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1. Introduction

The purpose of this paper is to present a link between two relatively distant topics of
Diophantine approximation. The first one concerns the Lagrange constant ν(ξ) of a real
number ξ defined as the infimum of all real numbers c>0 for which the inequality∣∣∣∣ξ− pq

∣∣∣∣ 6
c

q2

admits infinitely many solutions (p, q)∈Z2 with q>1. This constant, which vanishes when
ξ∈Q, provides a measure of approximation to ξ by rational numbers. It is also given by

ν(ξ) = lim inf
q!∞

q‖qξ‖,

where ‖x‖ stands for the distance from a real number x to a closest integer. The Lagrange
spectrum is the set ν(R) of values of ν. It is a subset of the interval [0, 1/

√
5 ]. Due to work

of Markoff, the portion of the spectrum in the subinterval
(

1
3 , 1/

√
5

]
is well understood

(see [3, Chapter II, §6]). It forms a countable discrete subset of this subinterval with
1
3 as its only accumulation point. Moreover the real numbers ξ for which ν(ξ)> 1

3 are
all quadratic. As a consequence, any transcendental real number ξ has ν(ξ)6 1

3 . In
the range

[
0, 1

3

]
, the situation becomes more complicated. Although, with respect to

Lebesgue measure, almost all real numbers ξ have ν(ξ)=0, we know in particular that
there are uncountably many ξ∈R with ν(ξ)= 1

3 .
The second topic is the problem of simultaneous rational approximations to a real

number and its square, from a uniform perspective. Let γ= 1
2 (1+

√
5 ) denote the golden
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ratio. In 1969, Davenport and Schmidt showed [6, Theorem 1a] that, for each non-
quadratic irrational real number ξ, there exists a constant c>0 with the property that,
for arbitrarily large values of X, the inequalities

|x0|6X, |x0ξ−x1|6 cX−1/γ and |x0ξ
2−x2|6 cX−1/γ

admit no non-zero solution (x0, x1, x2)∈Z3. Recently, it was established [14, Theorem 1.1]
that their result is best possible in the sense that, conversely, there are countably many
non-quadratic irrational real numbers ξ which we henceforth call extremal such that, for
a larger value of c, the same inequalities admit a non-zero integer solution for each X>1.
Our objective here is to show the existence of extremal numbers ξ with ν(ξ)= 1

3 and to
show how this set is intimately linked with Markoff’s theory.

In the next section, we present the main results of Markoff’s theory from a point of
view pertaining to the study of extremal numbers. Then, in §3, we construct a family of
extremal numbers ξm parameterized by all solutions in positive integers m=(m,m1,m2)
of the Markoff equation

m2+m2
1+m2

2 =3mm1m2, (1)

up to permutation, except m=(1, 1, 1). Our main result is that these numbers ξm con-
stitute a system of representatives of the equivalence classes of extremal numbers ξ with
ν(ξ)= 1

3 , under the action of GL2(Z) on R\Q by linear fractional transformations. To
prove this, we develop further the properties of approximation to extremal numbers by
quadratic real numbers obtained in [14, §8]. Each extremal number ξ comes with a se-
quence of best quadratic approximations {αi}i>1 which is uniquely determined by ξ up
to its first terms. In §4, we show that the sequence of their conjugates {�αi}i>1 admits
exactly two accumulation points ξ′ and ξ′′ which are also extremal numbers and which
we call the conjugates of ξ. Then, in §5, we show that ν(ξ)=ν(ξ′)=ν(ξ′′) and that these
Lagrange constants can be computed as the infima of the absolute values of the binary
real quadratic forms

|ξ−ξ′|−1(T−ξU)(T−ξ′U) and |ξ−ξ′′|−1(T−ξU)(T−ξ′′U)

on Z2\{(0, 0)}. The latter quantities admit handy representations in terms of doubly
infinite words attached to the continued fraction expansions of ξ and ξ′ on one hand,
and of ξ and ξ′′ on the other hand. This is at the basis of Markoff’s original approach.
However, it requires that 0<ξ<1 and max{ξ′, ξ′′}<−1. In §6, we show that each extremal
number is GL2(Z)-equivalent to exactly one extremal number ξ satisfying 0<ξ<1 and
having conjugates ξ′ and ξ′′ of unequal negative integral parts. We say that such an
extremal number is balanced. We also provide a characterization of the numbers ξm in
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terms of their continued fraction expansions. Finally, we conclude in §7 with the proof
of our main result by showing that any balanced extremal number ξ with ν(ξ)= 1

3 is
equivalent to some ξm on the basis of the strong combinatorial properties shared by
the two doubly infinite words attached to ξ. As a corollary, we obtain that an extremal
number ξ has ν(ξ)= 1

3 if and only if its sequence of best quadratic approximations {αi}i>1

satisfies ν(αi)> 1
3 for infinitely many indices i.

2. Markoff’s theory

A general reference for this section is the exposition given by Cassels in [3, Chapter II]. In
the presentation below, we reinterpret his constructions in [3, §II.3], from a point of view
closer to the approach of Cohn in [4], to align them with similar constructions arising
from the study of extremal numbers.

We first recall that the group GL2(Q) acts on the set R\Q of irrational numbers by

g ·ξ=
aξ+b
cξ+d

, if g=
(
a b

c d

)
∈GL2(Q), (2)

and that we have ν(g ·ξ)=ν(ξ) for any g∈GL2(Z) and any ξ∈R\Q [3, §I.3, Corollary].
Consequently, the Lagrange spectrum can be described as the set of values taken by ν

on a set of representatives of the equivalence classes of R\Q under GL2(Z).
A real binary quadratic form F (U, T )=rU2+qUT+sT 2∈R[U, T ] is said to be indef-

inite if its discriminant disc(F )=q2−4rs is positive. For such a form, one is interested
in the quantity

µ(F ) := inf{|F (x, y)| : (x, y)∈Z2\{(0, 0)}}.

Keeping the same notation as in (2), the group R∗×GL2(Z) acts on the set of real
indefinite binary quadratic forms by

(λ, g)·F (U, T ) =λF ((U, T )g) =λF (aU+cT, bU+dT ),

and this action fixes the ratio µ(F )/
√

disc(F ). The Markoff spectrum is the set of values
of these quotients µ(F )/

√
disc(F ), where F runs through the set of all real indefinite

binary quadratic forms or equivalently through a system of representatives of the equiv-
alence classes of these forms under the above action of R∗×GL2(Z). Although this
spectrum contains strictly the Lagrange spectrum [5, Chapter 3, Theorem 1], a remark-
able feature of Markoff’s theory is that the intersections of the two spectra with the
interval

(
1
3 , 1/γ

]
are equal (recall that γ= 1

2 (1+
√

5 )).
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The theory provides explicit sets of representatives both for the equivalence classes
of real numbers ξ with ν(ξ)> 1

3 and for the equivalence classes of real indefinite binary
quadratic forms F with µ(F )/

√
disc(F )> 1

3 . They are parameterized by the solutions in
positive integers m=(m, m1, m2) of Markoff’s equation (1) upon identifying two solu-
tions when one is a permutation of the other. Setting aside the “degenerate solutions”
(1, 1, 1) and (2, 1, 1) which have at least two equal entries, all other solutions in positive
integers appear once and only once in the rooted binary tree

(5, 1, 2)

(13, 1, 5) (29, 5, 2)

(34, 1, 13) (194, 13, 5) (433, 5, 29) (169, 29, 2)

... ... ... ... ... ... ... ...

(3)

where each node (m, m1, m2) has successors given by (3mm1−m2, m1, m) on the left
and by (3mm2−m1, m, m2) on the right. Moreover [3, §II.2] all nodes (m, m1, m2)
satisfy m>max{m1,m2} .

The same construction starting with (2, 1, 1) as a root provides a tree which contains
exactly once each triple (m, m1, m2) satisfying (1) and m>max{m1,m2}>0. In this new
tree, each non-degenerate solution occurs twice, with the tree (3) appearing as its left
half. This suggests to extend the latter by adding (2, 1, 1) as a right ancestor of (5, 1, 2):

(2, 1, 1)

(5, 1, 2)

(13, 1, 5) (29, 5, 2)

... ... ... ...

(4)

In this extended tree, a node m=(m,m1,m2) has m1>m2 if and only if m has a left
ancestor. In the sequel, we denote by Σ∗ the set of all nodes of the tree (4), and by
Σ=Σ∗∪{(1, 1, 1)} the set of all positive solutions of the Markoff equation (1).

The next proposition lifts (3) to a tree whose nodes are triples of symmetric matrices
in SL2(Z) (compare with [3, §II.3] and [4, §5]).
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Proposition 2.1. Put

M =
(

3 1
−1 0

)
and consider the binary rooted tree((

5 3
3 2

)
,

(
1 1
1 2

)
,

(
2 1
1 1

))
((

13 8
8 5

)
,

(
1 1
1 2

)
,

(
5 3
3 2

)) ((
29 17
17 10

)
,

(
5 3
3 2

)
,

(
2 1
1 1

))

... ... ... ...

(5)
where each node (x,x1,x2) has successors (x1Mx,x1,x) on the left and (xMx2,x,x2)
on the right. Then each node (x,x1,x2) of this tree is a triple of symmetric matrices in
SL2(Z) with positive entries of the form

x=
(
m k

k l

)
, x1 =

(
m1 k1

k1 l1

)
and x2 =

(
m2 k2

k2 l2

)
(6)

satisfying both x=x1Mx2 and max{k, l}6m62k. Moreover, the tree formed by replac-
ing each of these triples of matrices (x,x1,x2) by the triple of their upper left entries
(m,m1,m2) is exactly the tree (3) of non-degenerate solutions of the Markoff equation.

Proof. We first note that the triple of upper left entries of the root of this tree
is the root (5, 1, 2) of the Markoff tree (3). Now, suppose that a node (x,x1,x2) of
the tree consists of symmetric matrices in SL2(Z) satisfying x=x1Mx2, and that the
corresponding triple (m,m1,m2) is a node of the Markoff tree. Using Cayley–Hamilton’s
theorem, we find that

x1Mx=(x1M)2x2 =(tr(x1M)x1M−det(x1M)I)x2 =3m1x−x2,

xMx2 =x1(Mx2)2 =x1(tr(Mx2)Mx2−det(Mx2)I) = 3m2x−x1.
(7)

Since x, x1 and x2 are symmetric matrices in SL2(Z) and since M∈SL2(Z), we conclude
that these products are also symmetric matrices in SL2(Z). Moreover, if we write

x1Mx=
(
m′

2 k′2
k′2 l′2

)
and xMx2 =

(
m′

1 k′1
k′1 l′1

)
,

then we get m′
2=3mm1−m2 and m′

1=3mm2−m1, showing that the triples (m′
2,m1,m)

and (m′
1,m,m2) associated with the left and right successors of (x,x1,x2) are respectively
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the left and right successors of (m,m1,m2) in the Markoff tree. By recurrence, this
proves all the assertions of the proposition besides the constraints on the coefficients of
the matrices. To prove the latter, suppose that the node (x,x1,x2) satisfies conditions
of the form

ϕ(x) >ϕ(xi) > c for i=1, 2, (8)

for some constant c>0 and some linear form ϕ on the space of 2×2 matrices. Then,
using the fact that m1 and m2 are positive (because (m,m1,m2)∈Σ∗), the relations (7)
lead to

ϕ(x1Mx) = 3m1ϕ(x)−ϕ(x2) >ϕ(x) >ϕ(x1) > c,

ϕ(xMx2) = 3m2ϕ(x)−ϕ(x1) >ϕ(x) >ϕ(x2) > c,

showing by induction on the level that (8) holds for each node of the tree (5) as soon as
it holds for its root. Since the latter satisfies m>mi>1, k>ki>1 and l>li>1 for i=1, 2,
we conclude that each node of the tree meets these conditions and so consists of matri-
ces with positive entries. Moreover, since the root also satisfies m−k>mi−ki>0 and
2k−m>2ki−mi>0 for i=1, 2, each node meets these additional conditions and in par-
ticular satisfies k6m62k. Finally, since (m,m1,m2)∈Σ∗, we have m>max{m1,m2}>1.
Thusm>2 and, from 1=det(x)=ml−k2, we deduce that l=(k2+1)/m6m+1/m<m+1,
and therefore l6m.

For each node m=(m,m1,m2) of (3), we denote by

xm =
(
m k

k l

)
(9)

the first component of the corresponding node (6) of the tree (5), and we extend this
definition to all of Σ by putting

x(1,1,1) =
(

1 1
1 2

)
and x(2,1,1) =

(
2 1
1 1

)
. (10)

Then, for each m∈Σ, we define

Fm(U, T ) = (T −U)xmM

(
U

T

)
=mT 2+(3m−2k)TU+(l−3k)U2, (11)

using the notation (9). Since det(xm)=ml−k2=1, we find that disc(Fm)=9m2−4. As
disc(Fm)≡2 mod 3, the form Fm is irreducible over Q. Therefore it factors as a product

Fm(U, T ) =m(T−αmU)(T−�αmU),
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where

αm =
2k−3m+

√
9m2−4

2m
and �αm =

2k−3m−
√

9m2−4
2m

(12)

are conjugate quadratic real numbers.

In his presentation of Markoff’s theory, Cassels also defines quadratic forms indexed
by solutions m of Markoff’s equation, except that, assuming the uniqueness conjecture,
he denotes them simply Fm, where m is the largest entry of m, the conjecture being that
this entry determines uniquely the solution (see [3, p. 33] or [1, Appendix B]). In view
of the discussion in [3, §II.4], the corollary below shows that the above forms Fm are
equivalent to the corresponding forms defined by Cassels.

Corollary 2.2. For each m=(m,m1,m2)∈Σ the off-diagonal entry k of xm sat-
isfies

k≡ m1

m2
≡−m2

m1
mod m and 0<k6m. (13)

Note that condition (13) makes sense since each triple of Σ has pairwise relatively
prime components [3, §II.3, Lemma 5]. It also determines k uniquely.

Proof. This is readily checked when m is (1, 1, 1) or (2, 1, 1). Now, assume that m
is non-degenerate and write the corresponding triple of symmetric matrices (x,x1,x2) in
the form (6). Since x=xm, this notation is consistent with (9). Then, by Proposition 2.1,
we have 0<k6m. As x, x1 and x2 are symmetric, taking the transpose of both sides
of the equality x=x1Mx2 gives x=x2

tMx1, and so we obtain xx−1
2 =x1M and xx−1

1 =
x2

tM . Comparing the upper right entries in the latter matrix equalities, we find that
km2−mk2=m1 and km1−mk1=−m2, from which the requested congruences follow.

Combining Theorems II and III in [3, Chapter II], we then recover the following
main results of Markoff [11], [12].

Theorem 2.3. (Markoff, 1879/80) The real numbers αm with m∈Σ form a system
of representatives of the equivalence classes of real numbers ξ with ν(ξ)> 1

3 , while the
forms Fm with m∈Σ constitute a system of representatives of the equivalence classes of
real indefinite binary quadratic forms F with µ(F )/

√
disc(F )> 1

3 . Moreover, for each
m=(m,m1,m2)∈Σ, the numbers αm and �αm are equivalent and we have

ν(αm) = ν(�αm) =
µ(Fm)√
disc(Fm)

=
1√

9−4m−2
.
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3. Extremal numbers

Let P denote the set of 2×2 matrices with relatively prime integer coefficients and non-
zero determinant. It is a group for the product ∗ given by y1∗y2=c−1y1y2, where c
is the greatest positive common divisor of the coefficients of y1y2. This group contains
GL2(Z) as a subgroup, and its quotient P/{±I} is isomorphic to PGL2(Q). With this
notation, we state the following characterization of extremal numbers reproduced from
[17, Lemma 3.1], which collects results from [14] and [15].

Proposition 3.1. Let ξ be an extremal real number. Then, there exists an un-
bounded sequence of symmetric matrices {xi}i>1 in P such that, for each i>1, we have

‖xi+1‖�‖xi‖γ , ‖(ξ,−1)xi‖�‖xi‖−1 and |detxi| � 1, (14)

with implied constants that are independent of i. Such a sequence {xi}i>1 is uniquely
determined by ξ up to its first terms and up to multiplication of each of its terms by ±1.
Moreover, for any such sequence, there exists a non-symmetric and non-skew-symmetric
matrix M∈P such that

xi+2 =±
{

xi+1∗M ∗xi, if i is odd,
xi+1∗ tM ∗xi, if i is even,

(15)

for any sufficiently large index i. Conversely, if {xi}i>1 is an unbounded sequence of
symmetric matrices in P which satisfies a recurrence relation of the type (15) for some
non-symmetric matrix M∈P, and if for each i>1 we have

‖xi+2‖�‖xi+1‖ ‖xi‖ and |detxi|� 1, (16)

then {xi}i>1 also satisfies the estimates (14) for some extremal real number ξ.

In the above statement, the choice of a norm for matrices is secondary, since it
only affects the implied constants in all estimates. However, for definiteness, we choose
the norm ‖x‖ of a matrix x with real coefficients to be the largest absolute value of its
coefficients. Then, for an extremal number ξ with a corresponding unbounded sequence
of symmetric matrices {xi}i>1 in P satisfying (14), we find that

‖(ξ,−1)xi‖=max{|xi,0ξ−xi,1|, |xi,1ξ−xi,2|} upon writing xi =
(
xi,0 xi,1

xi,1 xi,2

)
,

and therefore ξ=limi!∞ xi,1/xi,0=limi!∞ xi,2/xi,1.



markoff–lagrange spectrum and extremal numbers 333

It can be shown directly from the definition that the set of extremal numbers is
stable under the action of GL2(Q) by linear fractional transformations on R\Q [17, §2].
In particular, it is stable under the action of the subgroup GL2(Z). The next corollary
shows how the latter action affects the corresponding sequences of symmetric matrices
{xi}i>1 and the corresponding matrices M .

Corollary 3.2. Let ξ be an extremal number, let {xi}i>1 be an unbounded sequence
of symmetric matrices in P satisfying (14) and let M∈P be such that (15) holds. For
any

g=
(
a b

c d

)
∈SL2(Z),

the number ξ′ :=g ·ξ is also extremal with corresponding sequence {x′i}i>1 and matrix M ′

given by

x′i =
t(g′)−1xi(g′)−1 and M ′ = g′M tg′, where g′ =

(
a −b
−c d

)
. (17)

Proof. It is clear that the above matrices x′i and M ′ belong to P and satisfy the
recurrence relation (15) instead of xi and M . Moreover, the matrices x′i are symmetric
while M ′ is both non-symmetric and non-skew-symmetric. We also find that ‖x′i‖�‖xi‖,

‖(ξ′,−1)x′i‖= |cξ+d|−1‖(ξ,−1)xi(g′)−1‖�‖(ξ,−1)xi‖,

and det(x′i)=det(xi). Therefore {x′i}i>1 and ξ′ also satisfy (14) instead of {xi}i>1 and ξ.
In particular, {x′i}i>1 satisfies (16) and so, by the last part of Proposition 3.1, it obeys
(14) for some extremal number ξ′′ instead of ξ. This forces ξ′=ξ′′, and therefore ξ′ is
extremal.

It follows from Proposition 3.1 that the matrix M∈P attached to an extremal num-
ber ξ is uniquely determined by ξ within the set {M,−M, tM,− tM}. When the sequence
of symmetric matrices attached to ξ is contained in SL2(Z), the matrix M also belongs
to SL2(Z) and the recurrence relation (15) can be put in a simpler form. Then, applying
an identity of Fricke like Cohn in [4], we obtain the following result.

Lemma 3.3. Let ξ be an extremal number with a corresponding sequence of symmet-
ric matrices {xi}i>1 in SL2(Z). Choose M∈SL2(Z) and the above sequence so that, for
each i>1, we have

xi+2 =xi+1Mi+1xi, where Mi =
{
M , if i is even,
tM , if i is odd.

Then, for each i>1, the traces qi :=tr(xiMi)∈Z satisfy

q2i+2+q2i+1+q2i = qi+2qi+1qi+tr( tMM−1)+2. (18)
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Proof. In [9] Fricke shows that for any A,B∈SL2(R) we have

tr(A)2+tr(B)2+tr(AB)2 =tr(A) tr(B) tr(AB)+tr(ABA−1B−1)+2.

Putting A=xi+1Mi+1 and B=xiMi, the recurrence relation gives

AB=xi+2Mi =xi+2Mi+2,

and so tr(AB)=qi+2. Since xi+2 is symmetric, we also find that

AB= txi+2Mi =xiMixi+1Mi =BAM−1
i+1Mi,

and so tr(ABA−1B−1)=tr(M−1
i+1Mi). The conclusion follows since

tr(M−1
i+1Mi) = tr( tM−1

i+2
tM i+1) = tr(M−1

i+2Mi+1)

is independent of i.

We observed in [13] that the arithmetic of extremal numbers is particularly simple
when the corresponding sequence of symmetric matrices {xi}i>1 is contained in GL2(Z)
and the lower right entry of the corresponding matrix M is 0. When all these matrices
belong to SL2(Z), the preceding result applies and we find the following result.

Lemma 3.4. Let u be a non-zero integer and let E+
u denote the set of all extremal

numbers with a corresponding sequence of symmetric matrices

xi =
(
xi,0 xi,1

xi,1 xi,2

)
∈SL2(Z)

satisfying, for each i>1,

xi+2 =xi+1Mi+1xi, where Mi =
(

u (−1)i

(−1)i+1 0

)
. (19)

Then, the set E+
u =E+

−u is empty if u 6=±3. Moreover, if ξ∈E+
3 , then, upon choosing the

matrices xi as above, each triple (xi+2,0, xi+1,0, xi,0) is a solution of Markoff’s equa-
tion (1).

Proof. Let ξ∈E+
u . Using the notation of the lemma, a simple computation shows

that the matrix M :=M2 satisfies tr( tMM−1)=−2 and that, for each i>1, we have
tr(xiMi)=uxi,0. Therefore, Lemma 3.3 gives

x2
i+2,0+x2

i+1,0+x2
i,0 =uxi+2,0 xi+1,0 xi,0 (20)

for each i>1. Since −1 is not a square modulo 3 and since 1=det(xi)≡−x2
i,1 mod xi,0,

we also note that xi,0 is prime to 3 for each i>1. Then, looking at the equation (20)
modulo 3, we deduce that u is divisible by 3 and so, each triple 1

3u(xi+2,0, xi+1,0, xi,0)
provides a solution of Markoff’s equation in integers not all zero. Since each such solution
has relatively prime entries, this is possible only if u=±3.
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Lemma 3.5. Two elements ξ and ξ′ of E+
3 are equivalent (under GL2(Z)) if and

only if ξ′=±ξ+b for some b∈Z. Each element of E+
3 is equivalent to one and only one

element of E+
3 in the open interval

(
1
2 , 1

)
.

Proof. The second assertion follows from the first one, since, for each ξ∈R\Q, there
is a unique integer b and a unique choice of sign such that ±ξ+b∈

(
1
2 , 1

)
. To prove the

first assertion, suppose that ξ∈E+
3 and let

g=
(
a b

c d

)
∈GL2(Z).

By Corollary 3.2, we have g ·ξ∈E+
3 if and only if(

a −b
−c d

)(
3 1
−1 0

)(
a −c
−b d

)
= ε1

(
3 ε2

−ε2 0

)
for some choices of ε1, ε2∈{1,−1}. Equating coefficients, this translates into the con-
ditions 3a2=3ε1, 3c2=0 and det(g)±3ac=ε1ε2, which mean that ε1=1, a=±1, c=0,
ad=ε2 and impose no restriction on b. For such a, c and d, we find g ·ξ=ε2(ξ±b).

A zigzag in the tree (4) is a sequence of nodes m(1),m(2),m(3), ... of that tree such
that, for each i>1, the node m(i+1) is a successor of m(i) on some side (left or right)
and m(i+2) is a successor of m(i+1) on the other side. A maximal zigzag is a zigzag
m(1),m(2),m(3), ... which cannot be extended by inserting an ancestor of m(1) as the
first element. With the convention that the root (2, 1, 1) has no ancestor in (4), it follows
that each m∈Σ∗ is the first element of a unique maximal zigzag. Examples of maximal
zigzags in (4) are

(2, 1, 1)

(5, 1, 2)

(29, 5, 2)

(433, 5, 29)

...

and

(5, 1, 2)

(13, 1, 5)

(194, 13, 5)

...

Recall that, in §2, we attached a symmetric matrix xm∈SL2(Z) to each m∈Σ. Thus,
each maximal zigzag in (4) leads to a sequence of symmetric matrices in SL2(Z). We can
now state and prove the main result of this section.
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Theorem 3.6. Given m∈Σ∗, consider the maximal zigzag m=m(1),m(2),m(3), ...

in the tree (4) originating from m. Then {xm(i)}i>1 is a sequence of symmetric matrices
in SL2(Z) corresponding to an extremal number ξm in E+

3 ∩
(

1
2 , 1

)
, and we have

ξm = lim
i!∞

αm(i) = lim
i!∞

(�αm(i) +3) (21)

in terms of the quadratic numbers given by (12). Each element of E+
3 is equivalent to

ξm for one and only one m∈Σ∗.

Proof. Let

M =
(

3 1
−1 0

)
be as in Proposition 2.1 and let {m(i)}i>1 be a maximal zigzag in (4) originating from
a point m=m(1) in Σ∗. For simplicity, we write xi to denote the matrix xm(i) . If, for
some index i, the point m(i+1) is the left successor of m(i), then the node of the tree (5)
corresponding to m(i+1) takes the form (xi+1, ∗,xi) and, as m(i+2) is the right successor
of m(i+1), we find that xi+2=xi+1Mxi. Similarly, if m(i+1) is the right successor of m(i),
then the node of (5) corresponding to m(i+1) takes the form (xi+1,xi, ∗) and m(i+2) is
the left successor of m(i+1). Thus xi+2=xiMxi+1=xi+1

tMxi. As the parity of i decides
which alternative holds, we deduce that condition (15) of Proposition 3.1 is satisfied for
each i>1 with the present choice of M or with M replaced by its transpose tM . The
above considerations also show that, for each i>1, the node of (5) corresponding to
m(i+2) is either (xi+2,xi+1,xi) or (xi+2,xi,xi+1) and so m(i+2) can be described as the
node of the Markoff tree (4) formed by the upper left entries of xi+2, xi+1 and xi.

To verify conditions (16) of Proposition 3.1, we write

xi =
(
mi ki

ki li

)
.

With this notation, Proposition 2.1 gives ‖xi‖=mi and ki6mi62ki for each i>1. Thus,
if xi+2=xi+1Mxi, we find that

mi+2 =(3mi+1−ki+1)mi+mi+1ki > 5
2mi+1mi.

Otherwise, we have xi+2=xiMxi+1 and the same computation applies with the indices i
and i+1 permuted. This means that ‖xi+2‖> 5

2‖xi+1‖ ‖xi‖ for each i>1. As det(xi)=1
for each i, conditions (16) of Proposition 3.1 are fulfilled and therefore {xi}i>1 satis-
fies the conditions (14) of the same proposition for some extremal number ξ=ξm. We
have ξm∈E+

3 by definition, and moreover ξm=limi!∞ ki/mi∈
[
1
2 , 1

]
. Then (21) follow
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from formulas (12) and, as ξm is irrational, we conclude that ξm∈E+
3 ∩

(
1
2 , 1

)
. The first

assertion of the theorem is proved.

Now assume that ξm=ξn for some n∈Σ∗, and let {n(i)}i>1 denote the maximal
zigzag starting with n(1)=n. Then, {xm(i)}i>1 and {xn(i)}i>1 are two sequences of
symmetric matrices with positive entries corresponding to the same extremal number.
By Proposition 3.1, this is possible if and only if there exists an integer s such that
xm(i) =xn(i+s) for each sufficiently large i. However, we observed that, for each i>1, the
triple m(i+2) is the node of (4) formed by the upper left entries of xm(i+2) , xm(i+1) and
xm(i) . Similarly, n(i+2) is formed by the upper left entries of xn(i+2) , xn(i+1) and xn(i) .
This forces m(i)=n(i+s) for each sufficiently large i, and therefore m=n because each
zigzag in (4) is contained in a unique maximal zigzag.

Lemma 3.5 together with the preceding observation reduce the last assertion of the
theorem to proving that each element of E+

3 ∩
(

1
2 , 1

)
is equal to ξm for some m∈Σ∗. To

this end, we fix a point ξ∈E+
3 ∩

(
1
2 , 1

)
and a corresponding sequence {xi}i>1 of symmetric

matrices in SL2(Z) obeying the recurrence relation (19) of Lemma 3.4 with u=3. Using
the notation of that lemma for the entries of xi, we have ξ=limi!∞ xi,1/xi,0. Since ξ
belongs to

(
1
2 , 1

)
, the ratio xi,1/xi,0 must also belong to that interval for each sufficiently

large integer i. Without loss of generality, we may assume that this already holds for
each i>1. Upon multiplying x1 and x2 by ±1 and adjusting the following xi so that
(19) continues to hold, we may also assume that x1,0 and x2,0 are positive. Then a
simple recurrence argument based on (19) shows that xi,0>max{xi−1,0, xi−2,0}>0 for
each i>3. By Lemma 3.4, this means that, for each i>3, exactly one of the points
(xi,0, xi−1,0, xi−2,0) and (xi,0, xi−2,0, xi−1,0) is a node m(i) of the tree (4). In particular,
the integers xi,0, xi−1,0 and xi−2,0 are pairwise relatively prime.

We claim that xi=xm(i) for each i>3. Since the symmetric matrices xi and xm(i)

have the same upper left entries and the same determinant, this reduces to showing that
the off-diagonal entry k of xm(i) is xi,1. In the notation of Lemma 3.4 (with u=3), we
have xix−1

i−2=xi−1Mi−1 which, by comparing the upper right entries of the matrices on
both sides (as in the proof of Corollary 2.2), gives xi,1xi−2,0−xi,0xi−2,1=(−1)i−1xi−1,0,
and therefore

xi,1≡ (−1)i−1xi−1,0

xi−2,0
mod xi,0. (22)

By comparison with the conditions that Corollary 2.2 imposes on k, this leads to k≡±xi,1
mod xi,0. As Proposition 2.1 gives 1

2xi,06k6xi,0 and as we know that 1
2xi,0<xi,1<xi,0,

we conclude that k=xi,1, and the claim is proved.
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Comparing the congruence (22) with those of (13) shows moreover that, for i>3,

m(i) =
{

(xi,0, xi−1,0, xi−2,0), if i is odd,
(xi,0, xi−2,0, xi−1,0), if i is even.

Since m(i+1) has two coordinates in common with m(i) and a larger first coordinate, this
implies that, in the Markoff tree (4), m(i+1) is the left successor of m(i) if i is odd, and
its right successor if i is even (see [3, §II.3]). Thus, the sequence {m(i)}i>3 is a zigzag
in (4) and {xm(i)}i>3 is a sequence of symmetric matrices associated with the extremal
number ξ. We conclude that ξ=ξm, where m is the first element of the maximal zigzag
containing {m(i)}i>3.

The main goal of this paper is to show that the set {ξm :m∈Σ∗} constitutes a
system of representatives of the equivalence classes of extremal numbers ξ with ν(ξ)= 1

3 .
By Lemma 3.5, we know that they belong to distinct equivalence classes. The next step
is to show that ν(ξm)= 1

3 for each m∈Σ∗. This will be achieved in §5.

4. Conjugates of an extremal number

This section deals with approximation to extremal numbers by quadratic real numbers,
and introduces the notion of conjugates of an extremal number, a concept which will
play an important role in the sequel. With respect to notation, we define the norm ‖F‖
of a polynomial F over R to be the largest absolute value of its coefficients, and we define
the height H(α) of an algebraic number α to be the norm of its minimal polynomial in
Z[T ].

Throughout the section, we fix an arbitrary extremal number ξ, a corresponding
unbounded sequence of symmetric matrices {xi}i>1 in P satisfying the condition (14) of
Proposition 3.1, and a matrix M∈P which is assumed to satisfy (15) for each i>1 (this
condition on the range of i carries no loss of generality). For each i>1, we write

J =
(

0 1
−1 0

)
, M =

(
a b

c d

)
, xi =

(
xi,0 xi,1

xi,1 xi,2

)
and Xi = ‖xi‖.

We also define new matrices

Wi =xi∗Mi, where Mi =
{
M , if i is even,
tM , if i is odd,

and real quadratic forms

Fi(U, T ) =−(U T )JWi

(
U

T

)
and Gi(U, T ) =−(U T )J

(
1 ξ

ξ ξ2

)
Mi

(
U

T

)
.
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It is clear from the above definition that Gi depends only on the parity of i. A short
computation gives the following formulas.

Lemma 4.1. For each integer i>1, we have

Gi(U, T ) =
{
G′(U, T ) := (c+dξ)(T−ξU)(T−ξ′U), if i is odd,
G′′(U, T ) := (b+dξ)(T−ξU)(T−ξ′′U), if i is even,

(23)

where
ξ′ =−a+bξ

c+dξ
and ξ′′ =−a+cξ

b+dξ
. (24)

The sets {ξ′, ξ′′} and {±G′,±G′′} depend only on ξ. Moreover, ξ, ξ′ and ξ′′ are three
distinct extremal numbers.

Proof. The second assertion of the lemma follows from the facts that M is uniquely
determined by ξ within the set {±M,± tM} (see §3), and that replacing M by ±M
or by ± tM just permutes the elements of {ξ′, ξ′′} and {±G′,±G′′}. The real numbers
ξ′ and ξ′′ are extremal because they belong to the GL2(Q)-orbit of ξ (see [17, §2]).
Finally, the numbers ξ, ξ′ and ξ′′ are distinct because ξ is not quadratic over Q and, by
Proposition 3.1, M is neither symmetric nor skew-symmetric.

Definition 4.2. The extremal numbers ξ′ and ξ′′ given by (24) are called the conju-
gates of ξ, while the polynomials G′ and G′′ given by (23) are called the real quadratic
forms associated with ξ.

For example, the extremal numbers ξm constructed by Theorem 3.6 have associated
matrix

M =
(

3 1
−1 0

)
,

and so a short computation gives the following result.

Lemma 4.3. For each m∈Σ∗, the conjugates of ξm are ξm−3 and ξm+3 and its
associated quadratic forms are, up to sign,

Gm(U, T ) := (T−ξmU)(T−(ξm−3)U) and Gm(U, T−3U).

In the computations below, we use the fact that, for any A,B∈P, the integer c
determined by A∗B=c−1AB is a common divisor of det(A) and det(B). We also use the
estimate Xi+1�Xγ

i coming from (14). The next lemma relates the forms Fi and Gi.

Lemma 4.4. For each i>1, there exists a non-zero rational number ri with |ri|�Xi

such that Fi=riGi+O(X−1
i ).
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Proof. As Wi=xi∗Mi, we have Wi=c−1
i xiMi for some divisor ci of det(M). Thus,

for i large enough, the rational number ri=xi,0/ci is non-zero and satisfies

|ri| � |xi,0| �Xi

as well as

‖Fi−riGi‖�
∥∥∥∥xi−xi,0( 1 ξ

ξ ξ2

)∥∥∥∥�‖(ξ,−1)xi‖�X−1
i .

The next result provides an alternative formula for the forms Fi, showing that they
are essentially homogenous versions of the quadratic polynomials of [14, §8].

Lemma 4.5. For each i>1, we have

Fi(U, T ) =
1
di

∣∣∣∣∣∣∣
U2 UT T 2

xi+1,0 xi+1,1 xi+1,2

xi+2,0 xi+2,1 xi+2,2

∣∣∣∣∣∣∣ , (25)

where di is a divisor of det(xi+1). Moreover, the content of Fi as a polynomial in
Z[U, T ] is bounded above independently of i.

Proof. Due to the formulas of [14, §2], the determinant in the right-hand side of (25)
can be rewritten as

tr
((

U2 UT

UT T 2

)
Jxi+2Jxi+1J

)
.

As xi+2=Wi∗xi+1=�−1
i Wixi+1 for some divisor �i of det(xi+1) and since xi+1Jxi+1J=

−det(xi+1)I, this expression becomes

−det(xi+1)
�i

tr
((

U2 UT

UT T 2

)
JWi

)
=

det(xi+1)
�i

Fi(U, T ).

This proves the first assertion. Identifying any symmetric matrix(
m k

k l

)
with the triple (m, k, l), formula (25) implies that the content of Fi divides

det(xi,xi+1,xi+2).

The second assertion follows as, by [14, Theorem 5.1], the absolute value of this deter-
minant is bounded above independently of i.



markoff–lagrange spectrum and extremal numbers 341

Combining the above lemma with the results of [14, §8], we obtain the following
result.

Proposition 4.6. There exists an integer i0>1 such that, for each i>i0, the poly-
nomial Fi(U, T ) is irreducible over Q and the root αi of Fi(1, T ) which is closest to ξ

is algebraic over Q of degree 2 with

H(αi)�‖Fi‖�Xi and |ξ−αi| �H(αi)−2γ−2.

Moreover, for every algebraic number α∈C of degree 62 over Q with α 6=αi for each
i>i0, we have |ξ−α|�H(α)−4.

Proof. According to [14, Theorem 8.2], the polynomial Qi+1(T ):=diFi(1, T ) is irre-
ducible over Q for each sufficiently large i. So, for those i, the quadratic form Fi(U, T ) is
irreducible over Q and αi is algebraic over Q of degree 2. Since by Lemma 4.5 the integer
di and the content of Fi are bounded, we deduce that H(αi)�‖Fi‖�‖Qi+1‖. According
to [14, Proposition 8.1], we also have ‖Qi+1‖�Xi. The remaining estimates follow from
[14, Theorem 8.2].

Definition 4.7. In view of the above proposition, the sequence {αi}i>i0 is uniquely
determined by the extremal number ξ up to its first terms. We refer to it as a sequence
of best quadratic approximations to ξ.

The next lemma provides such sequences for the extremal numbers ξm defined in
Theorem 3.6, in terms of the quadratic numbers αm given by (12).

Lemma 4.8. Let m∈Σ∗ and let {m(i)}i>1 denote the maximal zigzag in the tree
(4) starting with m(1)=m. Put r=1 if m(2) is the right successor of m(1) and r=0
otherwise. Then a sequence {αi}i>1 of best quadratic approximations to ξm is given by

αi =
{
αm(i) , if i≡ r mod 2,
�αm(i) +3, if i 6≡ r mod 2.

(26)

Proof. Define xi=xm(i) for each i>1 so that {xi}i>1 is a sequence of symmetric
matrices in SL2(Z) corresponding to ξm (see Theorem 3.6). By virtue of the choice of r,
the triple m(i+1) is a right successor of m(i) in (4) if and only if i≡r mod 2. From this
we deduce that

xi+2 =xi+1

(
3 (−1)i−r+1

(−1)i−r 0

)
xi

for each i>1 (same argument as in the first paragraph of the proof of Theorem 3.6).
Thus, in view of Proposition 4.6, it remains simply to show that, for each sufficiently
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large i, the real number defined by (26) is the root of the polynomial

−(1 T )Jxi

(
3 (−1)i−r

(−1)i−r−1 0

)(
1
T

)
,

which is closest to ξm. If i≡r mod 2, this polynomial is simply Fm(i)(1, T ) (with the nota-
tion of (11)). If i 6≡r mod 2, a short computation shows that it is equal to −Fm(i)(1, T−3).
The conclusion follows since the roots of Fm(i)(1, T ) are αm(i) and �αm(i) which, according
to (21), converge respectively to ξm and ξm−3, as i!∞.

The next result justifies the terminology of Definition 4.2.

Proposition 4.9. Let {αi}i>i0 be as in Proposition 4.6. Then, as i!∞, we have

|ξ′−�α2i−1| �H(α2i−1)−2 and |ξ′′−�α2i| �H(α2i)−2. (27)

Therefore, the sequence of conjugates of a sequence of best quadratic approximations to
ξ admits exactly two accumulation points, namely the conjugates ξ′ and ξ′′ of ξ.

Proof. We simply prove (27), since the second assertion follows from it. For each
i>i0, let pi :=Fi(0, 1) denote the coefficient of T 2 in Fi(U, T ). If i>i0 is odd, Lemma 4.4
gives

(T−αiU)(T−�αiU) = p−1
i Fi(U, T ) = (T−ξU)(T−ξ′U)+O(X−2

i ),

and therefore αi+�αi=ξ+ξ′+O(X−2
i ), by comparing the coefficients of UT . Since Propo-

sition 4.6 gives ‖Fi‖�Xi and |αi−ξ|�X−2γ−2
i , we deduce that

|pi| �Xi and |�αi−ξ′|�X−2
i .

To bound |�αi−ξ′| from below, we first note that, since ξ′ 6=ξ, the above estimates imply

|αi−αi+2| �X−2γ−2
i , |�αi−αi+2| � 1 and |αi−�αi+2| � 1,

and so the resultant of Fi and Fi+2 satisfies

|Res(Fi, Fi+2)|= p2
i p

2
i+2 |αi−αi+2| |�αi−αi+2| |αi−�αi+2| |�αi−�αi+2|

�X2
iX

2
i+2X

−2γ−2
i (|�αi−ξ′|+O(X−2

i+2))

�X2
i |�αi−ξ′|+O(X−2

i+1).

If i is large enough this resultant is a non-zero integer. Its absolute value is then bounded
below by 1, and the above estimate leads to |�αi−ξ′|�X−2

i . Thus

|�αi−ξ′| �X−2
i �H(αi)−2.

The proof for i even is similar: it suffices to replace everywhere ξ′ by ξ′′.
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Corollary 4.10. For each A∈GL2(Q), the conjugates of A·ξ are A·ξ′ and A·ξ′′.

Proof. Fix A∈GL2(Q) and a sequence {αi}i>1 of best quadratic approximations
to ξ. Since

|A·ξ−A·αi| � |ξ−αi| �H(αi)−2γ−2�H(A·αi)−2γ−2,

we deduce that {A·αi}i>1 is a sequence of best quadratic approximations to the extremal
number A·ξ. Thus the conjugates of A·ξ are the accumulation points of the sequence
{A·�αi}i>1, namely A·ξ′ and A·ξ′′.

Based on this proposition, a simple computation gives the following result.

Corollary 4.11. Let

N =
(

b a

−d −c

)
.

Then we have ξ′=N ·ξ and ξ′′=N−1 ·ξ. Moreover, for each i∈Z, the conjugates of N i ·ξ
are N i−1 ·ξ and N i+1 ·ξ.

In particular, this shows that ξ is one of the two conjugates of ξ′ and also one of
the two conjugates of ξ′′. Although we will not need the next result in the sequel, we
decided to include it, as it provides an attractive complement to Proposition 4.6.

Theorem 4.12. Let {αi}i>i0 be as in Proposition 4.6. For each i>i0, define

α′i =
{
αi, if i is odd,
N ·�αi, if i is even,

where N is the integral matrix of Corollary 4.11, then

|ξ−α′i| |ξ′−�α′i| �H(α′i)
−2γ−4. (28)

For each quadratic or rational number α∈C not belonging to the sequence {α′i}i>i0 , we
have instead

|ξ−α| |ξ′−�α|�H(α)−6, (29)

where �α denotes the conjugate of α over Q.

Proof. If i is odd, the estimate (28) follows from Propositions 4.6 and 4.9, since
α′i=αi and �α′i=�αi. If i is even, we find that

|ξ−α′i| |ξ′−�α′i|= |ξ−N ·�αi| |ξ′−N ·αi| � |N−1 ·ξ−�αi| |N−1 ·ξ′−αi|= |ξ′′−�αi| |ξ−αi|,

and (28) again follows from Propositions 4.6 and 4.9, because H(αi)�H(α′i).
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To prove the second part of the theorem, we first note that, if α=αi for some
even integer i, then Proposition 4.6 provides |ξ−α|�H(α)−2γ−2, while the estimates
of Proposition 4.9 lead to |ξ′−�α|�1 since ξ′ 6=ξ′′. Similarly, if α=N ·�αi for some odd
integer i, we find that

|ξ′−�α|= |N ·ξ−N ·αi| � |ξ−αi| �H(α)−2γ−2 and |ξ−α| � |N−1 ·ξ−�αi|= |ξ′′−�αi| � 1.

In both cases, this leads to

|ξ−α| |ξ′−�α| �H(α)−2γ−2�H(α)−6.

If α=�αi for an integer i>i0, then we find instead |ξ−α|�|ξ′−�α|�1 and so (29) holds
again. This estimate also holds if α∈Q, because in that case we have |ξ−α|�H(α)−3

and |ξ′−α|�H(α)−3 by [14, Theorem 1.3]. We may therefore assume that α is irrational
and different from αi, �αi and N ·�αi for each i>i0. In this case, Proposition 4.6 gives

|ξ−α|�H(α)−4 and |ξ′−�α| � |ξ−N−1 ·�α|�H(α)−4. (30)

Let p denote the positive integer for which the polynomial

F (U, T ) := p(T−αU)(T−�αU)

has relatively prime integer coefficients. Then, F is an irreducible polynomial of Z[T ]
and, for each i>i0, we have

1 6 |Res(F, Fi)|= p2p2
i |α−αi| |α−�αi| |�α−αi| |�α−�αi|,

where pi=Fi(0, 1). Since

p|pi| |α−�αi| |�α−αi|6 p|pi|(2 max{1, |α|}max{1, |�αi|})(2max{1, |�α|}max{1, |αi|})

= 4(pmax{1, |α|}max{1, |�α|})(|pi|max{1, |αi|}max{1, |�αi|})

�H(α)H(αi),

we deduce that
1�H(α)2H(αi)2|α−αi| |�α−�αi|.

If i is odd, Propositions 4.6 and 4.9 also give

H(αi)�Xi, |α−αi|6 |ξ−α|+O(X−2γ−2
i ) and |�α−�αi|6 |ξ′−�α|+O(X−2

i ).

Combining these estimates, we deduce the existence of a constant c>0 such that

c6H(α)2X2
i (|ξ−α|+X

−2γ−2
i )(|ξ′−�α|+X−2

i )
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for each odd integer i. If |ξ−α|> 1
4cH(α)−2 or |ξ′−�α|> 1

4cH(α)−2, then the required
estimate (29) follows from (30) and we are done. Otherwise, we obtain

1
2c6H(α)2X−2γ−2

i +H(α)2X2
i |ξ−α| |ξ′−�α|.

Choose i to be the smallest positive odd integer such that H(α)2X−2γ−2
i 6 1

4c. Then we
have Xi�H(α)1/γ and we obtain

1
4c6H(α)2X2

i |ξ−α| |ξ′−�α|�H(α)2γ |ξ−α| |ξ′−�α|,

which is stronger than (29).

Remark. A similar argument shows that Theorem 4.12 holds with ξ′ replaced by ξ′′

and α′i replaced by α′′i , where

α′′i =
{
αi, if i is even,
N−1 ·�αi, if i is odd.

5. Minima of the associated real quadratic forms

We keep the notation of the preceding section. In particular we deal with a fixed arbitrary
extremal number ξ with conjugates ξ′ and ξ′′ and associated quadratic forms G′ and G′′.
The main result of this section is that

ν(ξ) =
µ(G′)√
disc(G′)

=
µ(G′′)√
disc(G′′)

.

We will deduce from this that the extremal numbers ξm, m∈Σ∗, constructed by Theo-
rem 3.6 have Lagrange constant ν(ξm)= 1

3 . The proof goes through a series of lemmas.

Lemma 5.1. Let d denote the least common multiple of all integers det(Wi) with
i>1. Suppose that Wi≡Wj mod 4d for some indices i, j>1. Then, WjW

−1
i ∈SL2(Z).

Proof. This follows from the formula

WjW
−1
i =det(Wi)−1Wj Adj(Wi),

where Adj(Wi) denotes the adjoint of Wi. Since

Wj Adj(Wi)≡Wi Adj(Wi)≡det(Wi)I mod 4d,

and since det(Wi) divides d, the matrix WjW
−1
i has integer coefficients. Moreover, as

det(Wi) and det(Wj) divide d and are congruent modulo 4d, they must be equal, and so
det(WjW

−1
i )=1.
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Lemma 5.2. Let i0∈{0, 1}. There exists an integer k>1 such that Wi+2kW
−1
i ∈

SL2(Z) for an infinite set of indices i>1 with i≡i0 mod 2.

Proof. Let d be as in Lemma 5.1, and let N=(4d)4 denote the number of congruence
classes of 2×2 integral matrices modulo 4d. For each integer j>1 with j≡i0 mod 2, at
least two matrices among Wj ,Wj+2, ...,Wj+2N are congruent modulo 4d. So there exist
integers i and k, with i>j, i≡i0 mod 2 and 16k6N , such that Wi≡Wi+2k mod 4d. By
varying j, we get infinitely many such pairs (i, k). As k stays within a finite set, at least
one value of k arises infinitely many times. The conclusion follows by Lemma 5.1.

Lemma 5.3. For each i>2, we have ‖WiWi−1Wi−Wi−1W
2
i ‖�Xi−1.

Proof. As Wi=xi∗Mi and Wi−1=xi−1∗Mi−1 are respectively quotients of xiMi and
xi−1Mi−1 by divisors of det(M), this amounts to showing that

‖(xiMixi−1Mi−1−xi−1Mi−1xiMi)xiMi‖�Xi−1.

Since xiMixi−1=xi−1Mi−1xi is the product of xi+1 by a divisor � of det(xi) det(M),
and since the latter is a bounded integer, this in turn amounts to showing that

‖xi+1(Mi−1−Mi)xiMi‖�Xi−1.

Finally, as Mi−1−Mi=±(M− tM)=±(b−c)J , this last estimate follows from the fact
that xi+1Jxi=�−1xi−1Mi−1xiJxi=�−1 det(xi)xi−1Mi−1J has norm of the same order
as ‖xi−1‖=Xi−1.

Lemma 5.4. For each i>2, we have

‖Fi+2((U, T ) tW i)−det(Wi)Fi+2(U, T )‖�Xi−1. (31)

Proof. The left-hand side of (31) is the norm of the polynomial

−(U T )A
(
U

T

)
, where A= tW iJWi+2Wi−det(Wi)JWi+2.

Since Wi+2=Wi+1∗Wi=Wi∗Wi−1∗Wi, we find that

‖A‖�‖ tW iJWiWi−1W
2
i −det(Wi)JWiWi−1Wi‖

= |detWi| ‖JWi−1W
2
i −JWiWi−1Wi‖

�Xi−1,

where the last estimate comes from Lemma 5.3. The conclusion follows.
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Lemma 5.5. For each i>2, we have

‖Gi((U, T ) tW i)−det(Wi)Gi(U, T )‖�X−2
i .

Proof. Since Gi=Gi+2, Lemma 4.4 shows that Gi=r−1
i+2Fi+2+O(X−2

i+2) for some
non-zero rational number ri+2 with |ri+2|�Xi+2. As ‖Wi‖�Xi, this gives

Gi((U, T ) tW i) = r−1
i+2Fi+2((U, T ) tW i)+O(X2

iX
−2
i+2)

= r−1
i+2 det(Wi)Fi+2(U, T )+O(X−1

i+2Xi−1) by Lemma 5.4,

=det(Wi)Gi(U, T )+O(X−1
i+2Xi−1).

Lemma 5.6. For any integers i>1 and k>0, the matrix Si,k :=Wi+2kW
−1
i satisfies

‖Gi+1((U, T ) tSi,k)−det(Si,k)Gi+1(U, T )‖6 cX−2
i+1,

with a constant c>0 which is independent of both i and k.

Proof. Define Hi,k(U, T )=Gi+1((U, T ) tSi,k)−det(Si,k)Gi+1(U, T ) for each i>1 and
k>0. When k>1, we have that

Si,k =Si+2,k−1Wi+2W
−1
i = a−1

i Si+2,k−1Wi+1

for some bounded positive integer ai, and so

Hi,k(U, T ) = a−2
i Hi+2,k−1((U, T ) tW i+1)

+a−2
i det(Si+2,k−1)(Gi+1((U, T ) tW i+1)−det(Wi+1)Gi+1(U, T )).

Since |det(Si+2,k−1)|6|det(Wi+2k)|�1, we deduce from Lemma 5.5 that

‖Hi,k‖6 c1‖Hi+2,k−1‖X2
i+1+c1X−2

i+1, (32)

with a constant c1>0 which is independent of i and k. Put hi,k=‖Hi,k‖X2
i+1 and choose

c2>0 such that XiXi+16c2Xi+2 for each i>1. Then, we find that X−2
i+36c42X

−2
i X−4

i+1,
and so (32) leads to

hi,k 6 c1+c1c42X
−2
i hi+2,k−1 (33)

for any i, k>1. Our goal is to show that hi,k is bounded above independently of i and k.
To this end, we choose an integer i0>1 such that X2

i >2c1c42 for each i>2i0. Then (33)
gives hi,k6c1+ 1

2hi+2,k−1 for each i>2i0 and k>1. Since hi+2k,0=0, this implies that
hi,k62c1 whenever i>2i0. If 16i<2i062k, estimate (33) leads to

hi,k� 1+hi+2i0,k−i0 6 1+2c1.

We conclude that hi,k�1 for any i>1 and k>0.
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Lemma 5.7. Let G stand for one of the polynomials G′ or G′′. For each δ>0, there
exists a matrix S∈SL2(Z) which satisfies both

‖(ξ,−1)S‖6 δ and ‖G((U, T ) tS)−G(U, T )‖6 δ. (34)

Proof. Put

i0 =
{

0, if G=G′,
1, if G=G′′,

so that G=Gi+1 for each integer i>1 with i≡i0 mod 2. By Lemma 5.2, there exists an
integer k>1 such that Si,k=Wi+2kW

−1
i ∈SL2(Z) for an infinite set I of positive integers

i with i≡i0 mod 2. Since W−1
i =det(Wi)−1 Adj(Wi) and Wi+2k=xi+2k∗Mi, we find that

‖(ξ,−1)Si,k‖�‖(ξ,−1)xi+2k‖ ‖Wi‖�X−1
i+2kXi�X−1

i+1.

This, combined with Lemma 5.6 shows that, given δ>0, the matrix S=Si,k satisfies (34)
for each sufficiently large i∈I.

Theorem 5.8. We have

ν(ξ) =
µ(G′)√
disc(G′)

=
µ(G′′)√
disc(G′′)

.

Proof. We have disc(G′)=θ2, where θ :=(c+dξ)(ξ−ξ′), and

G′(U, T ) = (c+dξ)(T−ξU)(T−ξ′U) = (c+dξ)(T−ξU)2+θ(T−ξU)U. (35)

Fix a real ε with 0<ε<1. By definition, there exists a non-zero point (u, t)∈Z2 for which
|G′(u, t)|6µ(G′)+ε. Then, by Lemma 5.7, there exists S∈SL2(Z) such that the point
(q, p)=(u, t) tS∈Z2 satisfies both

|qξ−p|=
∣∣∣∣(ξ,−1)S

(
u

t

)∣∣∣∣ 6 ε and |G′(q, p)−G′(u, t)|6 ε.

Combining this with (35), we deduce that

µ(G′)+2ε> |G′(q, p)|> |θ| |q(qξ−p)|−|c+dξ|ε2.

By letting ε tend to 0, the integer |q| tends to infinity and we conclude that µ(G′)>|θ|ν(ξ).
The reverse inequality follows directly from (35) by observing that, for each ε>0,

there exists a point (q, p)∈Z2 with q>1, |qξ−p|6ε and q|qξ−p|6ν(ξ)+ε, and so, by
(35), we obtain µ(G′)6|G′(q, p)|6|θ|(ν(ξ)+ε)+|c+dξ|ε2, which upon letting ε!0 gives
µ(G′)6|θ|ν(ξ). This shows that µ(G′)=ν(ξ)

√
disc(G′). The proof for G′′ is similar.
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Corollary 5.9. We have ν(ξ)=ν(ξ′)=ν(ξ′′).

Proof. By Corollary 4.11, ξ is one of the two conjugates of ξ′. Thus, G′ is a constant
multiple of one of the two real quadratic polynomials associated with ξ′, and so Theo-
rem 5.8 gives ν(ξ′)=µ(G′)/

√
disc(G′)=ν(ξ). Similarly, we find that ν(ξ′′)=ν(ξ).

Corollary 5.10. For any m∈Σ∗, we have ν(ξm)= 1
3µ(Gm)= 1

3 , where Gm is as
in Lemma 4.3.

Proof. Fix m∈Σ∗. By Theorem 5.8, we have ν(ξm)= 1
3µ(Gm), since disc(Gm)=9.

According to Theorem 3.6, we also have ξm=limi!∞ αm(i) =limi!∞(�αm(i) +3), where
{m(i)}i>1 denotes the maximal zigzag in the tree (4) originating from m. In terms of
the quadratic forms (11), this means that

Gm

3
= lim
i!∞

Fm(i)√
disc(Fm(i))

and thus 1
3µ(Gm)>lim supi!∞ µ(Fm(i))/

√
disc(Fm(i)). Finally, Theorem 2.3 shows that

the latter limit superior is equal to 1
3 . This gives ν(ξm)> 1

3 and, since ξm is not quadratic,
we conclude that ν(ξm)= 1

3 .

6. Continued fraction expansions

In this section we define the notions of reduced and balanced extremal numbers and we
describe the continued fraction expansions of the extremal numbers ξm introduced in
§3. To begin, we first set some additional notation and recall some basic facts about
continued fraction expansions.

Let W denote the monoid of words on the set {1, 2, 3, ... } of positive integers with
the product given by concatenation of words. For any non-empty word w of W written
either as a sequence w=(a1, ..., ak) or as a string w=a1 ... ak, we define

ϕ(w) =
(
a1 1
1 0

)
...

(
ak 1
1 0

)
∈GL2(Z),

and for the empty word ∅, we set ϕ(∅)=I. Then the map ϕ:W!GL2(Z) is a morphism
of monoids and so, using (2), we get an action of W on R\Q by which a word w sends
a point ξ to ϕ(w)·ξ. With our convention that the norm of a matrix is the maximum of
the absolute values of its coefficients, we obtain the following estimates.

Lemma 6.1. For any w1,w2∈W, we have

‖ϕ(w1)‖ ‖ϕ(w2)‖6 ‖ϕ(w1w2)‖6 2‖ϕ(w1)‖ ‖ϕ(w2)‖.
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Proof. This follows by observing that, for any non-empty word w∈W, the matrix
ϕ(w) takes the form (

a b

c d

)
with a>max{b, c} and min{b, c}>d>0, and so ‖ϕ(w)‖=a.

We say that an irrational real quadratic number α is reduced if 0<α<1 and �α<−1,
where �α denotes the conjugate of α over Q. Such a number is characterized as follows.

Lemma 6.2. Let α be an irrational real quadratic number. Then α is reduced if and
only if its continued fraction expansion takes the form α=[0,Π∞]=[0,Π,Π, ... ] for some
non-empty word Π=(a1, ..., ak) in W. When this happens the conjugate �α of α is given
by −�α=[(Π∗)∞]=[Π∗,Π∗, ... ], where Π∗=(ak, ..., a1) is the reverse of Π. Moreover we
have ϕ(Π)·(1/α)=1/α and H(α)6‖ϕ(Π)‖.

Conversely, if 0<α<1 and if ϕ(Π)·(1/α)=1/α for some non-empty word Π∈W,
then α=[0,Π∞], and so α is reduced.

Proof. The first two assertions are due to E. Galois [10]. The other two follow from
the fact that the condition ϕ(Π)·(1/α)=1/α is equivalent to 1/α=[Π, 1/α], which is
in turn equivalent to α=[0,Π∞], while a short computation shows that it implies that
H(α)6‖ϕ(Π)‖.

Since any extremal number comes with exactly two conjugates, it is natural to
transpose the notion of reduced irrational real quadratic number to extremal numbers
by stating the following.

Definition 6.3. An extremal number ξ is reduced if 0<ξ<1 and if its conjugates ξ′

and ξ′′ satisfy ξ′<−1 and ξ′′<−1.

Lemma 6.4. Let ξ=[a0, a1, a2, ... ] be an extremal number in continued fraction form.
For each sufficiently large index i>1, the number ξi :=[0, ai, ai+1, ai+2, ... ] is a reduced
extremal number in the GL2(Z)-equivalence class of ξ. Moreover, for any i>1 for which
ξi is reduced, the two conjugates of ξi+1 belong to the open interval (−ai−1,−ai).

Proof. Let ξ′ and ξ′′ denote the conjugates of ξ. By Corollary 4.10, each ξi is
extremal with conjugates ξ′i and ξ′′i given recursively by

ξ′1 = ξ′−a0, ξ′′1 = ξ′′−a0, ξ′i+1 =
1
ξ′i
−ai, ξ′′i+1 =

1
ξ′′i
−ai (i> 1).

Moreover, since ξ′ and ξ′′ are distinct from ξ, they have different continued fraction
expansions, and so there exists a smallest integer k>0 such that [a0, ..., ak] is neither a
convergent of ξ′ nor one of ξ′′. Then, for each index i>k+3, we have ξ′i<−1 and ξ′′i <−1,
and thus ξi is reduced. The last assertion is clear.
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In particular, each extremal number is equivalent to infinitely many reduced ones.
We now show that this ambiguity disappears with the following stronger notion.

Definition 6.5. An extremal number is balanced if it is reduced and its conjugates
have distinct integral parts.

Proposition 6.6. Any extremal number is equivalent to a unique balanced extremal
number.

Proof. Existence. Let ξ1 be an extremal number with conjugates ξ′1 and ξ′′1 . In order
to show that ξ1 is equivalent to a balanced extremal number, we may assume, in view of
Lemma 6.4, that it is reduced. Then, we find continued fraction expansions of the form

ξ1 = [0, a1, a2, a3, ... ], −ξ′1 = [a′0, a
′
−1, a

′
−2, ... ] and −ξ′′1 = [a′′0 , a

′′
−1, a

′′
−2, ... ],

for sequences of positive integers {ai}i>1, {a′i}i60 and {a′′i }i60. If a′0 6=a′′0 , then ξ1 is
already balanced. Otherwise, since ξ′1 6=ξ′′1 , there exists a largest integer k6−1 such that
a′k 6=a′′k . For each i=0,−1, ..., k+1, we put ai :=a′i=a

′′
i and define recursively

ξi :=
1

ai+ξi+1
, ξ′i :=

1
ai+ξ′i+1

and ξ′′i :=
1

ai+ξ′′i+1

.

For each of those i, we have

ξi = [0, ai, ai+1, ai+2, ... ], −ξ′i = [a′i−1, a
′
i−2, ... ] and −ξ′′i = [a′′i−1, a

′′
i−2, ... ],

and, by Corollary 4.10, the number ξi is extremal with conjugates ξ′i and ξ′′i . In particular,
ξ is equivalent to ξk+1 which is balanced.

Uniqueness. Let ξ and η be equivalent balanced extremal numbers. In order to
complete the proof of the proposition, it remains only to show that ξ=η. To this end,
write ξ=[0, a1, a2, ... ] and η=[0, b1, b2, ... ]. Since ξ and η are equivalent, it follows from
Serret’s theorem [18, Chapter I, Theorem 6B], that there exist integers k, l>1 such that
ak+i=bl+i for each i>0. Choose k minimal with this property and define

ζ = [0, ak, ak+1, ... ] = [0, bl, bl+1, ... ].

If k>1, Lemma 6.4 shows that ζ has conjugates in the interval (−ak−1−1,−ak−1). Sim-
ilarly, if l>1, it shows that these conjugates lie in the interval (−bl−1−1,−bl−1). If k>1
and l>1, this means that ak−1=bl−1, contradicting the choice of k. Thus, we must have
k=1 or l=1, and so ζ is equal to ξ or η. In particular, ζ is balanced. In view of the
above, this is possible only if k=l=1 which means that ζ=ξ=η as requested.
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The following simple fact is the only combinatorial property that we will need about
the continued fraction expansion of general extremal numbers.

Proposition 6.7. Let ξ=[0, a1, a2, a3, ... ] be the continued fraction expansion of an
extremal real number from the interval (0, 1). There are finitely many finite words Π∈W
whose cube is a prefix of P :=a1a2a3 ... .

Proof. Suppose that Π3 is a prefix of P for some non-empty finite word Π∈W, and
consider the quadratic real number α:=[0,Π∞]. By Lemma 6.2, we have H(α)6ϕ(Π).
Moreover, since [0,Π3] is a common convergent of both ξ and α, and since its denominator
is the largest coefficient ‖ϕ(Π3)‖ of ϕ(Π3), the theory of continued fractions gives

|ξ−α|6 |ξ−[0,Π3]|+|α−[0,Π3]|6 2‖ϕ(Π3)‖−2.

By Lemma 6.1, we deduce from this that |ξ−α|62 ‖ϕ(Π)‖−662H(α)−6. By Proposi-
tion 4.6, this holds only for finitely many quadratic numbers α. In turn, this means that
‖ϕ(Π)‖ is bounded above, and so Π belongs to a finite set of prefixes of P .

We now turn to a characterization of the continued fraction expansions of the ex-
tremal numbers ξm. In view of the formulas (21), the first step is to describe the con-
tinued fraction expansion of the quadratic numbers αm. For this, we denote by W0 the
sub-monoid of W generated by the words a=(1, 1)=1 1 and b=(2, 2)=2 2. We let the
endomorphims of W0 act on the right on W0, and denote by U and V the specific such
endomorphisms determined by the conditions

aU =ab, bU =b and aV =a, bV =ab, (36)

as in [1, §3]. Building on these, we form a tree of endomorphisms of W0:

I

V U

V 2 UV V U U2

... ... ... ... ... ... ... ...

(37)

where each node ψ has successors V ψ on the left and Uψ on the right. For each node m
of the Markoff tree (3), we denote by ψm the endomorphism of W0 which occupies the
same position. This gives for example ψ(5,1,2)=I and ψ(194,13,5)=UV .
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Lemma 6.8. For each m∈Σ, the quadratic number αm given by (12) is reduced and
its continued fraction expansion is αm=[0,Π∞

m ], where

Πm =


a, if m=(1, 1, 1),
b, if m=(2, 1, 1),
(ab)ψm , otherwise.

Proof. The formulas (12) show that each αm is a reduced quadratic real number
because, in the notation of (12), Proposition 2.1 gives 16k6m62k. Moreover, since
Fm(1, αm)=0, we find that (xmM)·(1/αm)=1/αm. Thus, in view of Lemma 6.2, it
remains simply to prove that xmM=ϕ(Πm) for each m∈Σ. This is a simple computation
if m is one of the degenerate triples (1, 1, 1) and (2, 1, 1). For the remaining triples, we
claim more precisely that the node (x,x1,x2) of (5) which occupies the same position as
m in the Markoff tree (3) satisfies

xM =ϕ((ab)ψm), x1M =ϕ(aψm) and x2M =ϕ(bψm). (38)

Again, this is a quick computation for the root (5, 1, 2) of the Markoff tree because, for
that triple, we have ψm=I and we find that

xM =
(

12 5
7 3

)
=ϕ(ab), x1M =

(
2 1
1 1

)
=ϕ(a) and x2M =

(
5 2
2 1

)
=ϕ(b).

Assume that (38) holds for some node m of the Markoff tree. The left successor of
(x,x1,x2) in (5) is (x1Mx,x1,x) and we find that

x1MxM =ϕ(aψm)ϕ((ab)ψm) =ϕ((aab)ψm) =ϕ((ab)V ψm),

x1M =ϕ(aψm) =ϕ(aV ψm),

xM =ϕ((ab)ψm) =ϕ(bV ψm),

where V ψm is the left successor of ψm in (37). Similarly, we find that (38) holds with
(x,x1,x2) replaced by its right successor (xMx2,x,x2) and ψm replaced by its right
successor Uψm. This proves our claim by induction on the level of m and therefore
completes the proof of the lemma.

Theorem 6.9. Let ξ=[0, a1, a2, a3, ... ] denote the continued fraction expansion of
an irrational real number ξ with 0<ξ<1. Then ξ belongs to the set {ξm :m∈Σ∗} if and
only if there exists a finite product ψ of U and V such that (ab)(V U)iψ is a prefix of
P :=a1a2a3 ... for each i>0.
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Proof. Suppose first that ξ=ξm for some m∈Σ∗, and let {m(i)}i>1 denote the max-
imal zigzag in (4) starting with m(1)=m. Define ψ :=ψm(r) , where

r=
{

1, if m(2) is the right successor of m,
2, otherwise.

Then, for each i>0, we have ψm(2i+r) =(V U)iψ and Lemma 6.8 gives αm(2i+r) =[0,Π∞
i ]

with Πi :=(ab)(V U)iψ. Since ab is a prefix of (ab)V U=ababb, we note that Πi is a prefix
of Πi+1 for each i>0. Combining this with the fact that, by Theorem 3.6, the sequence
{αm(2i+r)}i>0 converges to ξm, we deduce that Πi must be a prefix of P for each i>0.

Conversely, suppose that there exists a finite product ψ of U and V such that
Πi :=(ab)(V U)iψ is a prefix of P for each i>0. For each i>1, denote by m(2i−1) and m(2i)

the nodes of the Markoff tree (3) for which (V U)i−1ψ=ψm(2i−1) and U(V U)i−1ψ=ψm(2i) .
Then, by Lemma 6.8, we have ξ=limi!∞ αm(2i−1) and, by construction, the sequence
{m(i)}i>1 is a zigzag in the tree (4) with m(2) being the right successor of m(1). This
zigzag is contained in a maximal one starting with some triple m∈Σ∗. As Theorem 3.6
shows that ξm=limi!∞ αm(2i−1) , we conclude that ξ=ξm.

7. Critical doubly infinite words

For each doubly infinite word

A= ... a−2a−1a0a1a2 ...

on the set of positive integers, we define

L(A) = sup
i∈Z

([0, ai, ai+1, ... ]+[ai−1, ai−2, ... ])∈ [0,∞]. (39)

The relevance of this quantity to our problem is provided by the following key formula for
the infimum of reduced real indefinite quadratic forms on Z2\{(0, 0)} (see [5, Appendix 1]
or [7, pp. 80–81]).

Proposition 7.1. Let ξ and η be irrational real numbers with 0<ξ<1 and η<−1.
Write

ξ= [0, a1, a2, a3, ... ] and −η= [a0, a−1, a−2, ... ].

Then the quadratic form G(U, T )=(T−ξU)(T−ηU)∈R[U, T ] has

µ(G)√
disc(G)

=L(... a−2a−1a0a1a2 ... )−1.
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Our goal in this ultimate section is to show that any extremal number ξ with La-
grange constant ν(ξ)= 1

3 is equivalent to ξm for some m∈Σ∗. In view of Proposition 6.6,
we may restrict to balanced extremal numbers. Then, by combining the above proposi-
tion with Theorem 5.8, we obtain the following statement.

Corollary 7.2. Let ξ be a balanced extremal number with ν(ξ)= 1
3 . Denote by ξ′

and ξ′′ its conjugates and form the continued fraction expansions

ξ= [0, a1, a2, a3, ... ], −ξ′ = [a′0, a
′
−1, a

′
−2, ... ] and −ξ′′ = [a′′0 , a

′′
−1, a

′′
−2, ... ].

Then, the infinite words P :=a1a2a3 ... , Q′ :=... a′−2a
′
−1a

′
0 and Q′′ :=... a′′−2a

′′
−1a

′′
0 satisfy

L(Q′P )=L(Q′′P )=3. Moreover, P is not ultimately periodic and we have a′0 6=a′′0 .

Proof. Let G′ and G′′ denote the real quadratic forms associated with ξ (see Defi-
nition 4.2). According to Proposition 7.1, we have

µ(G′)√
disc(G′)

=L(Q′P )−1 and
µ(G′′)√
disc(G′′)

=L(Q′′P )−1.

Then Theorem 5.8 gives L(Q′P )=L(Q′′P )=ν(ξ)−1=3. Finally, P is not ultimately peri-
odic because ξ is not a quadratic number, and we have a′0 6=a′′0 because ξ is balanced.

In their presentations of Markoff’s theory, both Dickson [7] and Bombieri [1] provide
a combinatorial analysis of the doubly infinite words A with L(A)63. Those with L(A)<
3 are well understood, they are exactly the purely periodic words with period a, b or
(ab)ψm for some m in the Markoff tree (3) [1, Theorem 15], and so they form a countable
set. By contrast, the doubly infinite words A with L(A)=3 form an uncountable set.
Among these, some are ultimately periodic in the sense that they admit a periodic right
infinite suffix such as the word 1∞ 2 2 1∞=... 1 1 2 2 1 1 ... (see [7, Theorem 63]). Putting
these aside, we state the following.

Definition 7.3. A doubly infinite word A is critical if it has L(A)=3 and is not
ultimately periodic.

In the context of Corollary 7.2, we are facing two critical words Q′P and Q′′P with
common suffix P . Our next goal is to provide a combinatorial analysis of this situation.
Collecting results from the presentation of Bombieri in [1], we first make the following
observation.

Lemma 7.4. Let A be a critical word. There exist an integer e>1 and a non-constant
sequence {ei}i∈Z consisting of integers from the set {e, e+1} such that A factors as

...abe−1abe0abe1 ... (type I ) or ...bae−1bae0bae1 ... (type II ). (40)
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Moreover, if A is of type I (resp. type II ), there exists a unique doubly infinite product
B of the words a and b such that A=BU

e

(resp. A=BV
e

), and B is critical of type II
(resp. type I ).

Proof. Since A is not ultimately periodic, Lemma 11 of [1] shows that it can be
written in one of the forms (40) for some non-constant sequence of positive integers
{ei}i∈Z. Suppose that A is of type I, and put e=mini∈Z ei. Then, we have A=BU

e

with B=...abe−1−eabe0−eabe1−e ... . Like A, this word B is not ultimately periodic and
Lemma 14 of [1] gives L(A)=L(B)=3, and thus B is a critical word. Upon choosing an
index i such that ei=e, we find that B contains the subword abei−ea=aa, and thus B
is of type II. From this it follows that each difference ej−e is equal to 0 or 1, and thus
ej∈{e, e+1}. The case where A is of type II is similar.

The second preliminary result given below is connected with the fact that, for each
m in the Markoff tree (3), the matrices xm of §2 are symmetric and satisfy

xmM =ϕ((ab)ψm)

(for this last relation see the proof of Lemma 6.8).

Lemma 7.5. For any finite product ψ of U and V , the word (ab)ψ admits a fac-
torization of the form apb, where p=p∗ is a palindrome in W0.

The combinatorial argument given below is extracted from the proof of Theorem 15
of [1].

Proof. We proceed by induction on the length of ψ as a product of U and V . If this
length is 0, we have (ab)ψ=apb, where p=∅ is the empty word. Otherwise, ψ takes
one of the forms ψ′U or ψ′V for some product ψ′ of U and V of smaller length. By
hypothesis, we have (ab)ψ

′
=ap′b for some palindrome p′∈W0. Then (ab)ψ is either

equal to (ap′b)U or (ap′b)V , and so it takes the form apb, where p is either b(p′)U or
(p′)V a. As p′ is a palindrome, the formulas (7) of [1] show that, in both cases p is a
palindrome.

Theorem 7.6. Let P=a1a2a3 ... be a right infinite word which is not ultimately
periodic. The following conditions are equivalent :

(1) there exist infinite words Q′=... a′−2a
′
−1a

′
0 and Q′′=... a′′−2a

′′
−1a

′′
0 , with a′0 6=a′′0 ,

such that L(Q′P )=L(Q′′P )=3;
(2) there exists a sequence of positive integers {ni}i>1 such that, upon defining re-

cursively

ψ1 =Un1−1, ψi =
{
V niψi−1, if i> 2 is even,
Uniψi−1, if i> 3 is odd,

(41)
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the word aψi is a prefix of aP for each i>1.
Moreover, when condition (1) is fulfilled, one of the words Q′ or Q′′ is P ∗ab and

the other is P ∗ba, where P ∗ denotes the reciprocal of P .

In the sequel, we only use the implication (1)⇒ (2). However the reverse implication
shows in particular that there are uncountably many right infinite words P satisfying (1).

Proof. Suppose first that the condition (1) is fulfilled. Then, the words A′ :=Q′P
and A′′ :=Q′′P are both critical and, as they admit P as a common suffix, they are
products of a and b of the same type (see Lemma 7.4). By permuting the words Q′ and
Q′′ if necessary, we may assume without loss of generality that Q′ ends with 1 and that
Q′′ ends with 2.

Suppose first that A′ and A′′ are of type I. Then there exist sequences of positive
integers {e′i}i∈Z and {e′′i }i∈Z such that

A′ = ...abe
′
−1abe

′
0abe

′
1 ... and A′′ = ...abe

′′
−1abe

′′
0 abe

′′
1 ... .

Since A′ and A′′ admit P as a common suffix, these two sequences coincide from some
point on. By shifting the indexation, we may assume that e′0 6=e′′0 and that e′i=e

′′
i for

each i>1. As P is not ultimately periodic, the integers ei :=e′i=e
′′
i with i>1 are not all

equal to each other. Then, according to Lemma 7.4, the sequences {e′i}i∈Z, {e′′i }i∈Z and
{ei}i>1 take values in the same set {e, e+1} for some integer e>1. Since the suffix P is
preceded by 1 in A′ and by 2 in A′′, we deduce that e′0=e and e′′0 =e+1, so that

Q′ = ...abe
′
−2abe

′
−1a, Q′′ = ...abe

′′
−2abe

′′
−1ab and P =beabe1abe2 ..., (42)

and therefore
A′ =(Q′1P1)U

e

and A′′ =(Q′′1P1)U
e

for some left infinite words Q′1 with suffix a and Q′′1 with suffix ab, and some right infinite
word P1 such that

aP =(aP1)U
e

. (43)

By Lemma 7.4, the words A′1 :=Q′1P1 and A′′1 :=Q′′1P1 are both critical of type II.
As the suffix P1 is preceded by 1 in A′1 and by 2 in A′′1 , the same argument based on

Lemma 7.4 shows that there exist an integer f>1 and sequences {f ′i}i<0, {f ′′i }i<0 and
{fi}i>0 taking values in {f, f+1} such that

Q′1 = ...baf
′
−2baf

′
−1ba, Q′′1 = ...baf

′′
−2baf

′′
−1b and P1 =afbaf1baf2 ... . (44)

From this, we deduce that

A′1 =(Q′2P2)V
f

and A′′1 =(Q′′2P2)V
f



358 d. roy

for some left infinite words Q′2 with suffix ba and Q′′2 with suffix b, and some right infinite
word P2 such that

aP1 =aPV
f

2 =(aP2)V
f

. (45)

Then, by Lemma 7.4, the words A′2 :=Q′2P2 and A′′2 :=Q′′2P2 are both critical of type I.
Combining (43) and (45), we obtain

aP =(aP1)U
e

=(aP2)V
fUe

.

Moreover, (42) and (44) show that ba is a suffix of Q′ and Q′1, while ab is a suffix
of Q′′ and Q′′1 . Therefore, by iterating the above construction indefinitely, we obtain a
sequence of positive integers {ni}i>1 starting with n1=e+1 and n2=f , two sequences of
left infinite words {Q′i}i>1 and {Q′′i }i>1, and a sequence of right infinite words {Pi}i>1

with the following properties. For each i>1, the word ba is a suffix of Q′i, the word ab
is a suffix of Q′′i , and we have

A′ =(Q′iPi)
ψi , A′′ =(Q′′i Pi)

ψi and aP =(aPi)ψi (46)

for the sequence {ψi}i>1 defined by (41). If A′ and A′′ are of type II, we reach the same
conclusion upon starting with n1=1, Q′1=Q′, Q′′1 =Q′′ and P1=P . Then, in all cases, we
deduce from the last equality in (46) that aψi is a prefix of aP for each i>1, and this
proves statement (2).

Lemma 7.5 shows that (ab)ψ=aUψ=bV ψ takes the form apb with a palindrome
p∈W0 for any product ψ of U and V . Thus, for any integer i>1, we can write

bψ2i =ap2ib and aψ2i+1 =ap2i+1b

for some palindromes p2i and p2i+1. Since ψ2i+1=Un2i+1ψ2i, we find that

(ab)ψ2i+1 =aψ2i+1bψ2i =ap2i+1bap2ib.

Thus p2i+1bap2i is a palindrome, and so

p2i+1bap2i =p2iabp2i+1. (47)

This shows in particular that p2i is a prefix of p2i+1 because, since bψ2i is a proper suffix
of aψ2i+1 =(abn2i+1)ψ2i , the length of p2i as a product of a and b is shorter than the
length of p2i+1.

Fix any index i>1. By (46), we have aP=(aP2i+1)ψ2i+1 , and thus

P =p2i+1bP
ψ2i+1
2i+1 . (48)
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In particular, p2i+1 is a prefix of P and so p2i is also a prefix of P . As ab is a suffix of
Q′′2i+1, we deduce from (46) that A′′ admits the suffix

(abP2i+1)ψ2i+1 =ap2i+1bap2ibP
ψ2i+1
2i+1

=ap2iabp2i+1bP
ψ2i+1
2i+1 by (47),

=ap2iabP by (48).

Thus, p2iab is a common suffix of Q′′ and P ∗ab. Similarly, since ba is a suffix of Q′2i,
the formulas (46) show that A′ admits the suffix

(baP2i)ψ2i =bψ2iaP =ap2ibaP,

and thus p2iba is a common suffix of Q′ and P ∗ba. Letting i tend to infinity, we deduce
that Q′′=P ∗ab and that Q′=P ∗ba.

Conversely, assume that P satisfies condition (2) of the theorem. To complete the
proof, it remains only to show that L(P ∗abP )=L(P ∗baP )=3. Since P ∗abP is the re-
verse of P ∗baP , Lemma 5 of [1] reduces this task to showing that L(P ∗baP )=3. As
the palindrome p2i+1 is a prefix of P whose length tends to infinity with i, any finite
subword of P ∗baP is contained in p2i+1bap2i+1 for some i>1, and so is contained
in the purely periodic word ...Π2i+1Π2i+1Π2i+1 ... with period Π2i+1=aψ2i+1 =ap2i+1b.
By Theorem 15 of [1], this word has L(...Π2i+1Π2i+1 ... )<3 (because Π2i+1=(ab)ψ with
ψ=Un2i+1−1ψ2i). By continuity, this implies that L(P ∗baP )63. Since P is not ulti-
mately periodic, this must be an equality [1, Theorem 15].

We can now complete the proof of our main result which reads as follows.

Theorem 7.7. The set {ξm :m∈Σ∗} constitute a system of representatives of the
GL2(Z)-equivalence classes of extremal numbers ξ with ν(ξ)= 1

3 .

Proof. According to Theorem 3.6, the extremal numbers ξm with m∈Σ∗ are pairwise
inequivalent and, by Corollary 5.10, their Lagrange constant is 1

3 . It remains to show
that any extremal number ξ with ν(ξ)= 1

3 is equivalent to one of these. As mentioned at
the beginning of this section, in order to show this, we may assume, by Proposition 6.6,
that ξ is balanced. Then Corollary 7.2 shows that its continued fraction expansion takes
the form ξ=[0, P ], where P is a right infinite word on the positive integers which is
not ultimately periodic and satisfies the condition (1) of Theorem 7.6. Let {ni}i>1 be
the sequence of positive integers such that, for the corresponding sequence {ψi}i>1 of
endomorphisms of W0 given by (41), the word aψi is a prefix of aP for each i>1. Define

vi =
{

aψi , if i> 1 is odd,
bψi , if i> 2 is even.
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The recurrence relations (41) translate into

v2i+1 =aψ2i+1 =(abn2i+1)ψ2i =v2i−1v
n2i+1
2i , (49)

v2i+2 =bψ2i+2 =(an2i+2b)ψ2i+1 =vn2i+2
2i+1 v2i. (50)

We know that v2i+1 is a prefix of aP for each i>1. We claim that the reverse v∗2i of
v2i is a prefix of bP for each i>1. To prove this, we note, as in the proof of Theorem 7.6,
that v2i+1 is the image of ab by Un2i+1−1ψ2i and so, by Lemma 7.5, it takes the form
v2i+1=ap2i+1b for some palindrome p2i+1. Then, p2i+1 is a prefix of P . Moreover,
formula (49) implies that v2i is a suffix of p2i+1b. Thus, v∗2i is a prefix of bp2i+1, and
so is a prefix of bP .

Using (49) and (50), we also note that, for each i>2, the word

v2i+1 =v2i−1v
n2i+1
2i =v2i−1(vn2i

2i−1v2i−2)n2i+1

admits vn2i+1
2i−1 as a prefix, while the word

v∗2i =(vn2i
2i−1v2i−2)∗ =((v2i−3v

n2i−1
2i−2 )n2iv2i−2)∗

admits (v∗2i−2)
n2i−1+1 as a prefix. Therefore, vn2i+1

2i−1 is a prefix of aP and (v∗2i−2)
n2i−1+1

is a prefix of bP for each i>2. Since [0,aP ] and [0,bP ] are the continued fraction
expansions of fixed extremal numbers (in the equivalence class of ξ), we deduce from
Proposition 6.7 that n2i=n2i+1=1 for each sufficiently large integer i, say for i>i0.
Then, upon putting ψ0=ψ2i0 , we obtain

ψ2i+1 =U(V U)i−i0ψ0

for each i>i0, and so
aψ2i+1 =(ab)(V U)i−i0ψ0

is a prefix of aP for each i>i0. By Theorem 6.9, this implies that [0,aP ]=ξm for some
m∈Σ∗.

We conclude with the following result which provides an additional link between
extremal numbers and Markoff’s theory.

Corollary 7.8. Let ξ be an extremal number and let {αi}i>1 be a sequence of
best quadratic approximations to ξ in the sense of Definition 4.7. Then the following
assertions are equivalent :

(1) ν(ξ)= 1
3 ;

(2) ν(αi)> 1
3 for each sufficiently large i;

(3) ν(αi)> 1
3 for infinitely many i.
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Proof. Suppose first that ν(ξ)= 1
3 . Then, by the preceding theorem, ξ is equivalent to

ξm for some m∈Σ∗ and so, by Lemma 4.8, each αi with i sufficiently large is equivalent to
αn or �αn for some n∈Σ∗. According to Markoff’s Theorem 2.3, these quadratic numbers
have ν(αn)=ν(�αn)> 1

3 . This means that ν(αi)> 1
3 for each sufficiently large i, and a

fortiori for infinitely many values of i.
Conversely, suppose that ν(αij )>

1
3 for a strictly increasing sequence of positive

integers {ij}j>1. Without loss of generality, we may assume that these integers ij all
have the same parity. Then, by Proposition 4.9, the sequence {�αij}j>1 converges to some
conjugate ξ′ of ξ and so, upon defining

Fj(U, T ) := (T−αijU)(T−�αijU) and G′(U, T ) := (T−ξU)(T−ξ′U),

we obtain G′(U, T )/
√

disc(G′)=limj!∞ Fj(U, T )/
√

disc(Fj), and thus

ν(ξ) =
µ(G′)√
disc(G′)

> lim sup
j!∞

µ(Fj)√
disc(Fj)

,

where the equality comes from Theorem 5.8. By Markoff’s Theorem 2.3, the above limit
superior is equal to 1

3 . This gives ν(ξ)> 1
3 , and we conclude that ν(ξ)= 1

3 since ξ is not a
quadratic number.

Final remark. For each ξ∈R, denote by λ̂2(ξ) the supremum of all real numbers
λ>0 such that the inequalities

|x0|6X, |x0ξ−x1|6X−λ and |x0ξ
2−x2|6X−λ

admit a non-zero solution (x0, x1, x2)∈Z3 for each sufficiently large value of X. By [16],
we know that the values taken by λ̂2 on the set of non-quadratic irrational real numbers
are dense in the interval

[
1
2 , 1/γ

]
. It would be interesting to know what happens if instead

we consider the values taken by λ̂2 on the set of irrational numbers ξ with ν(ξ)= 1
3 . By

looking at Sturmian continued fractions, Y. Bugeaud and M. Laurent showed in [2,
Theorem 3.1] that, for each bounded sequence of positive integers {si}i>1, there exists
a real number ξ with λ̂2(ξ)=(1+σ)/(2+σ), where σ=lim infk!∞[0, sk, sk−1, , ..., s1]. I
think that, by considering appropriate paths in the Markoff tree (4) like in §3, one should
be able to produce real numbers ξ with the same exponents λ̂2 and with ν(ξ)= 1

3 . By
analogy with work of S. Fischler in [8], it is possible that this exhausts the set of all
possible values taken by λ̂2 on the real numbers ξ with ν(ξ)= 1

3 .
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