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0. Introduction

The purpose of this paper is to establish a geometric quantization formula for a Hamil-
tonian action of a compact Lie group acting on a non-compact symplectic manifold with
proper moment map. Our results provide a solution to a conjecture of Michele Vergne
in her ICM 2006 plenary lecture [26].
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Let (M,w) be a symplectic manifold with symplectic form w and dim M=n. We
assume that (M, w) is prequantizable, that is, there exists a complex line bundle L (called
a prequantum line bundle) carrying a Hermitian metric h* and a Hermitian connection
VI such that the associated curvature RE=(V%)? satisfies
LRL =w (0.1)
5 . .

Let TM be the tangent vector bundle of M. Let J™ be an almost-complex structure
on T'M such that

g "M (u,v) =w(u, JMv), w,veTM, (0.2)

defines a JM-invariant Riemannian metric g™ on TM.

Let G be a compact connected Lie group. Let g denote the Lie algebra of G and g*
denote the dual of g. Let G act on g* by the coadjoint action.

We assume that G acts on the left on M, that this action lifts to an action on L,
and that G preserves g7, JM hl and V7.

For Keg, let KMe¢>(M,TM) denote the vector field generated by K over M.
The moment map p: M —g* is defined [8] by the Kostant formula

2mip(K):==Viu—Lrk, Keg. (0.3)

Then, for any K €g, we have
du(K)=igmw. (0.4)

From now on, we make the following assumption.

Fundamental assumption. The moment map p: M —g* is proper, i.e., for any com-
pact subset BCg*, the subset = 1(B)C M is compact.

Let T be a maximal torus of G, let t be its Lie algebra and t* be the dual of t. The
integral lattice ACtis defined as the kernel of the exponential map exp: t—T', and the real
weight lattice A*Ct* is defined by A*:=Hom(A,27Z). We fix a positive Weyl chamber
t7 Ct*. Then the set of finite-dimensional G-irreducible representations is parameterized
by AT :=A"Nt].

Recall that g=t®r, with t=[t, g], and so g*=t"@®r*. Thus we identify A% with a
subset of g*. For yeA¥, we denote by V,YG the irreducible G-representation with highest
weight ~. The VVG, veA%, form a Z-basis of the representation ring R(G). Let R[G] be
the formal representation ring of G. For W€ R[G], we denote by W, €Z the multiplicity
of VI in W.

Take yeAl. If v is a regular value of the moment map g, then one can construct
the Marsden-Weinstein symplectic reduction (M., w. ), with M,=G\p~*(G-v) being a
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compact orbifold (since u is proper). Moreover, the line bundle L (resp. the almost-
complex structure J™) induces a prequantum line bundle L., (resp. an almost-complex
structure J,,) over (M, w,). One can then construct the associated Spin®-Dirac operator
(twisted by L-) Di”:Qo’e"en(My,LW)%QO’Odd(MW,L,Y) (cf. (1.5) and §2) on M, the
index of which is defined by

Q(L,) =Ind(D%") := dim Ker(D}") —dim Coker(DY") € Z. (0.5)

If yeA% is not a regular value of yu, then by a perturbation argument (cf. [17] and
[18, §7.4]), one still gets a well-defined quantization number Q(L,) extending the above
definition.

We equip g with an Adg-invariant scalar product. We will identify g and g* by this
scalar product. Let m: TM — M denote the projection from T'M to M. We identify T* M
with 7'M by the scalar product g7™.

Set H=|u|?. Let X"*=—JM(dH) be the Hamiltonian vector field associated with H.
Then (see (2.5))

XM =2ouM (0.6)

where pM %> (M, TM) is the vector field on M generated by u: M —g, i.e., for any
2 €M, 1M (@)= (u(x))" (2).
For a>0, set
M, :=H([0,a]) ={z € M :H(z) <a}.

For any regular value a>0 of H, by (0.6), u™ does not vanish on dM,=H"'(a), the
boundary of the compact G-manifold M,. According to Atiyah [1, §1 and §3] and
Paradan [18, §3] (cf. also Vergne [24]), the triple (M,,u™, L) defines a transversally
elliptic symbol

ople i=a*(ic(- +pM)@IdL): 7 (AT OV M, )@ L) — 7 (AT M,)® L),
where ¢(-) is the Clifford action on A(T*V M) (cf. (2.3)).(*) Let Ind(o%:b) € R[G] denote

the corresponding transversal index in the sense of Atiyah [1, §1].

THEOREM 0.1. (a) For yEA*, there exists a,>0(%) such that Ind(oﬁ/{;)vez does
not depend on the regular value a>a~ of H.
(b) Ind(og{;)vzer does not depend on the regular value a>0 of H.

(1) The symbol UILL{Z is the (semi-classical) symbol of Tian—Zhang’s [22], [23] deformed Dirac
operator (2.11) in their approach to the Guillemin—Sternberg geometric quantization conjecture [7]. The
associated symbol was used by Paradan [18], [19] in his approach to the same conjecture.

(?) In view of Theorem 2.1, we can take ay=c,/4m? with ¢, being defined in (2.8).
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By Theorem 0.1, for y€A%, we can associate an integer (L), that is equal to
Ind(a%ﬁ)v for large enough regular values a>0 of H.

We can now state the main result of this paper.

THEOREM 0.2. For yeAY, the following identity holds:

Q(L)y=Q(Ly). (0.7)

Remark 0.3. When M is compact, Theorem 0.2 is the Guillemin—Sternberg geomet-
ric quantization conjecture [7] which was first proved by Meinrenken [15] and Vergne [24]
in the case where G is abelian, and by Meinrenken [16] and Meinrenken—Sjamaar [17]
in the general case. We refer to [25] for a survey on the Guillemin—Sternberg geometric
quantization conjecture.

If M is non-compact but the zero set of X7 is compact, then Theorem 0.1 is already
contained in [19] and [26], while Theorem 0.2 was conjectured by Michele Vergne in her
ICM 2006 plenary lecture [26, §4.3]. Special cases of this conjecture, related to the
discrete series of semi-simple Lie groups, have been proved by Paradan [19], [20].

Theorem 0.2 provides a solution to Michele Vergne’s conjecture even when the zero
set of XM is non-compact.

Theorem 0.2 is a consequence of a more general result that we will now describe.
Let (N,w™, JV) be a compact symplectic manifold with compatible almost-complex
structure JV. Let (F,hf, VF) be the prequantum line bundle over N carrying a Her-
mitian metric h¥ and a Hermitian connection V¥ satisfying
)
2r
We assume that G acts on N and F as above. Let n: N—g* be the associated moment

(V*»QZHUN.

map.

Let DE: Q0even(N| F)—Q00dd(N, F) be the associated Spin®-Dirac operator on N.
Then as a virtual representation of GG, we have

Ind(aﬁn) =Ind(DF) :=Ker(D) —Coker(DF) € R(G). (0.8)

For yeA%, let Q(F'), + be the multiplicity of the G-irreducible representation (V,YG)* in
Ind(DF)eR(G).

Let L®F be the prequantum line bundle over M x N obtained by the tensor product
of the natural lifts of L and F to M x N.

THEOREM 0.4. For the induced action of G on (M xN,w®w™) and LRF, the
following identity holds:

QULEF)y=0)= Y Q(L)y Q(F)s,s. (0.9)

7€A1
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For yeA%, denote by O,=G-v the orbit of the coadjoint action of G on g*. Let
L™ be the canonical prequantum holomorphic line bundle on O,, such that the associ-
ated moment map is the inclusion O, g*. By the Borel-Weil-Bott theorem and the
solution of the Guillemin—Sternberg geometric quantization conjecture for the compact
manifold O,, x O,,, one has that Home(V,$, V,¢ @V,$)#0 if and only if v3€ G114+ G-vs.
In particular, one has |v1|<|vs|+|va|. For vi,vp€A%, set
C}, ., =dimHome (VS VE@VS). (0.10)
By taking N=0, and F'=(L")*, we recover Theorem 0.2 from Theorem 0.4 by using
the Borel-Weil-Bott theorem.
By applying Theorems 0.2 and 0.4 to M x N x O, we get the following result which

is trivial in the compact case.

COROLLARY 0.5. For any yEAY the following identity holds:

QULOF),= Y €} ,QL)w QF)u,, (0.11)

vy,v2 €AY

where there are only finitely many non-vanishing terms in the right-hand side.

We now explain briefly the main ideas of the proofs of Theorems 0.1 and 0.4.

The first observation is that in the case when v=0, both Theorems 0.1 and 0.2 are
relatively easy to prove. On the other hand, in the case when 0, one needs to establish
the more general Theorem 0.4, in order to prove (0.7).

In fact, it is relatively easy to see that (cf. (4.1) and (4.2))

QLEF )y = QULEF)—). (0.12)

Thus Theorem 0.4 is a consequence of (0.12) and the identity

QULEF)y=0= Y Q(L)y-Q(F).. (0.13)

veAi

Assume that M is compact. Then (0.13) is trivial and this is why one only needs to
prove (0.7) for y=0, in order to establish (0.7).

However, if M is non-compact, although the geometric data on M x N have product
structure and the associated moment map is 6(z,y)=u(z)+n(y), the vector field §M*N
on M x N induced by 6 is not a sum of two vector fields lifted from M and N (cf. (3.7)).
Thus one cannot compute directly Q(L&F) = as the right-hand side of (0.13).
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To be more precise, let a>0 be a regular value of H so that u* does not vanish on

OM,. By the multiplicativity of the transversal index,

> Ind(0}"),-Q(F)y .« =Ind(ola 1) 0. (0.14)
WEA:

Let b>0 be a regular value of H'=1|?. Then §M*N €T (M x N) does not vanish on the
boundary (M x N), of (M xN)y={(z,y)€M x N:|0(z,y)|?<b}. By Theorem 0.1 (b),
we have

QLBF)y=o =Tnd (0 557" )1=0. (0.15)

We take b>0 large enough so that
MyxNC(MxN), and O(MxN)yNO(MyxN)=0.

Denote by M, ;, the closure of (M x N)y\ M, xN. Then M, is a manifold with bound-
ary OMq y=0(M x N),UI(Myx N).
Let W, Mg p—g be a G-equivariant map such that

(Voo xny=p,  while (Vo p)|aarxny, =0
From the additivity of the transversal index, we get
Id (0751, , )v=0 = Id (o 15" ) mo—Ind (07l ) <o (0.16)
We infer from (0.13)—(0.16) that Theorem 0.4 is equivalent to
Ind(0y iy, )r=0=0. (0.17)

Let a; >0 be another large enough regular value of H. By the additivity and the

homotopy invariance of the transversal index, we have

M, My, Mo, XN .
Ind(UL@)FP:\IJa,b)v:O_Ind(aL@)I}ifIfﬂl,b)v:O:Ind(UL@)I}“,,L )WZO_Ind(U%FX,:LV)VZO- (0.18)

By (0.14) and (0.18), and by taking N=0, and F=(LY)* for yeA%, we find that The-
orem 0.1 (a) is a consequence of the vanishing result (0.17).

Note that in the situations considered in [19] and [20], for a,b>0 large enough, one
is able to find ¥, ;: M, —g such that \I!ﬁ“'b €T Mg does not vanish on M, . From
this, (0.17) follows tautologically. However, there is no canonical way to construct ¥, ;
such that \I/ﬁ”’bGTMavb does not vanish on M, in the general situation considered

here.
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Our proof of (0.17) consists of two steps. In the first step, we express the transver-
sal index as an Atiyah—Patodi—Singer (APS) type index on corresponding manifolds with
boundary. Then in a second step, we construct a specific deformation map ¥, ;, when
a, b>0 are large enough, so that we can apply the analytic localization techniques devel-
oped in [3], [22] and [23] to the current problem. This allows us to show that the APS
type index corresponding to the left-hand side of (0.17) vanishes.(?)

This paper is organized as follows. In §1, we express the transversal index as an
APS type index. In §2, we establish Theorem 0.1, by applying the identification of the
transversal index to an APS index that was established in §1, as well as the analytic
localization techniques developed in [3], [22] and [23]. In §3, we present our proof of
(0.17). Finally, in §4, we provide details of the proofs of (0.12) and (0.14), thus completing
the proof of Theorem 0.4. We explain also the compatibility of quantization and its
restriction to a subgroup.

The results of this paper, the first version of which was put on the arXiv as [12],
have been announced in [13] (cf. also [10, §4]).

0.1. Notation

In the whole paper, G is a compact connected Lie group with Lie algebra g. Let Ad,
denote the adjoint action of g€ G on g. We equip g with an Adg-invariant scalar product,
and we identify g and g* by this scalar product. Let Vi, ..., Vqim g be an orthonormal
basis of g.

If a Hilbert space H is a G-unitary representation space, by the Peter—Weyl theorem,
one has the orthogonal decomposition of Hilbert spaces

H= P H", with H” =Homg(VE, H)®VC. (0.19)
WEAi

We will call HY the y-component of H. Moreover, if WCH is a G-invariant linear
subspace, for yEAT, we set

W7r=WnH" (0.20)
and call it the y-component of W. If D:Dom(D)CH—H is a G-equivariant linear
operator, where Dom(D) is a dense G-invariant subspace of H, for yeA% we denote by
D(7y) the restriction of D to Dom(D)” which is dense in H?.

If G acts on the left on a manifold M, for K €g we denote by

e

0
M y_ Y K
K™Y (z)= o

t=0

(3) In fact, the corresponding vanishing result for the APS index, in the case when N is a point
and =0, has already been proved in [23, Theorems 2.6 and 4.3].
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the corresponding vector field on M.
For any ®€%>°(M, g), we denote by ®;, 1<j<dim G, the smooth functions on M

defined by
dim G
O(x)= Y O;(x)V; forzeM. (0.21)
j=1

Let ®™ denote the vector field over M such that, for any z €M,

dim G
oM(2) = (@ (2)) (2) = Z @;(a)VM(2), (0.22)

where (®(2))M is the vector field over M generated by ®(z)cg.
Finally, when a subscript index appears two times in a formula, we sum up with this

index unless other notification is given.
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manuscript. X. M. thanks Institut Universitaire de France for support. The work of
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of the School for hospitality. We are also indebted to George Marinescu for his critical
comments. Last but not least, we would like to thank the referees of this paper for their
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1. Transversal index and APS index

In this section we express the transversal index as an Atiyah-Patodi-Singer (APS) type
index which has been studied in [23] for the y=0 component.

This section is organized as follows. In §1.1, we recall the definition of the transversal
index in the sense of Atiyah [1] for manifolds with boundary. In §1.2, we consider instead
an index problem on a manifold with boundary for a Dirac operator with APS boundary
conditions. In §1.3, we prove that the corresponding Dirac operator on the boundary is
invertible. This guarantees that the APS index of the Dirac operator is invariant under
deformation. In §1.4, we show that the transversal index can be identified with the APS
index by using a result by Braverman [4].

We use the same notation as in the introduction.
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1.1. Transversal index

Let M be an even-dimensional compact oriented Spin®-manifold with non-empty bound-
ary OM and dim M =n. In the following, the boundary OM carries the induced orienta-
tion. Let g7 be a Riemannian metric on the tangent vector bundle m: TM — M. Let E
be a complex vector bundle over M.

We assume that the compact connected Lie group G acts isometrically on the left
on M, and that this action lifts to an action of G on the Spin®-principal bundle of T'M
and on E. Then the G-action also preserves OM.

We identify TM and T*M by the G-invariant metric g . Following [1, p.7] (cf.
(18, §3]), set

TeM ={(z,v) €T,M:x € M and (v, KM (z))=0 for all K €g}. (1.1)

Let S(TM)=S.(TM)®S_(TM) be the vector bundle of spinors associated with the
spin‘-structure on TM and g7. For any V€T M, the Clifford action c(V) exchanges
S (TM) and S_(TM).

Let ¥: M —g be a G-equivariant smooth map. Assume that ¥ does not vanish on
OM, i.e., UM (x)#£0 for any z€IM.

Let o3y €Hom(x* (S, (TM)®E), n*(S_(TM)®E)) be the symbol

opy(z,v) =" (ic(v+¥")®1dp)| (4, for €M and veT, M. (1.2)

Since UM does not vanish on OM, the set {(x, v) GTgM:J%{\I, (z,v) is non-invertible}
is a compact subset of T M (where M:M\(’?M is the interior of M), so that Jg{‘l, isa
G-transversally elliptic symbol on Te:M in the sense of Atiyah [1, §1 and §3] and Paradan

[18, §3], [19, §3]. The associated transversal index can be written in the form

Ind(ofy) = €D Ind(oh ), V¥ € RG], (1.3)
wEAi

with each Ind(og/{q,)wez. Moreover, Ind(ag\p) only depends on the homotopy class of
U as long as UM does not vanish on 9M, but does not depend on ¢g”. Note that the
number of y€A* such that Ind(og/y )70 could be infinite.

1.2. The Atiyah—Patodi—Singer (APS) index

We make the same assumptions and use the same notation as in §1.1.
Let A® be a G-invariant Hermitian metric on E and V¥ be a G-invariant Hermitian

connection on F with respect to h?. Let h%(TM) be the G-invariant Hermitian metric on
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S(TM) induced by g7 and a G-invariant metric on the line bundle defining the spin®
structure (cf. [9, Appendix D]). Let A5(TM)@E be the metric on S(TM)®E induced by
the metrics on S(TM) and E.

Let VS(T'M) he the Clifford connection on S(T'M) induced by the Levi-Civita con-

VIM of gTM and a G-invariant Hermitian connection on the line bundle defining

nection
the spin® structure (cf. [9, Appendix D]). Let V(TM)®F he the Hermitian connection
on S(TM)®E induced by VS(T'M) and V.

Let dvys denote the Riemannian volume form on (M, g?™). The L?-norm |s|¢ of

SEC®(M,S(TM)®E) is defined by

I3 = /M 15(2)[2 dons (). (1.4)

Let (-,-) denote the Hermitian product on ¢>°(M, S(TM)®E) corresponding to | - ||3,
and let L2(M,S(TM)®FE) be the space of L2-sections of S(TM)®FE on M.
Let D%, be the Spin°-Dirac operator defined by (cf. [9, Appendix DJ)

D= c(e) VETMOE ¢ (M, S(TM)® E) — € (M, S(TM)QE), (1.5)
j=1

n

-1 is an oriented orthonormal frame of T'M.

TM

where {e;}

Let €>0 be less than the injectivity radius of g* . We use the inward geodesic
flow to identify a neighborhood of the boundary M with the collar OM x [0, ], and we
identify OM x {0} with the boundary oM.

Let e, be the inward unit normal vector field perpendicular to OM. Let eq,...,e,_1
be an oriented orthonormal frame of TOM so that {e;}7_; is an oriented orthonormal
frame of T'M |55;. By using parallel transport with respect to V7™ along the unit speed
geodesics perpendicular to OM, ey, ..., e, give rise to an oriented orthonormal frame of
TM over OM x[0,¢].

The operator D¥, induces a Dirac operator on dM,

Dy € (0M, (S(TM)® E)|oar) — € (OM, (S(TM)®E)lons)

defined by (cf. [6, p. 142])

n—1 n—1
1
DE, =— Zc(en)c(ej)vijM)@EJr5 > i (1.6)
j=1 j=1

where
mik = (ViMer,en)lon, 1<j,k<n-1, (1.7)
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is the second fundamental form of the isometric embedding tgnr: OM — M. Let DgM, 4
be the restrictions of D}, to € (0M, (S+(TM)®QE)|anm ).

As in (1.4), we define the Riemannian volume form dvsps on OM, the Hermitian
product (-, -)aar0 and the L:norm || - ||aar,0 on € (OM, (S(TM)RE)|on)-

By [6, Lemma 2.2], DgM is a self-adjoint first-order elliptic differential operator
defined on M. Moreover, the following identity holds on OM:

Dy s = clen) ™ (=D 5 )clen). (1.8)

Since the G-action preserves M, the restriction of UM to OM is a section of TOM, i.e.,

M| o0 €6°°(OM, TOM). (1.9)
For TeR, set
Dy =Dy +iTe(¥M), (110
Dip w0 =Dy ple= (M5, (TaneE),
and
DgM,T :DgM_iTC(en)C(‘I’M)v (1.11)

E _ nE
DaM,j:,T = DaM,T|<g°°(aM,(Si (TM)®E)|an)-

Then DﬂT exchanges the spaces associated with S, (TM)®F and S_(TM)®E, and by
(1.9), DgM’T is self-adjoint and preserves € (OM, (S+(TM)®FE)|anm)-

Let Spec(Dfy; 4 ) be the spectrum of Dy, , 1. For AeSpec(Dfy, , 1), let Ex « 1
be the corresponding eigenspace. Let Psq 4 7 (resp. Pso 1 1) be the orthogonal projection
from L*(OM, (S+(TM)®E)|anm) onto @y5g B+ (tesp. @yog Ex,r). We will call
Pso 4.1 (resp. Pso _ 1) the APS projection associated with DthT (resp. DngT).

For T€R, let (D}, 7, P>o,+.1) (resp. (D} _ 1, P>o,-,r)) denote the corresponding
operator with the APS boundary condition [2]. More precisely, the boundary condi-
tion of Df/[7+,T (resp. DﬁmT) is Pso+,7(slam)=0 for s€€>°(M,S,(TM)RE) (resp.
Poo._ 7(slonm)=0 for se €°(M,S_(TM)QE)).

Both (D3}, 7, Po.+.7) and (D} _ 1, Pso,- r) are elliptic, and (D} _ 7, Pso,- 1) is
the adjoint of (D , 7, P>o.41) (cf. (1.8) and [6, Theorem 2.3]). In particular, they are
Fredholm operators and they commute with the G-action.

Let QNps r(E, ¥),€Z, yeA*, be defined by

@ Q%PS,T(Ev \Ij)’y'V'yG = Ind(Dﬂ,+,T, Psoi.1) (1.12)

€A
T = Ker(D]\E/[,+,T7 P>0,+,T)—KGT(D1€1,7,T, P.o_1)€R(G).
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1.3. An invariance property of the APS index

PROPOSITION 1.1. For yeAZ, there exist Cy>0 and T,>0 such that, for T>T,
and s€€*(OM,(S(TM)QE)|am)", we have

”DgM,TS”%M,O 2 ||DgMSH%M,O+C’Y T?|\sl13az.0- (1.13)

In particular, D§y; () is invertible.
Proof. From (1.6), (1.9) and (1.11), we get

n—1

(D8EM7T)2 = (DgIVI)Z —iT Z Wjjc(en)c(‘l’M)

n—1
TS clen)ele;) (VETMDE (c(e, )o(TM))) (1.14)

j=1
2TV E L2 g M 2,
For any K €g, let Lx denote the Lie derivative of K acting on (M, S(TM)®F)
and thus also on (M, (S(TM)®E)|oar). Then
pSTMNSE () .= g3 IMSE 1 e (M, End(S(TM)®E)). (1.15)

By (0.21) and (0.22), we have

dim G dim G
S(TM)QFE S(TM)®E
Vs VO = 3 WLy Y (VO - L), (1.16)
=1 j=1 '

In view of (0.19), it is clear that each Ly,, 1<j<dim G, acts as a bounded operator on
L2(OM, (S(TM)®E)|on)"-
On the other hand, since ¥ does not vanish on dM, there exists C'>0 such that

|[TM|2>4C on OM. (1.17)
We deduce from (1.14)—(1.17) that there exists C’ >0 such that, for any
S€C(OM,(S(TM)RE)|onm)?,

we have
”DgM,TS”%M,O 2 ||DgM5||%M,o*TC;HSH%M,O+4T20H5H%M,o- (1.18)

The inequality (1.18) implies that Proposition 1.1 holds with 7%, =2C" /C. O
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PROPOSITION 1.2. For yeA%, there exists T, >0 such that Q\og (E, V), does not
depend on T'>T,.

Proof. For yeA?%, let (Dﬁ’+,T(7)7P>O,+,T('Y)) denote the corresponding operator
with the APS boundary condition [2], which is just the restriction of (D}} , 7, P>o.+1)
to the corresponding vy-component. Thus, (Df/[7+7T('y), Pso.+ (7)) is elliptic and defines
a Fredholm operator, the index of which is given by (1.12),

Ind(Dﬁ’+’T(7), P>0,+,T(7)) = Q/AX/[PS,T(E7 \I})“/'V"/G' (1.19)

By Proposition 1.1, there exists 7., >0 such that (Dy; , 7(v), P~o,+ (7)) forms a con-
tinuous family of Fredholm operators for T>T,. Therefore, Ind(D}; , (), Po,+,7(7))
does not depend on T'>T,. By (1.19), this completes the proof of our proposition. [

Definition 1.3. By Proposition 1.2, with every y€A* we may associate an integer
QYoo (E, )., that is equal to

Q%P&T(E? \Il)'y for T > T’Y'

Remark 1.4. The same argument shows that the APS type index Q35hg(E, ¥)., does
not depend on the given metrics and connections. It only depends on the homotopy class

of ¥ as long as \IJM|(9M does not vanish over OM.

1.4. Transversal index and APS index

THEOREM 1.5. For yveAY, the following identity holds:
Ind(0 y), = QAps(E, ¥),. (1.20)

The proof of Theorem 1.5 consists of two steps. In the first step, by applying a
result, of Braverman [4, Theorem 5.5], we express Ind(oj ) as the L*-index of a Dirac
operator on M=MU(8M x (—o0,0]), and show that the difference of the above L2-index
and QIIXIPS(E,\IJ)AY is equal to an index on the cylindrical end. In the second step, we
prove that the index on the cylindrical end is zero.

We start by deforming our geometric data to those on a manifold with cylindrical
end.

Recall that ¢7%M is the Riemannian metric on M induced by ¢”™. We use the
inward geodesic flow to identify a neighborhood of M with the collar OM x[0,¢]. As
g™ is G-invariant, the G-action on M x [0, €] is induced by the G-action on M, and
there exists a family of metrics g7%M (x,) on TOM satisfying

ga\gn) :ggaM(mn)Jr(dzn)Q, (y,zn) € OM x[0,¢]. (1.21)
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For (y,z,)€0M x[0,¢], we identify S(TM)y 4,y and Ey, ;) with S(T'M), ) and
E(y,0) by using the parallel transport with respect to VS(TM) and VF along the geodesic
[0,1]3t+ (y, tx,). Thus, the restriction of (S(TM), h3TM)) (vesp. (E, h”)) to OM x [0, €]
is the pull-back of the restrictions S(TM)|gar and A5 |5 (vesp. Eloa and hZ|or)
to OM. Moreover, the G-actions on S(T'M) and E on OM x[0,¢| are induced by the
G-actions on S(T'M)|apn and E|sps under this identification.

By the homotopy invariance of the transversal index Ind(a% o)~y (cf. (1.3)) and of
the APS index QALg(E, ¥), (cf. Remark 1.4), to establish Theorem 1.5 we may and
will assume that e=2, that g7M, pS(TM) gS(T'M) GE and ¥ have product structures
on OM x[0,2], and that the G-actions on objects such as E and S(T'M) on OM x [0, 2]
are the product of the G-actions on their restrictions to M and the identity in the
direction [0, 2].

We now attach an infinite cylinder 9M x (—oo, 0] to M along the boundary M and
extend trivially all objects on M to M=MU(OM x (—o0, 0]). We decorate the extended
objects on M by a tilde. Thus, for (y, z,)€0M x (—oo, 2], we have

V(y,r,) =¥ (y,0)€g,

VI o
T =9y +(dn)?,

(ST, WS T ST o (g o =5 (STM)oar, BT g, VT o),
(B, 15,V 5) anrx (—o0,21 =1 (Eloar, B oar, VZ lonr),
(1.22)
where 71: OM x (—00, 2] —0M is the natural projection.
Let D¥ be the Spin‘-Dirac operator on 65 (M, S(TM)®E) defined as in (1.5). By
(1.5), (1.6) and (1.22), on IM x (—o0, 2] we have

D]Ié[ :c(en)DgM+c(en)8—%. (1.23)
For any he€> (M), let Dg , e the operator on €g° (M,S(TM)®E) defined by
E _pE 1 (GM
DM’thMJrzhc(\If ). (1.24)

Let Hih(J\Zf) be the Sobolev space obtained by completion of €5°(M,S.(TM)RE)
under the norm || - [[,1 defined by

Isll7 1 = Is13+1D5 ,513- (1.25)

Let f be a strictly positive G-invariant smooth function on M such that flu=1,
and such that, for (y,z,)€dM x (—o0, 0],

f(y,z,) does not depend on y for x, <0 and f(y,z,)=e*" for z, <—1. (1.26)
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For T>0, Tf is an admissible function on M for the triple (S(TM)®E, VS(TM)SE, o)
in the sense of Braverman [4, Definition 2.6] as we are in the product case.
By a result of Braverman [4, Theorem 5.5] (cf. also [14]), for T>0 and yeA¥,

D]P\%’Tf (7) and D]%’i’Tf (v) extend to bounded Fredholm operators, for which we keep

the same notation,

DE 4 (0):HL 1, (3)7 — L2(M, S, (TAD)® B, (1.27)

and the following identity holds:

Ind(Dy; | ., (7)) = Ind (o )V (1.28)

Set
My =0M x(—00,1]C M,
My =0M x(—00,2] C M, (1.29)
Z=0Mx[0,2] C M.

Let £€%4°°([0,2]) be such that

floayg=1, 0<E| /2329 <1 and ¢&[3/2,2) =0, (1.30)
and such that
p=(1-¢£)"? (1.31)

is smooth. Clearly, ¢ extends to M by setting =1 on Mo=M\(OM x (0,1]). It also
extends to M by setting £=0 on M\ (OM x[0,2)). Thus ¢ also extends to M, and
M\ (OM x[0,2)). Set

H=IL*M,S(TM)®QE)®&L*(Z,(S(TM)®E)|z),

N L (1.32)
H' =L2*(M,, (S(TM)®E)| 7, )®L*(M, S(TM)® E).
Let U: H— H' be defined by
(51,82) € H— (51— @S2, ps1+Esz) € H'. (1.33)

Let U*: H'— H be the adjoint of U. By (1.33), U*(s1, $2)=(Es1+ps2, —ps1+E&s2)€H.
On easily sees that U is unitary (cf. [5, §3.2]), that is

U*UZIdH and UU*ZIdH/. (1.34)
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Fix ye A% and let T'>0. If W is one of My, M and Z, let (D{;’?,7+7TJ£('y)7 P%7+7Tf(7))
be the operator with the APS boundary condition

HY (W, PX , )"

- (1.35)
={ueH} 1, (W) PL , 7;(v)(ulow) =0} — L*(W, (S_(TM)Q E)|w)".
Since f=1 on M and Z, we know that, for W=M and W=2,
(D€V,+,Tf(7)7 P;[(/),+,Tf(7)) = (D€V,+,T(7)a P>0,+,T(’Y))a (1.36)

and they are Fredholm as explained in §1.2.
By (1.27), (1.34) and (1.36), we see that
UIDE, . 4 )+ (DE , +(3), Poro()IU"
H-l%—,Tf(MQ’P%?#»,Tf)v@H-l%—,Tf(M? P%’+’Tf)’y (137)
— LA (M, (S_(TM)®E)|7,) ®L*(M, S_(TM)® E)"

is Fredholm.
By the construction of U, it is clear that U preserves the APS boundary conditions

on the corresponding boundary components. Moreover, the difference

UDE . ()+(DE.2(7) Poo s r (1)U (1.38)
~(DF, - 1O P2 2y ()= (D1 (1), Poor (7))

is a zeroth-order differential operator with compact support,(*) which implies that it is

a compact operator. Thus,

(DF 0 P2 () H(DF ., 2(3). Poe r(7)

M,

. . E
is Fredholm. In particular, (DM27+7Tf, P>0,+,Tf

(7)) is Fredholm. Moreover, we have

md(D% . () +d(DE, 7(7). Po (7))

N . (1.39)
= Ind(DJL\%Z’JHTf (7)3 P%?Jr,Tf (7)) +Ind(D1€4,+,T(’7)7 P>0,+,T(FY))'

Note that 0Z=(OM x {0})U(—M x {2}). By (1.22) and (1.23),

Pso s rlomxqoy =P>0+.1, Pso,-rlonxioy =Pso,-.1;

(%) Indeed, for any s€ %5 (Maz, (S+ (T]\7[)®E)|M2)EB‘K§°(M, (S+(TM)®E)|p) which is supported
in M2\ (OM x[0,2]), the difference operator in (1.38) acts on s as a zero operator.
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and P>o ¢ 7|—anmx{2) (resp. Pso,— 7|_oarx{2}) is the orthogonal projection from
L*(OM, (S (TM)®E)|am)  (resp. L*(OM, (S-(TM)®E)|an))

onto Pyco Ex+,7 (vesp. D, £x,-,7). Thus from the product structure on Z, we get
(cf. [2, Proposition 3.11])

Ker(D7 , 1(7), Pso.+,7(7)) =0,

(1.40)
Ker(DE,—,T(W’)a Poo_1(v)= Ker(DgM,—,T('V))'
Combining (1.40) with Proposition 1.1, for T>T,,, we get
md(DZ , 7(7), P>o,+1(7)) =0. (1.41)
By Definition 1.3, (1.19), (1.28), (1.39) and (1.41), for any T'>T,,
md(DE, (), P () = (Ind (o g )~ Q¥ps (B, 9),)-VE.  (142)
For the second step, we need to prove the following lemma.
LEMMA 1.6. For yeA%, there exists T >T., such that for T>T5 we have
Ind(Df%’ﬁT s, P, 1,(7)=0. (1.43)

Proof. Following Bismut—Lebeau [3, pp. 115-116], let
Uy =0M x(—o00,1) and Uy;=090M x(0,2]

be an open covering of M 5. Let hy and hs be two smooth G-invariant functions on M 9
such that h? and h3 form a partition of unity associated with the covering {Uy, Us}.
By (0.22), (1.5), (1.15), (1.16) and (1.24), we deduce that

(DE 2 =(DEY24iTS ofe;)e(WEH (13

M,Tf
j=1
dim G dim G o B (1.44)
—2Tf Y WLy, ~20Tf Y U, pSTOE V) 412 M2,
j=1 j=1

By (1.22), ¥; and MS(TM)®E(I/J») are constant on z,, on M, and thus, from (0.21), there
exists C7>0 such that

dim G ~ dim G ~ B B
S ULy |+ Y q/juS@M)@E(v;-)‘gcl, (1.45)
j=1 Jj=1

where the norm in (1.45) refers to operators acting on L2(M, S(TM)®E)?.
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By (1.26), (1.44) and (1.45), there exists C'>0 such that, for T>0 and
SG%OOO(UD (S(TM)®E)|M2)W7
we have

E = 112
IDE  sI3=((DE . )%s.5) > IDEsI3+T2 18 |s|o-CT | fsllollslo.  (1.46)

Thus from (1.17), (1.22), (1.26) and (1.46), we see that there exist T3 >T, and Cy>0
such that, for any T>T} and s€65°(Uy, (S(TM)@ENI%)V, we have

IDE IDE s[3+Co1?ls|3. (1.47)

TfS”O

By Green’s formula, (1.23) and (1.24) imply that, for 56%50(1\7[2, (kS'(T]\7.I')®E)|]\7[2)7

we have

IIDM TfS”g:/M (s, (Dﬁz,Tf) s) dv]\7h+/m7[ (s,c(=en)DE 1 8)dvyg,
2 2
STM E
:/M < (D;\E/I%Tf) 5> dvﬂzi/aﬂ <5,v_(en )® >dU3]\712 (148)
2 2

E
_/m (5. DE0, 8 dvggy,.

By the Lichnerowicz formula (cf. [9, Appendix D]), we have
(DE =-AP10(1), (1.49)

where AP is the Bochner Laplacian, and O(1) is an endomorphism of S(TM)®E. By
(1.22), the fiberwise norm of this endomorphism has a uniform upper bound over M.
By Green’s formula, we have, for any SE%OOO(M% (S(TM)@EMMQ),

/N (—ABs sydvg — [ (5, VITDOE g gy o | yS@IDSEg2 (1 50)
Mo OMo

Note that f=1 on dM,. By (1.13), for any T>T, and s€6° (M, (S(TM)@EHMQ)V

with 17-7%;,”(s|a]\7[2):07 we have

[ D5 1) i, <V T sl 7,0 <0 (15)
2
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As ho has compact support in 8M><(0,2]C]\~42, on which f=1, by (1.17), (1.22),
(1.44), (1.45) and (1.48)—(1.51), there exist constants C3, Cy, C5>0 such that, for T'>1
and s€65° (M, (S(TM)®E)| y7,)" with P12, 1. (s],57,)=0, we have

1D, 74 (h2s)[1§ > Csl| DY (has)llg — CaT |lhos|[§+CsT? | has|3. (1.52)

Since h?+h3=1, for any sé%ow(ﬂg,(S(T]\Zf)(@EMMQV with ng)’j‘i,Tf(s\aMJ:O,

we obtain

IDY, 7 p8l6 =1ha D osl3+ 2Dy sl

Mo, Tf Mo, Tf Mo, Tf
>3IDE | (ms)B+3IDE | (has)]3 (1:53)

= lle((dh1)*)sll5 —lle((dh2)*)sl(5,

where (dh;)* €TMj is the dual of dh; with respect to gTM.
By (1.47), (1.52) and (1.53), there exist Cg, C7>0 such that for any 7'>T} >T’, and
SECE (M, (S(TM)®E)| 7. )" with P22, 14(s]y57,)=0, we have

IDE, 77518 = 3IIDE (has)[§+3Csl| D (hes)llg —CoT|ls[|3+CT2[Is[l5.  (1.54)

By
Djléb(hjs):th]]é[zSJrc((dhj)*)s, hi4+hi=1

and (1.54), there exist 7o >T, and Cs, C9>0 such that, for 7'>T5 and
SE G (Mo, (S(TM)®E)|y7,)",  with PLE, 11(s]o5,) =0,
we have that
1D, 7808 = Csl| D sllg +CoT[Is]3. (1.55)
By Proposition 1.1, (1.19) and (1.55), we get Lemma 1.6. O

By (1.42) and Lemma 1.6, the proof of Theorem 1.5 is complete.

2. Quantization for proper moment maps: proof of Theorem 0.1

The purpose of this section is to give a proof of Theorem 0.1. This proof consists of two
steps. In the first step, we reduce Theorem 0.1 to a vanishing result for the transversal
index and then use Theorem 1.5 to interpret the latter as a vanishing result for the APS
type index. In the second step, we apply the analytic localization method developed in
(3], [22] and [23] to prove the vanishing of this APS type index.
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We use the assumptions and the notation in the introduction. Also, for any real
1-form v on a Riemannian manifold, we denote by v* the corresponding vector field on
this manifold.

Recall that (M,w, JM) is a non-compact symplectic manifold of dimension n with
a compatible almost-complex structure J and g?™ =w(-, JM.) is the associated Rie-
mannian metric on M. We have the canonical splitting TM @rC=T"DMeTO-D M,
for the complexification of T'M, with

TOON = {ue TM®@gC: JMu=iu},

(2.1)
TOYM ={ue TM@rC: JMu=—iu}.

Let T*OD M be the dual of 71 M.
The almost-complex structure J* on TM determines a canonical spin®-structure on
T M with the associated Hermitian line bundle det(7(%% M):=A™/2(T(19 M). Moreover,
we have
S(TM)=ANT* OV M),
S (TM)= A (T* OV ), (2.2)
S (TM)= ATV ),

For any WeTM, we write W =w+@eTOHOMTODM. Let w*eT* %DM correspond
to w so that (w*,a)=g¢"™ (w,u) for any €TV M. Then

(W) =V2(w* A—ig) (2.3)
defines the Clifford action of W on A(T*(DM). It interchanges
Aeven(T*(O,l)M) and Aodd (T*(O’l)M).

The Levi-Civita connection V™ together with the almost-complex structure J™ induces
by projection a canonical Hermitian connection vTTOM oy 7O AL, This induces a
Hermitian connection V9¢* on det(T™9 M). The Clifford connection VAT UM o
A(T*©V M) is induced by the Levi-Civita connection V7™ and the connection Vet
(cf. [9, Appendix D], [11, §1.3] and [22, §1a)]).

We take E=L, where L is the prequantum line bundle on M in the introduction, and
set Q% (M, L)=¢>°(M, AN(T**VM)®L). Let D%, be the corresponding Dirac operator
defined as in (1.5).

Recall that the moment map p: M —g* is assumed to be proper. Let X7 be the

Hamiltonian vector field of H=|u|?, i.e.,
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By (0.2), (0.4), (0.21) and (2.4), we find (cf. [22, (1.19)]),

dim G dim G
XM= —JM(aH) = =27 Y pildpy) =2 > VM =2uM. (2.5)
j=1 j=1

For any regular value a>0 of H=|u|?, denote by M, the compact G-manifold with
boundary defined by
M,={xeM:H(x)<a}. (2.6)

By (2.5), 4™ does not vanish on the boundary OM,=H"(a) of M,.

Let a’>a>0 be two regular values of H. Let M, , denote the compact G-manifold
with boundary Ma@f:m. By the additivity of the transversal index (cf. [1, The-
orem 3.7, §6] and [18, Proposition 4.1]), we have, for yEAX,

M, _, Ma a’
Ind(oy %)y —Ind(o}), =Ind(ap ). (2.7)

Let Casg=— Z?gc V;V; be the Casimir operator associated with G. Let c, >0 be
defined by
CaSG|VWG =cyldye . (2.8)

Clearly, c,—0=0. As Casg|ye=— ngG Ly, (v)?, from (1.45) and (2.8) we get

dim G

> Ly () (2.9)

C'Y:

By Theorem 1.5, (2.7) and (2.9), the following result is a reformulation of Theo-

rem 0.1, with a more precise form of the bound a,.

THEOREM 2.1. Fiz yeAX. Then for any reqular values o' and a of H with

Sy

i
a >a>4772,

one has
Ma,a’
Qapg (L, p)y=0. (2.10)
Proof. If y=0, (2.10) has been proved in [23, Theorems 2.6 and 4.3]. The proof for
general y€A* is a modification of the proof of [23, Theorem 2.6], where it is assumed
that y=0. Let y€A* and o’ >a>c, /47 be fixed.
By (2.5), (1.10) becomes in the current situation (cf. [22, (1.20)] and [23, (1.19)]),
T

Dfyr =D+ 5

o(XT): Q% (M, 00, L) — Q0" (M, o1, L). (2.11)



32 X. MA AND W. ZHANG

Let eq,...,e, be an oriented orthonormal frame of TM, .. By [22, Theorem 1.6], the

following formula holds:

iT & iT
(D)= (Dﬁ)2+z > cler)e(VEMXT) - > T [V X 0 ]
k=1
dim G
tg Y eIV (VI + VM) (2.12)
j=1
dim G T2
+ATTH-2T uijj+Z\X”|2.
j=1

Let U be a G-invariant open neighborhood of dM, . in M, o such that X* does
not vanish on #. Since X™ does not vanish on OM,,q , the existence of U is clear. Let
U’ be a G-invariant open subset of M, o such that U’ NOM, =2 and UUU' =M, ..

By the fact that Ly, acts as a bounded operator on L*(My o, AT*OD MR L)Y, by
using (1.13) instead of [23, Theorem 2.1], and by proceeding in exactly the same way as
in [23, Proof of Proposition 2.4] (cf. also the proof of (1.52)), we know that there exist
T1>0 and C; >0 (depending on U and «) such that, for any 7>T; and s€Q%* (M, 4, L)?
with supp(s) CU and Pxo,+,7(s|onm, ,,)=0, the following inequality holds:

ID31,75115 = Ci (1 Dis g+ T2 1s113)- (2.13)
For any >0, set
dim G
Gt..= (D r)’—(Am—e)TH+2T > 1;Ly,. (2.14)
j=1

Clearly, G%’E is of the same form as FX in [22, (2.6)], with 47TH in [22, (2.6)] being
replaced by eT"H.

By replacing 47H in [22, (2.26)] by ¢H in the proof of [22, Proposition 2.2, case 2],
from (2.12) and (2.14), we know that the analogue of [22, Proposition 2.2] holds for the op-
erator G%,é for any x€ M, o \OM,,q/, there exist C;; >0, b, >0 and an open neighborhood
Uy C Mgy o \OM, o of z such that, for any T>1 and s€Q%* (M, o, L) with supp(s)CU,,
we have

(G o5, 5) > Cal| Dkysl3+(T—b,) Is[1). (2.15)

From (2.15), as explained in [22, §2 (c)], there exist Co>0 and by >0 such that, for any
T>1 and s€Q%* (M, 4, L) with supp(s)CU’, we have

(GF.es,8) = Co(|| Dyysllg +(T—by)lIsI3)- (2.16)
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LEMMA 2.2. There ezists 0<e<4m such that, for any s€Q* (Mg q,L)", one has

<<(47T—€)H—2id§:GujLVj>s,s> >0. (2.17)

j=1

Proof. Since a'>a>c.,/4n?, there exists £ € (0, 4m) such that the following inequality
holds on M, 4

4c
>0 2.18
e (2.18)
By the Cauchy inequality and (2.9), we have that, for any s€Q%* (M, o/, L)7,
dim G dim G
1 dr—e o, 2 )
(Y wivss)| <5 3 (T sl+ 2 ivslf)
= = (2.19)

4dr—e c
= TS )+ sl

From (2.18) and (2.19), we obtain, for any s€Q%*(M, o, L)?,

dim G
. 4m—e 2c
<<(47r—6)'H—22 E ,ujLVj>s,s> > << 5 H_4W15>S’s>>0' (2.20)

Jj=1

The proof of Lemma 2.2 is complete. O

Let £>0 be fixed as in Lemma 2.2. By Lemma 2.2, (2.14) and (2.16), we have that,
for any T>1 and s€Q%* (M, ./, L) with supp(s) i/,

1D rslls = (D r)?s, 8) 2 (GF.es,5) = Co (| Dygsllg+(T=b1) |1s]13)- (2.21)

Let hy and hg be two smooth G-invariant functions on M, .- such that {h? h3} is a
partition of unity associated with the G-invariant open covering {U’,U} of M, o .(°)

Let s€Q%* (M, o, L)" with P>O)i’T(s|aMaya,):0. Clearly, his and hss still belong
t0 Q0 (Mq,qor, L)Y with supp(has) CU and P+ r((has)lonm, ,,)=0, while supp(his) CU'.
By applying (2.13) to hgs, (2.21) to hys, and by proceeding as in (1.53)—(1.55) (cf.
[3, pp.115-116]), we obtain constants C3>0 and by>0 such that, for any T'>T7 and
s€0%* (M, a0, L) with P>0,i’T(s|aMaya,):0, one has

((Dirr)?s, s) = Cs(|IDysl§+(T —ba)Is][3)- (2.22)

By Proposition 1.1, (2.5), (2.11) and (2.22), we have Q%‘;‘S“’}(L,M)V:O for T>0 large
enough. Combining this with Definition 1.3, we get Theorem 2.1.
By Theorems 1.5 and 2.1 and identity (2.7), we get Theorem 0.1. O

(5) We can take as ho a radical function with respect to |u|? near M, .+ as in (1.30), then h; and
hg are automatically G-invariant.
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3. A vanishing result for the APS index

In this section, we prove the vanishing result (0.17).

This section is organized as follows. In §3.1, we state (0.17) as a vanishing theorem
on the APS index, Theorem 3.2. In §3.2, we construct a suitable function ¥: M x N —g
which is homotopy equivalent to the function Y in Theorem 3.2 such that the APS index
associated with ¢ vanishes. In §3.3, we prove the invertibility of the operator associated
with 1, Theorem 3.7, up to a pointwise estimate, Lemma 3.9. In §§3.4-3.6, we prove
Lemma 3.9.

We make the same assumptions and we use the same notation as in the introduction
and in §2.

3.1. A vanishing theorem for the APS index

For convenience, we recall the basic setting. Let (M,w) and (N,w”) be two symplectic
manifolds with symplectic forms w and w?, and dim M =n. We assume that M is non-
compact and that N is compact.

Let JM and J¥ be almost-complex structures on TM and TN such that w(-, JM.)
defines a metric g7 on TM, and w™(-,JV.) defines a metric g’ on TN. Let
(L,h*,V*) be a prequantum line bundle on (M,w), and (F,h* V) be a prequantum
line bundle on (N,w®) (cf. (0.1)).

Suppose that G acts (on the left) on M and N, and its actions on M and N lift to
L and F. Moreover, we assume that these G-actions preserve the above metrics and the
connections on TM, TN, L, F, J™ and JV.

Let the moment map pu: M —g be defined as in (0.3). Let n: N—g be the moment
map defined in the same way for (N,w™) and (F,hf", VF).

We will keep the same notation for the natural lifts of the objects on M and N to
M x N. In particular, L& F' is the Hermitian line bundle on M x N induced by L and F'
with the Hermitian connection VZ®¥ induced by V¥ and V¥,

The G-action on M X N is defined by g-(x,y)=(gz, gy) for (z,y)e M x N. We define
the symplectic form 2 and the almost-complex structure J on M x N by

Qz,y) =w(@)+w(y) and J=(JM, JV). (3.1)
The induced moment map 6: M x N —g is given by
0(x,y) = p(x)+n(y). (3.2)

Since p: M —g is proper, 6: M x N —g is also proper.
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For A>0, set

My ={(z,y) E MxN :|u(z)*=A} =M, x N,
Ma={(z,4) € Mx N: [0(a, ) =24}, (33)
M={(z,y) E MxN:|u(z)*> A and |0(x,y)]* <24} C M x N,

where OM 4 is the boundary of M4 defined in (2.6). As p and 6 are proper and M is
non-compact, [u(M)[* and |§(M x N)|? contain a half line of R, and thus for A large
enough, M; and My are non-empty.

Remark 3.1. Since N is a compact manifold, there exists Cy>0 such that
In|<Cy on N. (3.4)
By (3.2) and (3.4), we have |0|<|u|+Co. Set
Ao= (00)2.
V2-/5/3
By (3.3), for A> Ay, we have
1l >V2A-Co> /34 on My, (3.5)

Thus, for any A>Aj, we have MiNMy=2.

By Sard’s theorem, given C'>0, there exists C'>C which is a regular value of the
functions [p|? and £(6|> on M x N.

From now on, let A>A be a regular value of |u|? and 1|62 By Remark 3.1 and
(3.3), M is a smooth G-manifold with boundary dM=M;UMa,.

From (0.4), (0.21) and (3.2), for any 1<j<dim G, we have

VMN=VMLyN 0 = pitn;, (dpg) =TV and  (dn)*=JNVN. (3.6)
By (0.22) and the first equation of (3.6), we get
prM N =y My Noand - oM N =M 49N (3.7)

By (2.5), u™ does not vanish on M;, so that p™*¥ also does not vanish on M;.
Similarly, >N does not vanish on M.

Let Y: M—g be a G-equivariant smooth map such that

Y|M1 :/J|M1 and Y|M2 :9|M2- (38)

Then YMe%* (M, TM) does not vanish on M.

The main result of this section can be stated as follows.
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THEOREM 3.2. There exists Ay >Aq such that for any regular value A> Ay of |u|?
and %\0|2, the following identity holds:

QNEs(LOF,Y )0 =0. (3.9)

Remark 3.3. By Theorem 1.5, (3.9) is equivalent to (0.17) with a=1b=A.

3.2. Proof of Theorem 3.2

LEMMA 3.4. There exist two real smooth functions a,QEE‘KOO(R) satisfying the fol-

lowing properties:

a@){t?, for t<3, ¢3<t>{1—f37 Jor t< 1t
1, fort>2, 2(1—t), fort>%, (3.10)

at)+o(t)=2 for 1<t<Z,  F()<0 for0<t<l.

~

Proof. We may set aig(t)=t> and ¢o(t)=1—t> on t<3; do(t)=1 and @o(t)=2(1—t)
on t}%; and assume that ag and QNSO are linear on ggtg %. By smoothing out the linear

interpolation, starting from ao and ¢g, we get & and ¢ satisfying (3.10). O

Let A>Ag be a regular value of |u|? and 3|6]%. Set

[t ~(t
aA(t)a(A1> and ¢A(t)¢(A1)- (3.11)
The following identities hold:
F = tar( L r =Lt
aA(t)—Aa (A 1) and ¢A(t)—Aq§ (A 1). (3.12)
Let f4€% (M x N) be defined by
Ba=|ul+aa(ul)(07 ~|ul?). (3.13)

Let 04,7v4,%a: M x N—g be the G-equivariant smooth maps defined by

0a=0—9a(Ba)n, (3.14a)
va=2[14+ay (|u*) (101 = 1) p+20a(|p*)n, (3.14b)
Ya=0a—¢4(Ba)(0a,n)VA- (3.14c¢)

For any function f on M x N, we denote by d™ f and dV f its differentials along M
and N, respectively.

The following lemma partly motivates our choice of 14 (compare with (2.5)).
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LEMMA 3.5. The following identity holds:
294l = — JM (@M |04 ?)*. (3.15)
Proof. By (0.21), (3.2) and (3.13)—(3.14b), we have
dBa=2[1+ay (|ul*) (101 —|pl*) —a(lp*)p; d pj+204(|ul*)6; db;
=45 d" pj+2aa(|uf®)0; dVn;, (3.16)
doa;j = d0;—¢a(Ba)n;dBa—da(Ba)d™n;.
From (3.6) and (3.16), we get
(do;)" = JMVM 4 NV, (3.17)
(dBa)" = JM i +2aa(|uf?) TV OV,
(doa;)* = TMVM =g (Ba)n JM vk +(1=0a(Ba) TV VY =24 (Ba)ova(|pf*)n; TN OV
From (0.22), (3.14¢) and the third equality in (3.17), we get

204 =204; (VM =4 (Ba)niva ) = =20 045 (dM 0a;)" = —=TM (@ |oa?)*.  (3.18)

The proof of Lemma 3.5 is complete. O

LEMMA 3.6. There exists Ay>Ag such that, for any reqular value A>As of |u|?
and $|0|2, the following identities hold:

Yalm = p, Balm, =4,
4 (3.19)
Yalm,= <1+A<9,77>>97 Balm,=2A.
Moreover, the following inequality holds:
120wt on M (3.20)
q0m=5 on Ma. .
In particular, wﬁ/l does not vanish on OM.
Proof. On My, we have |u|>=A. By (3.10)—(3.14a), we deduce that, on My,
Ba=A, da(Ba)=1, u(Ba)=aa(|u’)=0 and oa=p. (3:21)

The first two equalities in (3.19) follow from (3.14c) and (3.21).
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From (3.5) and (3.10)—(3.14b), for A> Ay, we have, on Mo=(|0]?)"1(24),

aa(lul)=1, o4 (|ul)=0, ~ya=26,

) (3.22)
Ba=2A, ¢a(Ba)=0, o0a=0, ¢,4(Ba)

By (3.14c) and (3.22), the last two identities in (3.19) hold. Since |#]=v/24 on My, (3.4)
implies that there exists As>Ap such that (3.20) holds on My for A> A,.

We have seen just after (3.7) that y™ and ™ do not vanish on M; and Mo,
respectively. Hence, by (0.22), (3.19) and (3.20), %" does not vanish on M when
A>As. O

Let DL@F: Q0 (M x N, L& F)—Q% (M x N, L®F) be the Spin®-Dirac operator on

M xN (cf. (1.5) and §2). Following (1.10), let D1 be the operator defined for T€R,
by

D1 = DT 1iTe(yph): Q0 (M, L& F) — Q% (M, L& F). (3.23)

Let P>o . 1 be the APS projections associated to Daaq,+, 7 induced by Dag,r (cf. (1.11)).

THEOREM 3.7. There exists Ay > Ay such that if A> A is a regular value of |u|?
and %\0|2, then there exist C>0 and Ty>0 such that, for any T>Ty and G-invariant
element s of Q% (M, L&F) with Psq . 1(s|lom)=0, the following inequality holds:

[IDamrslls = CUIDPEF s|F+Ts13)- (3.24)
Proof of Theorem 3.2. Let A>A; be a regular value of |u|?> and %|0|2. Then, by

Theorem 3.7, (D, +,7(y=0), P>o,+,7(7=0)) is invertible for T'>T,. By Propositions 1.1
and 1.2, and Definition 1.3, this implies that

Qs (LOF,14)y=0 =0. (3.25)
We connect the map Y defined in (3.8) and ¢4 via
Yar=(1—-t)Y +tpa, 0<t<1L

Lemma 3.6 shows that ¢4f €% (M, TM) generated by 14, via (0.22) does not vanish
on OM for every 0<t<1. By the homotopy invariance of the APS index (cf. Remark 1.4)
and (3.25), we get (3.9). O

The rest of the section is devoted to the proof of Theorem 3.7.
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3.3. Proof of Theorem 3.7

Let {ex}?_, (vesp. {1} Y) be an oriented orthonormal frame of TM (resp. TN). Then
{e, ydmM—_fe, YU{f;} is an oriented orthonormal frame of T M. Set

La = e((@40;) ) eV +2V)) e((d ;) )e(V}),
Lao = H{(A—iJ™M)YVM (dMepa;)*) = Te[(dM )| poo yy @ VM, (3.26)
Ly =c((dN ;)" )e(V}Y).

THEOREM 3.8. The following formula holds:

n

D DL®F2+ZT< Z clex)c VTMZZ’A)Tr[(VTMwAM)|T(1’°’M])
k=1

dim N 3.27
+iT(; Z C(fl)C(VgNVjN)Tr[(VTNVjNNT(LO)N])@bAJ 327

=1
+ATT (Y4, 0)+iT (La1+Tas+1a3) — 2T a; Ly, + T2y .

Proof. Let VA" be a brief notation for VAT "V MSLOF By (3.23), we deduce as
n (1.14) and (1.44) that
dim M

DX =D 24T 3 elea)e(VEMYYY) — 2TV + T2 (3.28)

a=1

From (3.6), the definition of the moment map, and LgX=VIMX—-VIMKM for
Kegand X€€>®(M,TM), we get (cf. [22, Lemma 1.5] and (2.12))

A© X
M = wAijM
J

n dim N
) 1 1
=aiLv, +2milwa, 0)+ D cler)e(VEN VA +5 D elf)e(VENVY )b
k=1 =1
1 1
+50a; Te[(VTMVM) | o a] +50a; Te[(VTNVY) pao ) (3.29)
By (3.26), we get
1o 1o .
5 2 clene(VEM VM) =5 Z (VM YA )~ e((dMa;)")e(V), 50
k=1 k= .

Pa; TE[(VIMVM) a0 0] = [(VTM"/}A Nraon]—Taz.
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Also by (0.21) and (3.6), we have

dim M n
Y clea)e(VEMUR) =D elen)e(VEM YR ) Fe((dMag) eV (3.31)
a=1 k=1

dim N
+ 3 el f)e(VENV ) pas+e((dNpa) ) eV + V).
=1
By (3.26) and (3.28)(3.31), we get (3.27). O

LEMMA 3.9. There exists A1 > Ao such that if A>A; is a reqular value for |p|* and
1102, then, for any z€ M with ¢}'(2)=0 and any f€(ANT* OV M)R(LOF)|pm)l:, the
following inequality holds at z:

dim N
Re(i(5 3 NV V) =TIV o] )oasf. 1 )

=1 (3.32)
+Re((4m(a, 0) +i(Lar+Laz+1a3)) f, f) = Al f]7.
Lemma 3.9 will be proved in §§3.4-3.6.
Let Fpq7: Q% (M, LRF)—Q% (M, L®F) be defined by
Fui,r =Dy p 42T a;Ly,. (3.33)

PRrOPOSITION 3.10. Let A1>0 be as in Lemma 3.9. If A> A1 is a regular value for
|u[? and £|60|%, then, for any z€ M\OM, there exist an open neighborhood U, of z in M,
with U,NOM=2, and C,>0 and b,>0 such that, for any T>1 and s€Q"* (M, L®F)
with supp(s)CU,, we have

Re(Faq.rs, s) 2 Cx (| D7 s[5 +(T —b2)||s][3)- (3.34)

Proof. Let A>A; be a fixed regular value for |u|? and 1|0|%, and fix ze M\OM.
If ¢!(2)#0, then, by (3.27) and (3.33), we see that Proposition 3.10 holds.

From now on we assume that 4'(2)=0. We write z=(z¢,y0) with zo€M and
YoE€N. From (0.22), Y3 (2) = (2)+¥l (2) with YA (2)€TM and ¢4 (2)€TN. Thus

YW (2)=0 if and only if % (2)=0and ¥} (2)=0. (3.35)

Let #’'=(x1, ...,zn) be the normal coordinate system with respect to {e;|s, }}_; near
xo€M. Let y'=(y1,...,¥dim n) be the normal coordinate system near yo€N associated
with {fi|y, JHm .
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By (3.15), ¥4(2)=0 implies that (d™|g4|?)(2)=0. Thus we can choose the or-
thonormal frame {e;}!", so that the function [g4(+,y0)|? has the following expression

near xo:
loa (@', y0) > = |oa(wo, yo) P+ ajai+O(|2'). (3.36)
j=1

The following lemma is an analogue of [22, Lemma 2.3].
LEMMA 3.11. The following inequality holds at the point (xq,yo):

n n

c(ek)c(VeTkaA )— ZTY[(VTMz/’A Nra.o ] Z |aj|7 (3.37)
k=1 =1

N | .

and the inequality is strict if at least one of the a;’s is negative.
Proof. Set
n
Oy ) == el y) T e (3.38)
k=1

Then Lemma 3.5 and (3.36) imply that
te(2', yo) = apzr+O(|2'2). (3.39)

Let ej=e;"+e ' eTHOMaTODM. By (2.3), (3.38) and (3.39), we deduce that,
at the point (zg,yp), one has

i — .
5 2 cler)e(VEM YR i (VMR ) .o a]
k:l

Z—*Z% c(ej)e(J 61)—%Z((l—iJM)(—%JMej)aeﬁ

=1
i ! (3.40)
. 1,0
:—QZajzeg,lej A
j=1
n
2= Z |aj|a
j=1
where the last inequality is strict if at least one of the a;’s is negative. O

Let AM and AN be the Bochner Laplacians on M and N acting on Q%*(M, L)
and Q*(N, F), respectively. We still denote by A and AV the induced operators
acting on Q% (M xN,L®F). Then AM*N=AM 4t AN is the Bochner Laplacian on
M x N. Clearly, they are non-positive operators acting on Q%*(M x N, L@ F'). From the
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Lichnerowicz formula for DX®F2 (cf. [9, Appendix D] and [11, Theorem 1.3.5]), we get,
on M,
DL®OE2 — _AMXN L 0(1), (3.41)

where O(1) is an endomorphism of A(T*CDM)RLRF.
Let Fj, ; be the formal adjoint of Faq 7. Note that [¢4!|2=|¢3 [+ |} [>. From
(3.27), (3.32), (3.33), (3.37), (3.38) and (3.41), we find that L(Fauz+Fiqp)+AMN i

an operator of order 0, and near z=(xg, yo),
1 n n
§(FM,T+FXA’T)+AMXN > —TZ |a;|+T2 th(x’7y’)2
j=1 j=1 (3.42)
+T2 0 (2", )P +aTA+O(L+ T2 |+ Ty'|).

over the ball BM (zg)={2’€M:d(z',z0)<eo}, and (BM(zo)x BL (y0))NOM=@. For
any 1<j<n, let (V,,;)* be the formal adjoint of Vé\JO We have (cf. [11, (1.2.9)])

Let €9>0 be sufficiently small so that the orthonormal frame {e;}%_; is well defined

(Ve, )" ==V 4(e;, VIMey). (3.43)
Set
—AY =3V +T(sgnag)t (2, y) (VA +T(sgna)t; (', o). (3.44)

j=1
Clearly, —A¥ is non-negative near z=(zo,yo). We verify using (3.39) that
A =AM Ty g+ T2 Y 12y ) O+ T2 [+ Ty ). (3.45)
j=1 j=1
By (3.42), (3.44) and (3.45), the following identity holds for any k>1, when both

sides act on sections with compact support in BM () x BY (yo):

1
5 (Fmr+Fiyr) 2 —AN =AY +7TA+ O (14 T2/ |+ Tly'|)

S _Iav_ L Ty TA+O(+T|2'|+T|y (346)
i —E;WH‘W +OQA+T"[+Ty')).

By (3.41) and (3.46), there exist C3>0 and C3>0 such that, for any 0<e<ep and any
s€Q% (M, L®F) with supp(s)C B (z¢) x BN (yo), we have

1 1 — C
Re(Fuirs.5) > + [ D45 s+ [T(mk; l-cae) - (Z+en)|Istp. @an)
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We take k large enough and choose € small enough so that

A 1 A
5—72|aj|>0 and §—C3€>0- (3.48)
Jj=1

With e chosen as in (3.48), the conclusion of Proposition 3.10 follows from (3.47) in the
case where @[Jﬁ/‘ (2)=0. The proof of Proposition 3.10 is complete. O

By Proposition 3.10 and the gluing trick due to Bismut-Lebeau [3, pp.115-117]
(which has been used in the proof of (2.16)), we obtain the following fact: for any
open subset U'C M with U’ NOM=, there exist Cs>0 and b; >0 such that, for any
s€N%* (M, L®F) with supp(s)CU’, we have

Re(Fa,rs, s) = Co (| D7 s[5 +(T —by)Is13)- (3.49)

Let U be a G-invariant open neighborhood of M in M such that 14" does not
vanish on U. As 1! does not vanish on M, the existence of U is clear. Then one can
proceed in exactly the same way as in the proof of (1.52) (or [23, Proposition 2.4]), to
see that there exist T,>0 and C7>0 such that, for any 7>T, and s€Q%* (M, Lo F)7=°
with supp(s) CU and Psg 4 7(s|oam)=0, we have

IDazslls = Cr(IDP2 s3+T2s115). (3.50)

In view of (3.33), (3.49) and (3.50), one can then proceed as in the proof of (2.22),
which goes back to [3, pp. 115-117], to see that Theorem 3.7 holds.

3.4. Proof of Lemma 3.9 (I): uniform estimates on functions
We first give uniform estimates for some functions appearing in the definition of v4 and
14 when A—o00.
Recall that A;>0 was determined in Lemma 3.6. Let A> Ay be a regular value for
|11|? and 1]0]%. Set
a1 = 1+ay (|u*) (10~ |uf?),
Ta2=1-2¢"4(Ba)(04:n)Ta1,
Tas=1=0a(Ba) — 204 (Ba)oa(ul®) (04, ), (3.51)
Tas = [1=¢a(Ba)]7a1 —aa(|pl)
=1-¢a(Ba)—aa(u*)+[1=pa(Ba)las(Iul) (6] ~[u]*).



44 X. MA AND W. ZHANG

Then

TA5:TA17'A470¢A(|,LL|2)TA2. (3.52)
From (3.14b) and (3.51), we obtain
ya =274 24 (|p*)7. (3.53)

From (3.2), (3.14a), (3.14c), (3.51) and (3.53), we get

Ya=p+1—da(Ba)In—d4(Ba){oa,n)27a1 4204 (|p|*)n) =Tazp+Taan. (3.54)

In the following, for s€R and a function f4 on M, we write f4=0((A®) if there
exists C'>0 (independent of A) such that its €°-norm on M can be controlled by C A%.

The following lemma contains basic asymptotic estimates for these 7 functions.

LEMMA 3.12. There exists Ag>As such that, for A>Ag, we have

A<Ba<2A on M\OM. (3.55)
Thus

0<da(Ba)<l on M\OM. (3.56)

Moreover,
Ta1=14+0p(A7/?), (3.57a)
Taz=140y(A1/?), (3.57b)
Tas=[1=¢a(B4)] (1405 (A7"/?)), (3.57¢)
Tas =[1—pa(Ba) —aa(|u>)](1+0On(A7/2)). (3.57d)

Finally, for any A> Ag, we have

<0, if (z,y) € M\OM,
1— - 2 3.58
Tt (359
Proof. From (3.2)—(3.4), for A>Ay> Ao we have, on M,
A2 <l 6]+ 1] < VEAY2 +(Co| < (232 /BTB)A?, 550
3.59

1612 = |ul* =2 (1, m) +[n|* = O (A1/?).

From (3.10)—(3.13) and (3.59), for A> Ay we have, on M,

aa(lu)=00(1), Ba=|u+00(A"?) and  aly(|ul*) = ¢a(B4)=Op(A™"). (3.60)
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If |u[*< 3 A, then (3.10), (3.11), (3.13) and (3.59) yield

O = (1) o (M) o )

) (3.61)
= <ﬂ1> <1+00(A1/2)>.
If |u\2>§A, then, by (3.60), for A> A, large enough we have
Ba>2A+0,(AY?) > 8A. (3.62)

By (3.3), (3.61) and (3.62), we have 54>A4 on M\OM for A> A, large enough.
On the other hand, if |m2<§A, then by (3.60), for A> A, large enough, 54 <2A.
By (3.10), (3.11) and (3.13), if |u[*>32 A, then
aa(lpP)=1, ay(uf)=0 and Ba=|0. (3.63)

Combining with (3.3) we have 84<2A on M\IOM for A> A, large enough. Thus there
exists A7>Ay such that (3.55) holds for A>A;. Note that ¢(0)=1, ¢(1)=0 and ¢’ <0
on (0,1]. Thus (3.11) and (3.55) imply (3.56).

The identity (3.57a) follows immediately from (3.51), (3.59) and (3.60).

From (3.14a), (3.56) and (3.59), we obtain, for A> A7,

loal <|0]+|n| <24Y% on M. (3.64)

From (3.4), (3.51), (3.57a), (3.60) and (3.64), we get (3.57b).
We now prove (3.57c). If |u[*<3A, then by (3.60), we have 84<12A for A> A7
large enough. Then (3.10), (3.11) and (3.61) imply

sty = (Y.
1—¢a(Ba) = <ﬂ"‘—1>3= ("‘;—1)3(1+00(A1/2)), (3.65)
ebfq(ﬂA)i(i“l)Z.
From (3.4), (3.51), (3.61), (3.64) and (3.65), we deduce that

2
ras= (1= |1+ (L 1) (1 0u(a72) (0

=(1—0a(Ba))(1+0p(A71/?)).

(3.66)
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If |u[*>3 A, then, by (3.10), (3.11) and (3.62), we have
1—¢a(Ba) =2 1—-¢a(2A4) =52 >0,

from which (3.57¢) holds, since, in view of (3.4), (3.60) and (3.64),

u(Ba)aa(|u)®)(oa,n) = Oo(A™Y?).

Together with (3.66), this implies (3.57c).
For the proof of (3.57d) and (3.58), we first consider the region |u[?>3A in M. By
(3.51) and (3.63), we get

a5 =1=¢4(Ba)—aa(lu*) = —¢4(Ba). (3.67)

Thus (3.57d) holds. From (3.22), (3.56) and (3.67), we get (3.58).
By (3.10), (3.12) and (3.60), we find that, for A> A7,

$a(Ba)=da(lul*)+Oo(A71/%) on M. (3.68)

If 3A<|u|?<3 A, then, from (3.10) and (3.68), for A large enough we have

1—¢a(Ba)—aa(|pf’) < -3 (3.69)

By (3.51), (3.59), (3.60) and (3.69), we get (3.57d) and (3.58).
Finally, if [u[?<3A, by (3.51), (3.57a) and (3.65), the following identities hold for
A> A7 large enough:

1-oa(n -t =~ (1Y i (1) ouat)

TA5:[1—(%514(6,4)](1—}—00(14*1/2))_aA(|u|2) (370)

=[1—a(Ba) —aa(lul*)](1+0o(A™?)).
From (3.21) and the first identity in (3.70), we get (3.58) in this case.

Combining the three cases discussed above, we conclude that there exists Ag> Ay
such that (3.57d) and (3.58) hold for A> Ag. The proof of Lemma 3.12 is complete. [

The following lemma will also be used in the proof of Lemma 3.9.

LEMMA 3.13. There exists Ag> Ag such that, for any A> Asg,

(1=¢a(Ba))?—ca(pl?)

NS 5B —an ()

<12 on M\OM. (3.71)
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Proof. By (3.56) and (3.58), we have
(1=¢a(B4))* —a(|p’) <1=¢a(Ba)—aa(|ul’) <O on M\OM. (3.72)
To complete the proof of (3.71), we have to show that
11-10¢4(Ba) —1laa(|p*) =¢4(B4)* <0 on M\OM. (3.73)

We examine three cases. First, if [pu|>>3A, then (3.73) follows from (3.56) and (3.63).
Secondly, if |p[?<3A, then by (3.65) we get

11-10¢4(8a) —1aa(|ul?) —¢a(Ba)® < —1laa(|ul*)+12(1- ¢4 (Ba))

. (lﬂ_ >2<_7+00<A1/2>>.

By (3.74), we see that (3.73) holds for A large enough.
Thirdly, if %A<|u|2< gA, then from (3.69), for A>0 large enough, we have

11-10¢4(8a) —1loa(|ul*) —¢a(Ba)* < — 32 +0a(Ba) —da(Ba)” < — 4. (3.75)
This completes the proof of Lemma 3.13. O

(3.74)

By (3.57b), we may and will assume that A is large enough so that 742>3. Set

TA4

Ta6 = 204 (Ba)as (|uf*) (04, m) (10" = |ul )( . )+4¢A(ﬂA)aA(|u| Jeam =

P2l on )+ @) 22) 42000 22,

7ar = 25 (Ba)ola () o, ) A2 TADTAL (3.76)
A2
2040 01+ 60 P () PR
2
+¢'A<m>[(m+1 2¢A<ﬁA>)5—aA<| RRENELS
TA2 TA2 TA2

LEMMA 3.14. For A>0 large enough, the following identities hold on M:
Ta6 =204 (Ba)[1=da(Ba)—aa(|p|*))(1+0(A™/2)),

(3.77)
Tar =4 (Ba)[(1=4a(B4))* —aa(|p*)|(1+0o (A7)
In particular,
{ Ta6 >0 and 747 >0, if (x,y) € M\OM, (3.78)
Ta6=0 and Ta7=0, if (z,y) € OM = M;UMa, .

and
TA7<6TA6(1+00(A_1/2)). (3.79)
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Proof. Note that, from (3.4), (3.10), (3.11), (3.60) and (3.64), on M we have
oy () (a,m) = Oo(A=Y2), /i (|ul?) (oA, n) = Og(A~3/2),
— ¢4 (Ba){0a, )+ (8a)? 0] = Op(A~3/2).

Recall that ¢'<0 on (0,1]. By (3.12), (3.55) and the second equation of (3.60), there
exist C'>0 and A19>0 such that, for A> A,

{ Pa(Ba) <0, on M\OM,

(3.80)

c . 44 (3.81)
CACHES M

By Lemma 3.12, (3.59), (3.76) and (3.80), we get
a6 =94 (Ba)Oo(A™ ) [1—pa(Ba)]?

+¢4(84) 00 (A7) 1= a(Ba)]+O0 (A% ) [1=da(Ba) —aa(p)]*  (3.82)

+20/4(Ba)[1=¢a(Ba)—aa(|ul*)](1+O00 (A7)
By (3.61), (3.65) and the first equation of (3.70), there exists C'>0 such that, for A>0
large enough, if [u|?<3 A then

0<1=¢a(Ba) <Cl1=pa(Ba)—aa(lul?)],
[1=¢a(Ba)—aa(|ul?)| < ClAGL(Ba)l-
Due to (3.56), (3.60), (3.69) and (3.81), if $A<|u[*<3 A, then (3.83) still holds for some
constant C>0. By (3.83), the first three terms in (3.82) can be controlled by
|64(Ba) (1= (Ba) —aa(|pl*)|Oo (A1)

if [u?<3A. Thus, from (3.82), the first identity in (3.77) holds when [p[>?<3A.
For |u[?>2A, by (3.63), a/4(|ul*)=ay(|u[*)=0, and thus the first two terms of T¢
are zero. By (3.57a)—(3.57d), (3.67), (3.76) and the third equation in (3.80), we have

Ta6 = Oo(A™3/2)pA(Ba)? =204 (Ba)da(Ba) (14O (A7H/?)). (3.84)

(3.83)

From (3.56), (3.67), (3.81) and (3.84), the first identity in (3.77) holds when |u|?>2 A.

From (3.58), the first identity in (3.77) and (3.81), we get (3.78) for T46.
For the second identity in (3.77), by Lemma 3.12 and (3.80), we obtain the asymp-
totics of the terms of 747 in (3.76) as follows:
Tar =4 (B4)(1=04(84))Oo(A™V2) +aa(|u*) (1= da(Ba) —aa(lul*)Oo(A~/?)
+ ¢ (B4)[(1=64(Ba)+O0(A™V2) (1= a(Ba) —aa(|u*)) (3.85)
—aa(|ul*)(¢a(Ba)+Oo(A™?))].

5
3
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The factor 1—¢4(54) in the first term of the right-hand side of (3.85) is from 744, while
the factor 1—¢4(B84)—aa(|u|?) is from 745.

If |u[?<3A, by (3.72), the first equation of (3.83) (which holds for [u>?<3A as
explained after (3.83)), for A>0 large enough we get

laa(lul?)| < (CH+D)[(1=pa(Ba))* —aallul?)]. (3.86)

Thus, by (3.72), (3.83) for |u[><3A and (3.86), the first two terms of (3.85) are bounded

by ¢4 (B4)(1—¢a(Ba))?—aa(|u?)|Oo(A™/2). From (3.72), (3.85) and (3.86), the
second identity in (3.77) holds for |u|?< 3 A.
If |u[*>5 A, then, by (3.51), (3.63) and (3.67), we have

Tar=1, Taz—Tas=04(Ba) and 7Tas=—0¢a(Ba) (3.87)
By (3.57b), (3.63), (3.76), (3.80) and (3.87), we get that the first term of 747 is zero and

a7 =0 a(84)*O0(A*?)+ ¢4 (Ba)[=0a(8a)* (14+05 (A1)

3.88
—(1-264(84))¢a(B2) (14+O00(A7V2) =da(Ba) (1400 (A7/?))]. )

From (3.56), (3.81) and (3.88), we get that, if [u[>>3 A, then
Tar=—¢4(Ba)da(Ba)(2—0a(84))(14+Op(A7/2)). (3.89)

Now (3.63) and (3.89) imply the second identity in (3.77) for |u[*>3A. By (3.58),
(3.71) and (3.81), we get (3.78) for 747. From Lemma 3.13, (3.77) and (3.78), we get
(3.79). This concludes the proof of Lemma 3.14. O

3.5. Proof of Lemma 3.9 (II): evaluation of I4. over zero(y)*)

In this subsection, we evaluate the terms I4. in (3.26) on zero(4!), the zero set of
¥¥'. The main point is that we use n™V (resp. n) to replace u?, 6~ and v (resp. u™
and v47) which are difficult to control over M.

LEMMA 3.15. On {ze M:9p\'(2)=0}, the following identities hold:

Taop™ = —1aam™,  Tasyh = —27450™, (3.90)
TAQ[LN = —TA4’I7N, TAQVJX = —27'A577N and  Tax0N = (TA2—7A4)77N. (3.91)
Proof. Let 2€ M be such that 1%"(2)=0. In view of (3.54), the equation ¥} (2)=0

in (3.35) is equivalent to the first equation of (3.90). Similarly, the equation ¥ (2)=0
in (3.35) is equivalent to the first equation of (3.91).
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By (3.51)—(3.53) and the first equation of (3.90), we get, at z,

rasvy = 2rantasp™ + 204 (P )razn™ (3.92)

= —2TA17'A477M+2aA(|M|2)TA277M = —27A577M-

The second equation in (3.91) follows similarly. By (3.6) and the first equation in (3.91),
we get the third equation in (3.91). O

For any z€ M, yeN, W €T, M and V €T, N, let B(W)€End(A(T* OV (M x N))) (24
be defined by

BW) =ic(JMW)e(W)+|W/|*. (3.93)
Clearly, the endomorphisms B(W) and ic(W)c(V) of A(T*OY (M xN))(,,) are self-
adjoint, and B(JMW)=B(W)=B(—W).

LEMMA 3.16. On {zeM:

=<

z)=0}, the following identities hold for I4. in (3.26):
ap mC
i(IA1+IA2):72 B(V],M)+TA6B(77M)
Jj=1

E

+iTA2C(JMVjM)C(VjN)+2i7AGC(JM77M)C(77N) (3.94)
+iraae( TNV (VM) 4 2imare( TN en™),
Las = Taac(JN V) (Vi) +21are(TN ™ )e(n™).
Proof. Let 2€ M be such that 1}*(2)=0. By (3.6) and (3.51), we get
(@M 7a0)" = 204 ()01 ~ )T M 420 ()T, (3.95)
(A 7a1)" =20/ (I TV 6.

Using (3.6), (3.17) and (3.90), we infer, at z,

2
(@ Ba)" = M = =22 MM,
TA2 s (3.96)
(" {oa,m)™ = T 4+ 260 (Ba) nf* Z=T ™.

By (3.6), (3.51), (3.90), (3.95) and (3.96), at z, we get

(dM7a2)* = =294 (Ba) (04, n)(dMTa1)*
—2¢4(Ba)(0a, m)Tar(d™ Ba)* =204 (Ba)Tar(d™ (0a,n))*

= [4¢f4(ﬂA)<QA, ) <a;’1(u|2)(9|2_ |N|2):j;—a2(|ul2)> (3.97)

4= Zl(ﬁf“)@fh77>+¢21(5A)2|77|2)::§TA1—2</5'A(BA)TA1]JMnM7
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and

(@M 7a4)" = =294 (Ba){0a n)y (|ul?)2T M M
+(—=¢4(Ba) =204 (Ba) o, maal|ul?))(d Ba)*
=20/ (Ba)oa () (d™ (0, m))*

= | 464(Ba)a (1) (o m) 722 4200, (Ba) 20 (399)
(=G4 (Ba) o)+ Sa(Ba) P oallul?) >
204 (Ba)aa ()| 7M.
From (3.6) and (3.54), we get

(@M a5)* = (dM 7a2)" 1+ (d™ Ta0)* nj+ 72T M VM,

(dNepaj)* = (@ 7a2)" py+(dN Ta0)* m; +TA4JN‘/jN- (399
From (3.52), (3.76), the first equation of (3.90) and (3.97)—(3.99), we get, at z,
((d115) )l V) = Tae( TV oV )+ 2 ase (T M (™),
<<1—z‘JM>va,<deAj>*>——z'<m2 S W 2l ) (3100
j=1
Using (3.76), the first equation of (3.91) and (3.97)—(3.99), we get, at z,
(@445 ) (V) = Tare( TV (VN )+ 2mage(T M )e(n™). (3.101)
By (3.17), (3.91) and (3.95), it follows that, at z,
(AN Ba)* = 2aA<|u|2)%JNnN, (3.102a)
(@Van)* =200 () TN, (3.102D)
(d¥oa7)" = (1_¢A(ﬁA))JNVjN_2¢h(ﬂA)aA(|U|2)nj%JNUN- (3.102c)
From (3.6), (3.14a), (3.91) and (3.102¢), we have
(@™ (0a,m))" = (0;—da(Ba)ni)(dVn;)* +1;(d" 045)"
(3.103)

= 1_2¢A(6A)+(1—2¢;‘(ﬁA)aA(|M|2)|77|2)% TN,
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By (3.51), (3.90), (3.95) and (3.102a)—(3.103), we get, at z,
(A 7a2)" = =264 (Ba){0a,m) (A" Ta1)*
=204 (Ba)(0a, m)7a1(dN Ba)* =204 (Ba)Ta1(d™ (04, )"

TA2—TA4
TA2 (3104)
)TA2—7A4
TA2

=294 (Ba)Ta1 (1 _2¢A(5A)+m>:| JNpN
TA2

_ {_4¢;4<ﬁA><gA,n>ai4(|u2>

+4(=0%4(Ba)(0a, M)+ (Ba)*In|*)a(|pl? TA1

and

(dV7a4)" = (=4 (Ba) =204 (Ba){ea, maa(|ul*)) (™ Ba)*
=204 (Ba)aa(|n*) (@™ {ea,m)"

= |:4(_¢ig(5A)<QA, 77)+¢f4(ﬁA)2\n|2)aA(|u|2)2% (3.105)

2¢i4(ﬁA)O‘A(|:u|2)<12¢A(ﬂA)+2TAQT;ZTA4>:|JNnN'

From (3.52), (3.76), (3.90) (3.91), (3.99), (3.104) and (3.105), we get, at z,
)")e(V
f

o

(CREY *)C(VZ) = Tasc( TNV e(Vi) 4 27are(T 0™ )e(n™), (3.106)

c((deAj)*)c(V )= TA4c(JNVjN)C(VjN)+27A7C(JN77N)c(nN).
By (3.26), (3.93), (3.100), (3.101) and (3.106), we get (3.94). O
LEMMA 3.17. For any k>0, the following inequalities hold for WeTM and VTN
1
BW)>0 and ic(W)c(V)> —ﬁB(W)—k|V|2. (3.107)
Proof. Tt is enough to prove this for V=v+v and W=w+w®, with {v,w} being an
orthonormal basis of C? with the standard Hermitian product. Using (2.3) and (3.93),
we find that
B(W)==2(w*A+ig)(w A—ig)+2=4w" Nig. (3.108)
Thus the first inequality in (3.107) holds (cf. [22, (2.9) and (2.13)]).
For any UEA@*7 we write o=cw* Av*+osw* +0o3v*+04, where o1,09,03,04€C.
By (2.3), we get

ic(W)e(V)o =2i(—o1+020" —osw” +ow™ Av™). (3.109)
From (3.108) and (3.109), we find that, for any k>0,

(ic(W)e(V)o,0) =41Im(0154—0203)
(3.110)

1
——(B(W —2k|a .
o (BW)o, 0)—2k[o]

From (3.110), we get the second inequality of (3.107). O

2
= —E(Idl|2+|02|2)—2/~€|0\2 =
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3.6. Proof of Lemma 3.9 (III): final step

Recall that z€ M satisfies 97! (2)=0. By Lemma 3.6, z€ M\ OM.
By Lemma 3.12, 742,744>0 on M for A large enough. Thus by (3.78), (3.94) and
the second equation in (3.107) with k=8, we get

1/7 1 dim G dim G
. M N2
Z(IA1+IA2)>2(8TA2—87A4> E B(V;")—(8742+8744) E ViV
i=1 =1 (3.111)

7 1
+ (8TA6_87'A7>B(’WM)—(16TA6+16TA7)|7]N|2-

By Lemma 3.12, for A>0 large enough we obtain
ITar—3Ta1=3+10a(Ba)+ 00 (A7) 2 5. (3.112)
By Lemma 3.14, for A>0 large enough, as ze€ M\IM,
Trac—27ar > 27a6(1+0p(A72)) > 0. (3.113)

Recall that VjN and n are defined on the compact manifold N. By Lemma 3.12,
(3.77), (3.107) and (3.111)—(3.113), there exists C’ >0 such that, for A>0 large enough,

i(Ta1+142) > —C'1d  on {z € M: 9} (2)=0}. (3.114)

By (3.57c), (3.77) and (3.94), there exists C"">0 such that, for A>0 large enough, we
have
[Ta3] <C" on {ze M: 9 (2)=0}. (3.115)

By Lemma 3.12, (3.4), (3.54) and (3.59), for A>0 large enough we get, over M,

2(1ha, 0) = 27 42| > +27 a4 |0 > +2(Ta2+7a4) (1, m) > 2A+ O (AY?) > A,

(3.116)
[iha| = Op(AY?).

By (3.114)—(3.116), we get (3.32). This completes the proof of Lemma 3.9.

4. Functoriality of quantization

This section is organized as follows. In §4.1, we establish the product formula for quan-
tization, Theorem 0.4. In §4.2, we explain the compatibility of quantization and its
restriction to a subgroup.

We will use the assumptions and notation in the introduction and in §3.1.
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4.1. Proof of Theorem 0.4

Let ¢>0 be a regular value of |0|>. By [23, Theorem 4.3] and [18, Proposition 7.10]
(cf. also Theorems 1.5 and 2.1), the following identity holds:

Ind(o V53, 0 = QULOF), ). (4.1)

Here 0 need not to be a regular value of 6.
On the other hand, by Theorem 0.1 (b), we have

Ind(U%?,g)“)vzo =Q(L&F)=o. (4.2)

Therefore, by (4.1) and (4.2), we get (0.12). Thus, to prove Theorem 0.4, we only need
to prove the following identity, which was stated in (0.13):

Q(L®F)7:0: Z Q(L)’Y'Q(F)%*' (4.3)

veAi

We first establish the following lemma, which was stated in (0.14).

LEMMA 4.1. There exists a’ >0 such that for any regular value a>a’ of |u|?: M —R,

Z QL) Q(F ), :Ind(aiwéﬁf)v:@ (4.4)

YEAL

Proof. We denote the finite set {y€AX:Q(F),,»7#0} by A% (F). By Theorem 0.1,

there exists a; >0 such that, for any regular value a>a; of |u|?, we have
Q(L)y= Ind(U%Z)A, for any v € A% (F). (4.5)

Let a>a; be a regular value of |u|?2. For 0<t<1, let o; be the symbol on M, x N

defined to be a deformation of 02/{8@‘ ;J,\[ as follows:
or = e N (1 )i c(uV), (4.6)

where 7: T' (M, x N)— M, x N is the canonical projection (cf. (1.2)).
By (1.2) and (3.7), when t=0, o is the external product of U%Z and 0%0 in the
sense of [1] (cf. [18, (3.11)]). Then, by the multiplicativity of the transversal index ([1,

Theorem 3.5], [18, (3.12)]) and by (4.5), we get

Z Q(L)y-Q(F),« =Ind(00)y=o. (4.7)

veAi



GEOMETRIC QUANTIZATION FOR PROPER MOMENT MAPS: THE VERGNE CONJECTURE 99

For 0<t<1, set
Vi = M N (1), (4.8)

Then, by (3.7) and (4.8), we have
V= pMtp?. (4.9)

As a>ay is a regular value of |u|?, ™ does not vanish on dM,,. From (4.9), p«*N and
Vi do not vanish on (M, x N)=90M, x N for every 0<t<1.
By (1.2), (4.6), (4.8) and (4.9), the set

{(2,v) € Tg(Myx N) : there exists 0 <t <1 such that o4(z,v) is non-invertible},
which is a subset of
{(2,9,0) € Te(Mox N) : p™ () =0,2 € M, and y € N},

is a compact subset of Tg(]\m ). Thus oy forms a continuous family of transversally
elliptic symbols in the sense of [1] and [18, §3]. Hence, by (4.6), (4.7) and the homotopy
invariance of the transversal index (cf. [1, Theorems 2.6 and 3.7], [18, §3]), we get (4.4).
The proof of Lemma 4.1 is complete. O

Let A>0 be a regular value of both |u|? and 1]|0|%. We may and will assume that
A>0 is large enough so that both Theorem 3.2 and Lemma 4.1 hold.

Let Y: M—g be a G-equivariant map such that (3.8) holds. By the additivity of
the transversal index (cf. [1, Theorem 3.7, §6] and [18, Proposition 4.1]), we have

Ind(o 2 5 57*4) 20 = Ind(07% gy )o—o +Ind (025 ), o (4.10)
By Theorems 1.5 and 3.2, we find that
Ind(07% £y )y—0 =0. (4.11)

By Theorem 0.1 (b), (4.4), (4.10) and (4.11), we get (4.3). The proof of Theorem 0.4 is

complete.

4.2. Restriction commutes with quantization

Set
= P Q(L),-VI €R[G]. (4.12)

YEAT
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By Theorem 0.2, Q¢ (L)~ is equal to the formal geometric quantization in the sense
of Weitsman [27, Definition 4.1] (where the fundamental properness assumption of the
moment map was introduced into the framework of geometric quantization) and Paradan
[21, Definition 1.2].

On the other hand, let H be a compact connected subgroup of G such that the
moment map of the induced action of H on M is also proper. By combining Theorem 0.2
and (4.12) with [21, Theorem 1.3], one gets the following relation between Qg (L)~

and Qp (L)~

THEOREM 4.2. Any irreducible representation of H has a finite multiplicity in
Qc(L)~°°. Moreover, when both sides are viewed as virtual representation spaces of H,

one has

Qa(L)[a=Qu(L)™™. (4.13)

It would be interesting to give a direct proof of Theorem 4.2.
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