in (a) would go down from 5 to 3.
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By the main result on the Selberg sieve (see, e.g., [8, Theorem 7.1], with an=1 for all
n6N/m and an=0 for n>N/m)

∑
n6N/m

∑
d|n

d∈Nz(S′)

λd =

( ∏
p∈S′

p6z

1
1−1/p

)−1
N

m
+O

( ∑
d<Nε/2

τ3(d)
)

6

( ∑
d6Nε/4

d∈Nz(S′)

1
d

)−1
N

m
+Oε(N3ε/4).

By condition (3) and z<Nε/4, we know that
∑

d6Nε/4,d∈Nz(S′) 1/d�C′ (log z)β′ . Thus,

∑
n6N

bn�C′
N

(log z)β′

∑
m6Nε/4

m∈Nz(S)

ω(m)>(ηβ−ε/4) log log z

1
m

+Oε(Nε).

We now apply Lemma 5.2, and conclude that∑
n6N

bn�C,C′,η
N

(log z)β′−(β−ε/4)(η−η log η)
.

Lemma 5.1 assures us that log log z>
(
1− 1

4ε
)
log log N , and so log z>(log N)1−ε/4. We

thus obtain conclusion (c).
Lastly, for every r and every a coprime to r,∑

n6N

n≡a mod r

bn =
∑

m6Nε/4

m∈Nz(S)

ω(m)>(ηβ−ε/4) log log z

∑
d6Nε/2

d∈Nz(S′)

λd

∑
n6N/md

n≡a mod r

1

=
∑

m6Nε/4

m∈Nz(S)

ω(m)>(ηβ−ε/4) log log z

∑
d6Nε/2

d∈Nz(S′)

λd

(
1

φ(r)

∑
n6N/md

gcd(n,r)=1

1+O(1)

)

=
1

φ(r)

∑
n6N

gcd(n,r)=1

bn+O

( ∑
m6Nε/4

∑
d6Nε/4

λd

)

=
1

φ(r)

∑
n6N

gcd(n,r)=1

bn+Oε(Nε),

i.e., conclusion (d) holds.



128 h. a. helfgott

We begin by an easy application of Lemma 5.2 to the case already treated in [12].
We do this both for contrast with a later application (the proof of Proposition 5.5, which
uses the divergence of

∑
p a2

p/p2 and where the sieve does play an enveloping role) and
to make the paper relatively self-contained.

Lemma 5.4. Let K/Q be a cubic extension of Q with Galois group Alt(3). Let S

be the set of unramified primes that split completely in K/Q. Let V be the set of integers
n6N such that n has at least (1+o(1)) log log N divisors in S, and n is not divisible by
any unramified primes outside S. Then, for every ε>0,

|V |�K,ε
N

(log N)(1−ε) log 3
.

Proof. Let S′ be the set of all unramified primes. Note that conditions (1) and (3)
in Lemma 5.3 are clear, and condition (2) holds by the Chebotarev density theorem and
partial summation. By the conclusions (b) and (c) in that lemma, applied with A=2,

|V |6Oε

(
N

(log N)A

)
+
∑
n6N

bn�ε
N

(log N)(1−ε)(1+(1/3)(3 log 3−3))
=

N

(log N)(1−ε) log 3
.

The following is the more difficult case.

Proposition 5.5. Let K/Q be a cubic extension of Q with Galois group Sym(3).
Let S be the set of unramified primes that split completely in K/Q; let S′ be the set of
unramified primes that either split completely or are inert in K/Q. For every prime p,
let ap be such that |ap|62

√
p and, for z=e(log N)/2 log log N ,∣∣∣∣∑

p6z

a2
p

p2

∣∣∣∣=(1+o(1)) log log z. (5.5)

Let V be the set of integers n6N such that (a) n has at least
(

1
2 +o(1)

)
log log N

divisors in S, (b) n has no divisors in S′\S, (c) n satisfies∣∣∣∣∑
p6z

ap

p

(
n

p

)∣∣∣∣> (1+o(1)) log log z (5.6)

for z as above. Then, for every ε>0,

|V |�K,ε
N

(log N)(1+log 3)/2−ε
,

where the implied constant depends on K, ε and the implied constants in (a), (b), (5.5)
and (5.6).
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Proof. We first verify that S and S′ satisfy conditions (1)–(3) of Lemma 5.3. Con-
dition (1) is obvious. Condition (2) holds with β= 1

6 by the Chebotarev density theorem.
Condition (3) holds for related reasons: as in (say) the proof of [11, Lemma 4.10], we
can write∏

p∈S′

1
1−p−s

=
∏
p

(
1

1−p−s

)( ∏
p/∈S′

(
1

1−p−s

) ∏
p∈S′\S

(
1

1−p−s

)3)−1( ∏
p∈S′\S

(
1

1−p−s

)6)1/2

=L1(s)ζ(s)ζK/Q(s)−1ζL/Q(s)1/2,

where L1(s) is holomorphic and bounded on
{
s:Re(s)> 1

2 +ε
}

and L is the Galois closure
of K. Since ζ, ζK/Q and ζL/Q each have a pole of order 1 at s=1, we obtain

∑
n6z

p|n⇒p∈S′

1
n
∼C(log z)1−1+1/2 =C(log z)1/2,

for some constant C, by contour integration or a real Tauberian theorem (e.g., a Hardy–
Littlewood Tauberian theorem, [19, Theorem 5.11]; there is no need for a complex Taube-
rian theorem here).

Apply Lemma 5.3. By conclusion (b), we will find it enough to bound
∑

n∈V bn

from above: |V | will exceed this sum by at most OA(N/(log N)A), where we can set A

as large as needed. For any k, (5.6) ensures that

∑
n∈V

bn 6

(
max
n∈V

∑
p6z

ap

p

(
n

p

))−2k ∑
n∈V

bn

(∑
p6z

ap

p

(
n

p

))2k

6
1

((1+o(1)) log log z)2k

∑
n6N

bn

(∑
p6z

ap

p

(
n

p

))2k

.

(5.7)

The following amounts to a proof of a special case of Khinchin’s inequality, gener-
alised to the case of random variables that are only approximately independent. First,
we have

∑
n6N

bn

(∑
p6z

ap

p

(
n

p

))2k

=
∑

p1,...,p2k6z

ap1

p1
...

ap2k

p2k

∑
n6N

bn

(
n

p1

)
...

(
n

p2k

)
. (5.8)

Set m=p1p2 ... p2k and assume m6N . Using conclusions (a) and (d) in Lemma 5.3, we
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get

∑
n6N

bn

(
n

p1

)
...

(
n

p2k

)
=

∑
a mod m

gcd(a,m)=1

(
a

p1

)
...

(
a

p2k

) ∑
n6N

n≡a mod m

bn+O

( ∑
n6m

bn

)

=
∑

a mod m
gcd(a,m)=1

(
a

p1

)
...

(
a

p2k

)
1

φ(m)

∑
n6N

gcd(n,m)=1

bn

+Oε(Nε)
∑

a mod m

1+O

( ∑
n6m

τ5(m)
)

=
∑
n6N

gcd(n,m)=1

bn

∑
a mod m

(
a

p1

)
...

(
a

p2k

)
1

φ(m)
+Oε(Nεm),

provided that z2k6N . If there is a p appearing an odd number of times in p1, p2, ..., p2k,
the sum ∑

a mod m

(
a

p1

)
...

(
a

p2k

)

vanishes. On the other hand, given a multiset S consisting of k not necessarily distinct
primes, the number of distinct tuples (p1, p2, ..., p2k) such that every prime p appearing
exactly ` times in S appears exactly 2` times in p1, p2, ..., p2k is at most (2k)!/2kk!
times the number of tuples (q1, q2, ..., qk) such that S={q1, q2, ..., qk}. (This is so by the
crude bound (2r)!>2r! for r>1.) Hence, going back to (5.8) and using conclusion (c) in
Lemma 5.3, we obtain

∑
n6N

bn

(∑
p6z

ap

p

(
n

p

))2k

6
(2k)!
2kk!

∑
q1,...,qk6z

a2
q1

q2
1

...
a2

qk

q2
k

∑
n6N

bn

+Oε

( ∑
p1,...,p2k6z

ap1

p1
...

ap2k

p2k
Nεp1p2 ... p2k

)

�f,ε
(2k)!
2kk!

N

(log N)(1−ε/4)(1/2+(1/6−ε/4)(3 log 3−3))

(∑
p6z

a2
p

p2

)k

+Oε

((∑
p6z

2
√

p

p

)k
Nεz2k

)

6
(2k)!
2kk!

N

(log N)(1−ε)(log 3)/2
(1+o(1))k(log log z)k+Oε(Nεz3k).
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Thus, by (5.7),

∑
n∈V

bn 6
((1+o(1)) log log z)k

((1+o(1)) log log z)2k

(2k)!
2kk!

N

(log N)(1−ε)(log 3)/2
+Oε(Nεz3k)

� e−k(2k)k

((1+o(1)) log log N)k

N

(log N)(1−ε)(log 3)/2
+Oε(Nεe3k(log N)/2 log log N ).

We set k= 1
2 log log N , and obtain

∑
n∈V

bn�
(log N)−1/2(2k)k

(1+o(1))(log log N)/2(2k)k

N

(log N)(1−ε)(log 3)/2
+O(N3/4+ε)

�ε
N

(log N)(1+log 3)/2−ε
+O(N3/4+ε).

6. Modularity. Conclusion.

It remains to estimate
∑

p6z a2
p/p2, where, as usual, we define ap by letting p+1−ap be

the number of (projective) points mod p on the curve y2=f(x). Our estimate will be
based on the fact that the Rankin–Selberg L-function Lf⊗f has a pole at s=2.

Lemma 6.1. Let f∈Z[x] be a cubic polynomial irreducible over Q[x]. For every
prime p, write p+1−ap for the number of points in P2(Z/pZ) on the curve y2=f(x).
Then, as x!∞, ∑

p6x

a2
p

p2
=(1+of (1)) log log x.

Proof. By the modularity of elliptic curves ([24], [23], [3]), there is a primitive cusp
form f of weight 2 and level N such that f(z)=

∑∞
n=1 ann1/2e(nz). The Rankin–Selberg

L-function

L(f⊗f̄ , s) =
∞∑

n=1

|an|2n−s−1 =
∞∑

n=1

a2
nn−s−1 =L(f⊗f, s)

([16, (13.49)], where a(n)=n−1/2an) then has a simple pole at s=1 (the residue given by
[16, (13.52)] is non-zero). Its Euler product decomposition is

L(f⊗f, s) =
∏
p

(1+p−s)(1−α2
p p−s)−1(1−p−s)−1(1−β2

p p−s)−1

=
1

ζ(2s)

∏
p

(1−p−s)−2(1−α2
p p−s)−1(1−β2

p p−s)−1,

where αp and βp are the reals satisfying αp+βp=ap/
√

p and αpβp=1.
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Now

−L′(f⊗f, s)
L(f⊗f, s)

= (− log L(f⊗f, s))′

=2
ζ ′(2s)
ζ(2s)

+
∑

p

(log p)
∞∑

m=1

p−ms(2+α2m
p +β2m

p )

=
∑

p

(log p)a2
p p−s+G(s),

where G(s) is holomorphic for Re(s)> 1
2 .

Because L(f⊗f, s) has a simple pole at s=1, the function −L′(f⊗f, s)/L(f⊗f, s)
has a simple pole with residue 1 at 1. It is now enough to apply a Tauberian theorem of
Hardy–Littlewood type [19, Theorem 5.11]; we obtain

∑
n6x

(log p)a2
p

p2
∼ log x,

which, by partial summation, gives∑
n6x

a2
p

p2
∼ log log x,

as desired.

Proof of the main theorem. By (2.1), it is enough to show that

|{p 6N : there exists q such that q2 | f(p) and q >N(log N)−ε}|= o

(
N

log N

)
for some ε>0 independent of N . (Recall that p and q both denote primes.) If f is
reducible, the problem reduces to that with f replaced by each of its irreducible factors
g (since p2 |f(n) for any prime p not dividing the discriminant Disc(f) implies p2 |g(n)
for some irreducible factor g of f) and then, since deg g62, we have the problem solved
by Estermann [7] (use simply [12, Lemma 6.2]).

We may thus assume that f is an irreducible polynomial. We may also assume
without loss of generality that the leading coefficient of f is positive. Let α be a root of
f(x)=0. Define K=Q(α)/Q.

Let N ′=maxn6N f(n)/(N(log N)−ε)2. Clearly N ′∼cfN(log N)2ε, where cf is the
leading coefficient of f . Let z=e(log N ′)/2 log log N ′

. Let S be the set of unramified primes
that split completely in K/Q. By Lemma 4.1, the number of primes in S dividing f(p)
is {

(3+of (1)) 1
6 log log z =

(
1
2 +of (1)

)
log log z, if GalK/Q =Sym(3),

(3+of (1)) 1
3 log log z =(1+of (1)) log log z, if GalK/Q =Alt(3),



square-free values of f(p), f cubic 133

for all but of (N/log N) primes p6N . (A prime p that splits completely has Frobp equal
to {e}, where e is the identity element of the Galois group.) The number of primes in S

dividing f(p)/q2 differs from this by at most 1, and thus is also{ ( 1
2 +of (1)

)
log log z, if GalK/Q =Sym(3),

(1+of (1)) log log z, if GalK/Q =Alt(3).

Note that no unramified prime inert in K/Q can divide f(p) (and thus no such prime
can divide f(p)/q2).

Suppose first that GalK/Q=Alt(3). Lemma 5.4 (applied with N ′ instead of N) gives
us that there are at most

Of,ε

(
N

(log N)log 3−4ε

)
possible values of d=f(p)/q2, where p ranges across the primes p6N , with of (N/log N)
primes excluded. Let D be the set of such values d.

Suppose now that GalK/Q=Sym(3). By Lemma 6.1,

∑
p6z

a2
p

p2
=(1+of (1)) log log z;

we can thus apply Lemma 4.3, and obtain that, for all but of (N/log N) primes p6N ,

∑
p′6z

ap′

p′

(
f(p)/q2

p′

)
=O(1)+

∑
p′6z

ap′

p′

(
f(p)
p′

)
=−(1+o(1)) log log z.

Proposition 5.5 (applied with N ′ instead of N) now gives us that there are at most

Of,ε

(
N

(log N)(1+log 3)/2−3ε

)
possible values of d=f(p)/q2, where p ranges across the primes p6N , with of (N/log N)
primes excluded. Let D be the set of such values d.

We now use Proposition 3.5, and obtain that the numbers of integers (prime or not)
16x6N such that dq2=f(x) for some d∈D and some integer q>N(log N)−ε is at most
Of,ε(N/(log N)log 3−4ε) (if GalK/Q=Alt(3)) or at most Of,ε(N/(log N)(1+log 3)/2−4ε) (if
GalK/Q=Sym(3)). Since log 3>1 and 1

2 (1+log 3)>1, we are done.
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