
Acta Math., 206 (2011), 93–125
DOI: 10.1007/s11511-011-0060-4
c© 2011 by Institut Mittag-Leffler. All rights reserved

Constructing integrable systems of semitoric type

by
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1. Introduction

The present paper is motivated by some remarkable results proven in the 1980s by Atiyah,
Guillemin–Sternberg and Delzant, in the context of Hamiltonian torus actions. Indeed,
Atiyah [1, Theorem 1] and Guillemin–Sternberg [13] proved that if an n-dimensional torus
acts on a compact, connected symplectic manifold (M,ω) in a Hamiltonian fashion, then
the image µ(M) under the momentum map µ:=(µ1, ..., µn):M!Rn is a convex polytope.
Delzant [5] showed that if the dimension n of the torus is half the dimension of M , this
polytope, which in this case is called a Delzant polytope (i.e. a convex polytope with the
property that at each vertex of it there are precisely n codimension-1 faces with normals
which form a Z-basis of the integral lattice Zn), determines the isomorphism type of
M , and moreover, M is a toric variety. He also showed that starting from any Delzant
polytope one can construct a symplectic manifold with a Hamiltonian torus action for
which its associated polytope is the one we started with.

From the viewpoint of symplectic geometry, the situation described by the momen-
tum polytope is, nevertheless, very rigid. It is natural to wonder whether any of these
striking results persist in the case where the torus is replaced by a non-compact group
acting Hamiltonianly. The seemingly simplest case happens when the group is Rn, and
the study of these Rn-actions is precisely the goal of the theory of integrable systems.
Building on previous work of the authors, and of many other authors, we shall present
a “Delzant-type” classification for integrable systems, for which one component of the
system is generated by a Hamiltonian circle action; these systems are called semitoric.

The first author was partially supported by an NSF post-doctoral fellowship. This work was done
while the first author was at the Massachusetts Institute of Technology (2007–2008) and at the University
of California, Berkeley (2008–2010).
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Let (M,ω) be a connected, symplectic 4-dimensional manifold, where we do not
assume that M is compact. Any smooth function f on M induces a unique vector field
Xf on M which satisfies ω(Xf , ·)=−df . It is called the Hamiltonian vector field induced
by f . An integrable system on M is a pair of real-valued smooth functions J and H on
M , for which the Poisson bracket {J,H}:=ω(XJ ,XH) identically vanishes on M , and
the differentials dJ and dH are almost-everywhere linearly independent. Of course, here
(J,H):M!R2 is the analogue of the momentum map in the case of a torus action. In
some local symplectic coordinates of M , (x, y, ξ, η), the symplectic form ω is given by
dξ∧dx+dη∧dy, and the vanishing of the Poisson brackets {J,H} amounts to the partial
differential equation

∂J

∂ξ

∂H

∂x
− ∂J
∂x

∂H

∂ξ
+
∂J

∂η

∂H

∂y
− ∂J
∂y

∂H

∂η
=0.

This condition is equivalent to J being constant along the integral curves of XH (or H
being constant along the integral curves of XJ).

A semitoric integrable system on M is an integrable system for which the component
J is a proper momentum map for a Hamiltonian circle action on M , and the associated
map F :=(J,H):M!R2 has only non-degenerate singularities in the sense of Williamson,
without real-hyperbolic blocks. We also use the term 4-dimensional semitoric integrable
system to refer to the triple (M,ω, (J,H)). Recall that the properness of J means that
the preimage by J of a compact set is compact in M (which is immediate if M is
compact), and the non-degeneracy hypothesis for F means that, if p is a critical point
of F , then there exists a 2×2 matrix B such that, if we set F̃=B�(F−F (p)), then one
of the following situations holds in some local symplectic coordinates (x, y, ξ, η) centered
at p (meaning that x=y=ξ=η=0 at p):

(1) F̃ (x, y, ξ, η)=
(
η+O(η2), 1

2 (x2+ξ2)+O((x, ξ)3)
)
;

(2) F̃ (x, y, ξ, η)= 1
2 (x2+ξ2, y2+η2)+O((x, ξ, y, η)3);

(3) F̃ (x, y, ξ, η)=(xξ+yη, xη−yξ)+O((x, ξ, y, η)3).

The first case is called a transversally (or codimension-1) elliptic singularity ; the
second case is an elliptic-elliptic singularity ; and the last case is a focus-focus singularity.
In [16, Theorem 6.2] the authors constructed, starting from a given semitoric integrable
system on a 4-manifold, a collection of five symplectic invariants associated with it and
proved that these completely determine the integrable system up to isomorphisms. The
goal of the present is to complement that work, by providing a general method to con-
struct any 4-dimensional semitoric integrable system starting from an abstract collection
of ingredients. Both throughout [16] and the present paper we make a generic assumption
on our semitoric systems; this is explained in §2.1.
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Figure 1.1. The weighted polygon (∆, (`1, `2), (1,−1)).

The symplectic invariants constructed in [16], for a given 4-dimensional semitoric
integrable system, are the following: (i) the number of singularities invariant : an integer
mf counting the number of isolated singularities; (ii) the singularity type invariant : a
collection of mf infinite Taylor series in two variables which locally classifies the type
of singularity; (iii) the polygon invariant : the equivalence class of a weighted rational
convex(1) polygon

(∆, {`j}
mf

j=1, {εj}
mf

j=1).

Here ∆ is a convex polygon domain in R2, the `j are vertical lines intersecting ∆ and the
εj are ±1 signs giving each line `j an orientation; (iv) the volume invariant : mf numbers
measuring volumes of certain submanifolds at the singularities; (v) the twisting index
invariant : mf integers measuring how twisted the system is around singularities. This
is a subtle invariant, which depends on the representative chosen in (iii). Here, we write
mf to emphasize that the singularities that mf counts are focus-focus singularities. We
then proved in [16] that two semitoric systems (M,ω1, (J1,H1)) and (M,ω2, (J2,H2)) are
isomorphic if and only if they have the same invariants (i)–(v), where an isomorphism is a
symplectomorphism ϕ:M1!M2 such that ϕ∗(J2,H2)=(J1, f(J1,H1)) for some smooth
function f such that ∂f/∂H1 vanishes nowhere.

We have found that some restrictions on these symplectic invariants must be im-
posed. Indeed, we call the following collection of items (i)–(v) the semitoric list of ingre-
dients: (i) any integer number 06mf<∞; (ii) an mf -tuple of real formal power series in
two variables, with vanishing constant term and first terms σ1X+σ2Y with σ2∈[0, 2π);
(iii) a Delzant weighted polygon (∆, {`j}

mf

j=1, {εj}
mf

j=1), of complexity mf , where ∆ is a
polygon, the `j are again vertical lines intersecting ∆ and the εj are ±1 signs giving
each line `j an orientation; here the Delzant property for ∆ is not the standard one for
polygons, but rather a more delicate one for weighted polygons which takes into account
the presence of the lines `j ; (iv) an mf -tuple of positive real numbers {hi}

mf

i=1 such that
0<hi<length(∆∩`i) for each i∈{1, ...,mf}. (v) an arbitrary collection of mf integers

(1) Generalizing the Delzant polygon and which may be viewed as a bifurcation diagram.
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{ki}
mf

i=1. Our main theorem (Theorem 4.6) says that, starting from a semitoric list of
ingredients one can construct a 4-dimensional semitoric integrable system (M,ω, (J,H))
such that the list of its invariants is equal to this semitoric list. Moreover, M is compact
if and only the polygon in item (iii) is compact.

With this in mind we may formulate the uniqueness theorem in [16] as: two systems
constructed in this fashion are isomorphic if and only if the ingredients (i), (ii) and (iv)
are identical for both systems and the ingredients (iii) and (v) are related by some simple
transformation. This is why, when we formulate the existence theorem, the ingredients
(iii) and (v) are given by orbits of weighted polygons and pondered weighted polygons,
respectively, under the action of certain groups. Together with [16, Theorem 6.2], this
gives the aforementioned classification (Theorem 4.7) .

While the construction of semitoric systems in the present paper is relatively self-
contained, we are indebted to the articles of Delzant [5], Atiyah [1] and Guillemin–
Sternberg [13], in the context of Hamiltonian torus actions, which served as an inspiration
to study the more general situation of integrable systems with circular Hamiltonian sym-
metry. Furthermore, many papers have played an important role in our investigation of
4-dimensional semitoric systems, by serving as stepping stones to construct the symplectic
invariants in [19] associated with semitoric systems; notably we used work of Dufour–
Molino [6], Duistermaat [7], Eliasson [8], Miranda–Zung [15] and Vũ Ngo.c [18], [19].

In this work, we are in a situation where the moment map (J,H) is a “torus fibration”
with singularities, and its base space becomes endowed with a singular integral affine
structure. These structures have been studied in the context of integrable systems (in
particular by Zung [23]), but also became a central concept in the works by Symington
[17], Symington–Leung [14], in the context of symplectic geometry and topology, and by
Gross–Siebert [9], [10], [11] and [12], among others, in the context of mirror symmetry and
algebraic geometry. In fact, our ingredients (i), (iii) and (iv) could have been expressed
in terms of this affine structure. However, the ingredients (ii) and (v) do not appear in
the affine structure. Nevertheless it is expected that these ingredients play an important
role in the quantum theory of integrable systems. We hope to be able to explore these
ideas in the future.

The paper is structured as follows: in §2 we recall how to construct a collection of
symplectic invariants for a semitoric system, and state more precisely that two semitoric
systems are isomorphic precisely when they have the same invariants; this was done in
[16], and we need to review it here in order to state the existence theorem for semitoric
systems. In §3 we explain the symplectic glueing construction (i.e. how to glue symplectic
manifolds equipped with momentum maps). The last two sections of the paper are
respectively devoted to state the main theorem and to prove it. One might argue that
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the proof is more informative than the statement, as it gives an explicit construction of
all semitoric integrable systems in dimension 4.

Acknowledgments. We are very grateful to an anonymous referee for several inter-
esting comments and remarks which have led to improvements. We thank Denis Auroux
for offering several comments, and for pointing out the papers by Gross and Siebert.

2. Review of the uniqueness theorem for semitoric systems

We recall the definition of the invariants that we assigned to a semitoric integrable
system in our previous paper [16], to which we refer for further details. Then we state
the uniqueness theorem proved therein.

2.1. The Taylor series invariant

It was proven in [19] that a semitoric system (M,ω, F :=(J,H)) has finitely many focus-
focus critical values c1, ..., cmf

, that if we write B :=F (M) then the set of regular values
of F is Int(B)\{c1, ..., cmf

}, that the boundary of B consists of all images of elliptic
singularities, and that the fibers of F are connected. The integer mf was the first
invariant that we associated with such a system. Let i be an integer, with 16i6mf .

We assume that the critical fiber Fmi
:=F−1(ci) contains exactly one critical point

mi, which according to Zung [23] is a generic condition, and let F denote the associated
singular foliation. Moreover, we make for simplicity an even stronger generic assumption:
if m is a focus-focus critical point for F then m is the unique critical point of the level set
J−1(J(m)). A semitoric system is simple if this genericity assumption is satisfied. These
conditions imply that the values J(m1), ..., J(mmf

) are pairwise distinct. We assume
throughout the article that the critical values ci are ordered by their J-values:

J(m1)<J(m2)< ...<J(mmf
).

Vũ Ngo.c proved in [18] that a semiglobal neighborhood of the ith focus-focus point is
classified up to symplectic equivalence by a Taylor series (Si)∞∈R[[X,Y ]] in two variables
with vanishing constant term. The series (Si)∞ is called the Taylor series invariant of
(M,ω, (J,H)) at the focus-focus point ci. For the purpose of this paper we do not need
to know how to obtain this Taylor series from the integrable system; it suffices to know
that it completely classifies symplectically a neighborhood of the singular fiber above the
focus-focus point. A summary of the construction in [18] appeared in [16, §3.2].



98 á. pelayo and s. vũ ngoc.

2.2. The semitoric polygon invariant

The plane R2 is equipped with its standard affine structure with origin at (0, 0), and
orientation. Let Aff(2,R):=SL(2,R)nR2 be the group of affine transformations of R2.
Let Aff(2,Z):=SL(2,Z)nR2 be the subgroup of integral-affine transformations. Let I be
the subgroup of Aff(2,Z) of those transformations which leave a vertical line invariant,
or equivalently, an element of I is a vertical translation composed with a matrix T k,
where k∈Z and

T k :=
(

1 0
k 1

)
∈SL(2,Z). (2.1)

Let `⊂R2 be a vertical line in the plane, not necessarily through the origin, which splits
it into two half-spaces, and let n∈Z. Fix an origin in `. Let tn` : R2!R2 be the identity on
the left half-space, and Tn on the right half-space. By definition, tn` is piecewise affine.
Let `i be a vertical line through the focus-focus value ci=(xi, yi), where 16i6mf , and
for any tuple ~n:=(n1, ..., nmf

)∈Zmf we set

t~n := tn1
`1
�...�t

nmf

`mf
.

The map t~n is piecewise affine.

Definition 2.1. A convex polygonal set ∆ is the intersection in R2 of (finitely or
infinitely many) closed half-planes such that on each compact subset of the intersection
there is at most a finite number of corner points. We say that ∆ is rational if each edge
is directed along a vector with rational coefficients. For brevity, in this paper we usually
write “polygon” instead of “convex polygonal set”, see Remark 2.2.

Remark 2.2. The word “polygon” is commonly used to refer to the convex hull of
a finite set of points in R2 which is a compact set (this is not necessarily the case in
algebraic geometry, cf. e.g. Newton polygons). Notice (see Ziegler [22, Theorem 1.2])
that a convex polygonal set ∆ which is not a half-space has exactly two edges of infinite
Euclidean length if and only if it is non-compact, and ∆ has all of its edges of finite
length if and only if it is compact.

Some authors call “2-dimensional convex polyhedron” what we call “convex polygo-
nal domain”; we prefer not to use this terminology as historically the word “polyhedron”
has referred to 3-dimensional objects.

Let Br :=Int(B)\{c1, ..., cmf
}, which is precisely the set of regular values of F . Given

a sign εi∈{−1, 1}, let `εi
i ⊂`i be the vertical half-line starting at ci and extending in the

direction of εi: upwards if εi=1, downwards if εi=−1. Let

`~ε :=
mf⋃
i=1

`εi
i .
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In [19, Theorem 3.8] it was shown that for ~ε∈{−1, 1}mf there exists a homeomorphism
onto its image f=fε:B!f(B)⊂R2, modulo a left composition by a transformation in I,
such that f |B\`~ε is a diffeomorphism into its image ∆:=f(B), which is a rational convex
polygon (or more precisely, a rational convex polygonal domain), f |Br\`~ε is affine (it sends
the integral affine structure of Br to the standard structure of R2) and f preserves J ,
i.e. f(x, y)=(x, f (2)(x, y)).

Let us recall what we mean by the affine structure of Br [16]. An integral affine
manifold is a smooth manifold that admits an atlas where transition functions are in
Aff(n,Z):=SL(n,Z)nRn. On the tangent plane at any point m of an integral affine
manifold M , there is a well-defined lattice, namely the preimage of Zn by the differential
dmϕ of a chart ϕ:U⊂M!Rn. Of course Rn itself is canonically an integral affine man-
ifold, endowed with the tangent lattice Zn.

It follows from the action-angle theorem [7] that any proper Lagrangian fibration
F :M!B naturally defines an integral-affine structure on the base B. This affine struc-
ture can be characterized by the following fact: a local diffeomorphism g: (B, b)!(Rn, 0)
is an integral-affine chart if and only if the Hamiltonian flows of the n coordinate func-
tions of g�F are periodic of primitive period equal to 2π. Therefore an integrable system
with proper momentum map F=(J,H) defines an integral-affine structure on the set Br

of regular values of F . In our case, this structure extends to the boundary of Br in a
natural way.

AlthoughBr is a subset of R2, the integral-affine structure ofBr is in general different
from the induced canonical integral-affine structure of R2.

In order to arrive at ∆ one cuts (J,H)(M)⊂R2 along each of the vertical half-
lines `εi

i . Then the resulting image becomes simply connected and thus there exists a
global 2-torus action on the preimage of this set. The polygon ∆ is just the closure of
the image of a toric momentum map corresponding to this torus action. Of course, if
the system is toric (i.e. mf =0), then ∆ is the usual Delzant polygon. In the general
semitoric case, there are important differences to be noted. One of them is that the
H-coordinates of the vertices are not all critical values of H (while, as in the toric case,
the J-coordinates of the vertices are exactly the critical values of J). Another important
fact is that this polygon is not unique. The choice of the “cut direction” is encoded in
the signs εj , and there remains some freedom for choosing the toric momentum map.
Precisely, the choices and the corresponding homeomorphisms f are the following:

(a) an initial set of action variables f0 of the form (J,K) near a regular Liouville
torus in [19, proof of Theorem 3.8, step 2]. If we choose f1 instead of f0, we get a polygon
∆′ obtained by left composition with an element of I. Similarly, if we choose f1 instead
of f0, we obtain f composed on the left with an element of I;
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(b) a tuple ~ε of 1 and −1. If we choose ~ε ′ instead of ~ε we obtain ∆′=t~u(∆)
with ui= 1

2 (εi−ε′i), by [19, Proposition 4.1, formula (11)]. Similarly, instead of f we get
f ′=t~u�f .

Lemma 2.3. Once f0 and ~ε have been fixed as in (a) and (b), respectively, then there
exists a unique toric momentum map µ on Mr :=F−1

(
IntB\

(⋃mf

j=1 `
εj

j

))
which preserves

the foliation F , and coincides with f0�F where they are both defined. Then, necessarily,
the first component of µ is J , and we have

µ(Mr) =∆. (2.2)

Proof. The uniqueness follows from the fact that IntB\
(⋃mf

j=1 `
εj

j

)
is simply con-

nected, and (2.2) follows directly from the construction of ∆ in [19], since µ=f �F .

We sometimes call µ the (generalized) momentum map associated with the poly-
tope ∆. Let Polyg(R2) be the space of rational convex polygons in R2. Let Vert(R2) be
the set of vertical lines in R2. A weighted polygon of complexity s is a triple of the form

∆w =(∆, {`λj}s
j=1, {εj}s

j=1),

where s is a non-negative integer, ∆∈Polyg(R2), `λj∈Vert(R2) and εj∈{−1, 1} for every
j∈{1, ..., s},

min
s∈∆

π1(s)<λ1< ...<λs<max
s∈∆

π1(s),

where π1: R2!R is the canonical projection π1(x, y)=x and π1(`λj )=λj . For any s∈N,
let Gs :={−1, 1}s. Obviously, an element of the group I sends a rational convex polygon
to a rational convex polygon. It corresponds to the transformation described in (a). On
the other hand, the transformation described in (b) can be encoded by the group Gs

acting on the triple ∆w by the formula

{ε′j}s
j=1 ·(∆, {`λj

}s
j=1, {εj}s

j=1) = (t~u(∆), {`λj}s
j=1, {ε′jεj}s

j=1), (2.3)

where ~u=
{

1
2 (εi−ε′i)

}s

i=1
. This, however, does not always preserve the convexity of ∆,

as is easily seen when ∆ is the unit square centered at the origin and λ1=0. However,
when ∆ comes from the construction described above for a semitoric system (J,H), the
convexity is preserved. Thus, we give the following definition.

Definition 2.4. A weighted polygon is admissible when the Gs-action preserves con-
vexity. We denote by W Polygs(R2) the space of all admissible weighted polygons of
complexity s.
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The set Gs×I is an abelian group, with the natural product action. The action of
Gs×I on W Polygs(R2) is

({ε′j}s
j=1, T

k+α)·(∆, {`λj
}s

j=1, {εj}s
j=1) = (t~u((T k+α)(∆)), {`λj}s

j=1, {ε′jεj}s
j=1),

where ~u=
{

1
2 (εi−ε′i)

}s

i=1
and α denotes the vertical translation (x, y) 7!(x, y+α).

Definition 2.5. A semitoric polygon is the equivalence class of an admissible weighted
polygon under the (Gmf

×I)-action.

Let ∆ be a rational convex polygon obtained from the momentum image (J,H)(M)
according to the above construction of cutting along the half-lines `ε1

1 , ..., `
εmf
mf .

Definition 2.6. The semitoric polygon invariant of (M,ω, (J,H)) is the semitoric
polygon equal to the (Gmf

×I)-orbit

(Gmf
×I)·(∆, {`j}

mf

j=1, {εj}
mf

j=1)∈W Polygmf
(R2)/(Gmf

×I). (2.4)

2.3. The volume invariant

Consider a focus-focus critical point mi whose image by (J,H) is ci, and let ∆ be a ratio-
nal convex polygon corresponding to the system (M,ω, (J,H)). If µ is a toric momentum
map for the system (M,ω, (J,H)) corresponding to ∆, then the image µ(mi) is a point
in the interior of ∆, along the line `i. We proved in [16] that the vertical distance

hi :=µ(mi)− min
s∈`i∩∆

π2(s)> 0 (2.5)

is independent of the choice of momentum map µ. Here π2: R2!R is π2(x, y)=y. See
[16, §5.1] for an explanation of the usage of the word “volume”.

2.4. The twisting-index invariant

The twisting-index at a focus-focus point ci is a dynamical invariant which expresses
the fact that in a neighborhood of ci there is a privileged toric momentum map ν;
this momentum map encodes the existence of a unique hyperbolic radial vector field
in a neighborhood of the focus-focus fiber. We refer to [16, §5, step 4] for a detailed
construction of the privileged momentum map; what is most relevant in the proof of the
existence result in this paper (§5, second stage) is the fact that we have the privileged
choice of momentum map ν. Since any semitoric polygon defines a (generalized) toric
momentum map µ, we define the twisting-index at ci as the integer ki∈Z such that
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dµ=T ki dν. The twisting index invariant is essentially the mf -tuple of values ki, but
one has to be more careful [16, §5, step 5], because as was the case with the semitoric
polygon invariant, we need to factor out the actions of I and Gs in order to get the actual
well-defined invariant. For any integer s, consider the action of the product Gs×I on
the space W Polygs(R2)×Zs:

({ε′j}s
j=1, T

k+α)?(∆, {`λj}s
j=1, {εj}s

j=1, {kj}s
j=1)

= (t~u((T k+α)(∆)), {`λj}s
j=1, {ε′jεj}s

j=1, {kj +k}s
j=1),

where ~u=
{

1
2 (εj−ε′j)

}s

j=1
, for all integers j∈{1, ..., s}.

Definition 2.7. The twisting-index invariant of (M,ω, (J,H)) is the (Gmf
×I)-orbit

of a weighted polygon pondered by twisting indices at the focus-focus singularities of the
system given by

(Gmf
×I)?(∆, {`j}

mf

j=1, {εj}
mf

j=1, {kj}
mf

j=1)∈ (W Polygmf
(R2)×Zmf )/(Gmf

×I).

2.5. The uniqueness theorem

To a semitoric system we assign the above list of invariants and state the main theorem
in [16].

Definition 2.8. Let (M,ω, (J,H)) be a 4-dimensional simple semitoric integrable
system. The list of invariants of (M,ω, (J,H)) consists of the following items.

(i) The integer number 06mf<∞ of focus-focus singular points.
(ii) The mf -tuple {(Si)∞}

mf

i=1, where (Si)∞ is the Taylor series of the ith focus-focus
point.

(iii) The semitoric polygon invariant, cf. Definition 2.6.
(iv) The volume invariant, i.e. the mf -tuple {hi}

mf

i=1, where hi is the height of the
ith focus-focus point.

(v) The twisting-index invariant, cf. Definition 2.7.

Theorem 2.9. ([16, Theorem 6.2]) The two 4-dimensional simple semitoric inte-
grable systems (M1, ω1, (J1,H1)) and (M2, ω2, (J2,H2)) are isomorphic if and only if
their lists of invariants (i)–(v), as in Definition 2.8, coincide.

3. The symplectic glueing construction

In this section we explain how to symplectically glue an arbitrary collection of symplectic
manifolds {Mα}α∈A equipped with continuous, proper maps Fα:Mα!R to form a new



constructing integrable systems of semitoric type 103

symplectic manifold M equipped with a continuous, proper map which restricted to Mα

is equal to Fα, cf. Theorem 3.11. The results of this section, while perhaps well-known
among experts, we could not find in the literature.

3.1. Glueing maps, glueing groupoids

Let A be an arbitrary set of indices, and let {Mα}α∈A be a family of sets. Recall that
the disjoint union of the sets Mα, α∈A, is the subset of

(⋃
α∈AMα

)
×A defined by⊔

α∈A

Mα := {(x, α) :x∈Mα}.

We denote by jα, α∈A, the natural inclusions:

jα:Mα
� � //

⊔
α∈A

Mα,

x � // (x, α).

Notice that if B⊂A then
⊔

α∈B Mα⊂
⊔

α∈AMα. Of course, if all Mα’s are pairwise
disjoint, as sets, then there is a natural bijection bewteen

⊔
α∈AMα and the usual union⋃

α∈AMα.
If the Mα’s are topological spaces, the disjoint union

⊔
α∈AMα is endowed with the

final topology: the finest topology that makes the inclusions jα continuous. In particular
jα(Mα) is an open set in

⊔
α∈AMα.

Definition 3.1. A glueing map for the family {Mα}α∈A is a homeomorphism

ϕ:Uα−!Uβ ,

where (α, β)∈A2 and Uα⊂Mα and Uβ⊂Mβ are open sets.

In this text we use the standard set-theoretical convention that the notation ϕ

includes the source and target sets Uα and Uβ ; in particular the notation ϕ(x) implies
that x∈Uα. When required, we use the notation Us

ϕ and U t
ϕ for the source and target

sets of ϕ (assuming U t
ϕ=ϕ(Us

ϕ)).

Definition 3.2. Let G be a collection of glueing maps for {Mα}α∈A. The associated
glueing groupoid G is the groupoid generated by the set of all restrictions of all glueing
maps ϕ∈G to open subsets of the source sets, with the natural groupoid law: ϕ2�ϕ1

exists whenever the image of the source set of ϕ1 is included in the source set of ϕ2.

Definition 3.3. We say that G is free when there is no non-trivial ϕ∈G with both
source and target in the same set Mα.
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3.2. Topological glueing

We now define the general patching construction. Throughout this section, and unless
otherwise stated, we do not require topological spaces to be paracompact or Hausdorff.

Definition 3.4. Let {Mα}α∈A be a collection of pairwise disjoint topological spaces,
and G an associated glueing groupoid. From this we define the set M , called the glueing
of {Mα}α∈A along G, as M :=

⊔
α∈AMα/∼, where ∼ is the equivalence relation on⊔

α∈AMα defined by

(x, α)∼ (x′, β) ⇐⇒ x=x′ or there exists ϕ∈G with x′ =ϕ(x).

Let us check that ∼ is indeed an equivalence relation. The reflexivity is obvious. If
(x, α)∼(x′, β) and (x, α) 6=(x′, β) then ϕ(x)=x′ for some ϕ∈G. But G is a groupoid, so
ϕ−1∈G and of course x=ϕ−1(x′), and thus (x′, β)∼(x, α), which proves the symmetry
property. Finally, if (x, α)∼(x′, β) and (x′, β)∼(x′′, γ) then there exist ϕ and ϕ′ in G such
that ϕ(x)=x′ and ϕ′(x′)=x′′. Therefore ϕ′�ϕ is well defined on an open neighborhood
of x, so ϕ′�ϕ∈G, and (x, α)∼(x′′, γ), and hence we have shown the transitivity property.

Here again we could have dropped the assumption that the Mα’s are pairwise dis-
joint, or we could have used a standard union instead of a disjoint union.

The following lemma follows from the definition of the equivalence relation.

Lemma 3.5. Let π:
⊔

α∈AMα!M be the quotient map. For any subset K⊂Mα,
one has

π−1(yα(K))= jα(K)∪
( ⋃

ϕ∈G

jα(ϕ)(ϕ(K∩Us
ϕ))

)
,

where it is assumed that the union is over all ϕ whose source set Us
ϕ intersects K, and

α(ϕ) is the element in A such that U t
ϕ⊂Mα(ϕ).

Lemma 3.6. For the natural quotient topology on M , the maps yα=π�jα:Mα!M ,
α∈A, are open and continuous. They are injective if and only if G is free.

Proof. By definition of quotient topology, the map π is continuous. Hence yα=π�jα
is continuous. Finally, if U⊂Mα is open, then it follows from Lemma 3.5 that π−1(yα(U))
is open in

⊔
α∈AMα. This means that yα(U) is open in M .

Fix α∈A. Let x and x′ be elements of Mα. If yα(x)=yα(x′) then either x=x′ or
ϕ(x)=x′ for some ϕ∈G. The latter is ruled out by the assumption that there is no
non-trivial ϕ∈G with both source and target in Mα. Thus in this case yα is injective. If
the condition is violated then there exist x 6=x′ in Mα with jα(x)∼jα(x′) so yα cannot
be injective.
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3.3. Smooth glueing

Lemma 3.7. If all the Mα’s are smooth manifolds, all ϕ∈G are diffeomorphisms and
G is free, then there exists a unique smooth structure on M for which the maps yα, α∈A,
are embeddings.

Proof. Let U⊂Mα be open and let g:U!Rn be a homeomorphism. By Lemma 3.6,
yα is a homeomorphism onto its image. Let Ũ=yα(U) and g̃=g�(yα|U )−1. Then Ũ is
an open subset of M and g̃: Ũ!Rn is a homeomorphism. This shows that any chart of
Mα descends onto a chart of M . Obviously the union of a family of open covers of Mα

for all α∈A descends to an open cover of M . In order to get an atlas on M , it remains
to check the compatibility condition when an open set Ṽα coming from an atlas of Mα

intersects an open set Ṽβ coming from an atlas of Mβ . Thus, let (Vα, gα), Vα⊂Mα, and
(Vβ , gβ), Vβ⊂Mβ , be local charts such that yα(Vα)=yβ(Vβ) and α 6=β. Now consider the
following formula, given by Lemma 3.5,

jα(Vα)∪
( ⋃

ϕ∈G

jα(ϕ)(ϕ(Vα∩Us
ϕ))

)
= jβ(Vβ)∪

( ⋃
ϕ∈G

jα(ϕ)(ϕ(Vβ∩Us
ϕ))

)
.

Because G is free, any ϕ whose source set intersects Vα and such that α(ϕ)=α must be
the identity. Hence, in the left-hand side one can omit all the ϕ’s such that α(ϕ)=α. For
the same reason, one may assume that all the α(ϕ)’s are pairwise different. Of course
the analogue observation holds for the right-hand side. Hence we can equate terms in
the unions (up to permutation). In particular there must exist some ϕ with α(ϕ)=β
and jβ(ϕ(Vα∩Us

ϕ))=jβ(Vβ). Since jβ is injective, ϕ(Vα∩Us
ϕ)=Vβ . Let x∈Vβ and x′=

ϕ−1(x)∈Vα. Then yα(x′)=yβ(x), i.e. x′=y−1
α �yβ(x). Thus (yα|Vα)−1

�(yβ |Vβ
)=ϕ−1|Vβ

.
Hence the transition map for the charts g̃u :=gu�(yu|Vu)−1, u=α, β, is equal to

g̃α�g̃
−1
β = gα�((yα|Vα)−1

�(yβ |Vβ
))�g−1

β = gα�ϕ
−1
�g−1

β , (3.1)

which is indeed a composition of local diffeomorphisms. Thus M has a natural smooth
structure.

Consider now yα:Mα ↪!M . Read in a chart (Ṽα, g̃α) of M , with g̃α :=gα�(yα|Vα)−1,
for some chart (Vα, gα) on Mα, it becomes g̃α�yα=gα|Vα , which is a local diffeomorphism.
Since we already know that yα is a homeomorphism onto its image, it is an embedding.

Conversely, if yα, α∈A, are embeddings for some smooth structure on M , then any
local chart on Mα is sent by yα to a local chart on M . Thus, necessarily, we obtain the
same charts on M as the ones we have just constructed.
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Remark 3.8. The smooth manifold M given in Lemma 3.7 is not necessarily a Haus-
dorff space. The definition of manifold in Bourbaki [2] does not require M to be a
Hausdorff topological space, nor a paracompact space. These are, however, conditions
most frequently required. It follows from Bourbaki [2] that M is Hausdorff if and only
if for any two smooth charts ϕ:U⊂M!Rn and ψ:V ⊂M!Rn constructed as in the
proof of Lemma 3.7, we have that the graph of ψ�ϕ−1:ϕ(U∩V )!ψ(U∩V ) is closed in
ϕ(U)×ψ(V )⊂Rn×Rn.

3.4. Symplectic glueing

Unlike in the previous two sections, we shall be assuming that the Mα, α∈A, are Hau-
dorff, paracompact smooth manifolds. Moreover, we will be assuming that there exist
continuous, proper maps Fα:M!Rn which can be glued together to give rise to a proper
map F :M!R. With the aid of F we will show that the Hausdorff and paracompactness
properties of the Mα are inherited by M .

Lemma 3.9. If, for each α∈A, Mα is symplectic with symplectic form ωα, and if
all ϕ∈G are symplectomorphisms (and G is free), then there exists a unique symplectic
structure ω on M such that y∗αω=ωα, α∈A.

Proof. The following facts hold:
(1) all the yα’s are embeddings;
(2)

⋃
α∈A yα(Mα)=M ;

(3) when yα(Mα) intersects yβ(Mβ), α 6=β, then y−1
β �(yα)=ϕ for some ϕ∈G with

ϕ∗ωβ=ωα.

Then, the formula y∗αω=ωα defines a unique symplectic form ω on M .

We can finally apply this technique in our case.

Proposition 3.10. Let {Mα}α∈A be a collection of symplectic manifolds, each
equipped with a map Fα:Mα!Rn. For any α, β∈A, let Dαβ :=Fα(Mα)∩Fβ(Mβ) and
assume that

(1) Uα :=F−1
α (Dαβ) and Uβ :=F−1

β (Dαβ) are open;
(2) ϕαβ :Uα!Uβ is a symplectomorphism such that ϕ∗αβFβ=Fα;
(3) if Dαβγ :=Fα(Mα)∩Fβ(Mβ)∩Fγ(Mγ) 6=∅, we have ϕβγ �ϕαβ=ϕαγ (restricted

to F−1
α (Dαβγ)).

Then the smooth manifold M obtained by glueing the collection {Mα}α∈A along
the set {ϕαβ}α,β∈A is symplectic, and there exists a unique map F :M!Rn satisfying
Fα=F �yα, where yα:Mα ↪!M , α∈A, are the natural symplectic embeddings.
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Proof. The third assumption (the cocycle condition) implies that the corresponding
glueing groupoid is free.

Theorem 3.11. (Symplectic glueing) Let {Mα}α∈A be a collection of symplectic
manifolds, each equipped with a continuous, proper map Fα:Mα!Vα⊂Rn, where Vα is
open. For any α, β∈A, let Dαβ :=Vα∩Vβ and assume that

(1) ϕαβ :F−1
α (Dαβ)!F−1

β (Dαβ) is a symplectomorphism such that ϕ∗αβFβ=Fα;
(2) when Vα∩Vβ∩Vγ 6=∅, we have ϕβγ �ϕαβ=ϕαγ .
Then the smooth manifold M obtained by glueing the collection {Mα}α∈A along the

set {ϕαβ}α,β∈A is Hausdorff, paracompact (in other words, a smooth manifold in the
usual sense) and symplectic, and there exists a unique continuous, proper map

F :M −!
⋃

α∈A

Vα⊂Rn

satisfying Fα=F �yα, where yα:Mα ↪!M , α∈A, are the natural symplectic embeddings.

Proof. The main statement is a corollary of Proposition 3.10 since

F−1(Vα∩Vβ) =F−1(F (Mα)∩F (Mβ))

and thus the right-hand side is automatically open.
Next we show that M is Hausdorff. Let z̄, 	w∈M , where z, w∈

⊔
α∈AMα. There

are two possibilities, that F (z̄)=F (	w) or that F (z̄) 6=F (	w). If F (z̄)=F (	w), then by the
definition of F (i.e. Fα=F �yα), there exists α∈A such that z∈Mα and w∈Mα. Here we
are viewing Mα as a subset of

⊔
α∈AMα, under the canonical identification yα. Because

Mα is Hausdorff, there exist open sets Uz⊂Mα and Uw⊂Mα, with z∈Uz, w∈Uw and
Uz∩Uw=∅. Since Mα is open in

⊔
α∈AMα, by Lemma 3.6 we have that π(Uz) and

π(Uw) are open subsets of M . By construction, z̄∈π(Uz) and 	w∈π(Uw). It follows from
the definition of π as the quotient map

⊔
α∈AMα!M=

⊔
α∈AMα/∼ that

π(Uz)∩π(Uw) =π(Uz∩Uw) =π(∅) = ∅.

On the other hand, suppose that F (z̄) 6=F (	w). Since F (z̄)∈Rn and F (	w)∈Rn, and
since Rn is Hausdorff, there exist open sets Wz and Ww in Rn such that F (z̄)∈Wz,
F (	w)∈Ww and Wz∩Ww=∅. As F is continuous, F−1(Wz) and F−1(Ww) are open.
Also, by construction, z̄∈F−1(Wz) and 	w∈F−1(Ww). Of course,

F−1(Wz)∩F−1(Ww) =F−1(Wz∩Ww) = ∅.

Let us show that F is proper. Let V :=
⋃

α∈A Vα. Let K⊂V be compact in V . Since
K is compact, there exists a finite number of open balls Bi of radius ε>0 that cover K
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and such that any 
Bi is included in some Vα(i), α(i)∈A. Let {Oβ}β∈B be an open cover
of F−1(K). For any i, the set 
Bi is compact in Vα(i), and hence F−1

α (
Bi) is compact
in Mα. Thus yα(F−1

α (
Bi)) is compact in M , and hence there exists a finite subset Bi⊂B
such that

⋃
β∈Bi

Oβ⊃yα(F−1
α (
Bi)). We can conclude, using the fact that

yα(F−1
α (U))=F−1(U) for all U ⊂Vα, (3.2)

that F−1(K)⊂
⋃

i

⋃
β∈Bi

Oβ , which shows that F−1(K) is indeed compact.
To complete the properness proof we must show that equality (3.2) holds. Indeed,

the inclusion yα(F−1
α (U))⊂F−1(U) follows directly from the equality F �yα=Fα. For

the converse, we come back to the definition of M . If z̄∈F−1(U) there must exist some
zβ∈Mβ such that π(zβ)=z̄ (π is the quotient map of Lemma 3.5). Thus Fβ(zβ)=F (z̄).
This means that Vα∩Vβ is not empty, and there is a symplectomorphism ϕβα such
that zα :=ϕβα(zβ)∈Mα. This implies that π(zα)=π(zβ)=z̄. Thus F (z̄)=Fα(zα), which
proves that F−1(U)⊂yα(F−1

α (U)).
We are left to show that M is a paracompact space. We have already shown that

F :M!V is a proper map, so in particular, the fibers of F are compact. On the other
hand, for each α∈A, Mα is a manifold in the usual sense, and hence it is locally com-
pact, which then implies that

⊔
α∈AMα is locally compact. We claim that M is locally

compact. Indeed, let z̄∈M , where z∈Mα for some α. Because Mα is locally compact,
there is a compact neighborhood Kz of z in Mα containing an open set Uz, with z∈Uz.
Since π is continuous, π(Kz) is compact. As π is open, π(Uz) is open, and hence π(Kz)
is a compact neighborhood of z̄, and we have shown that M is locally compact.

On the other hand, a continuous, proper map between locally compact Hausdorff
spaces is closed(2); see [4, Proposition 3, p. 16]. We have already shown that M is
Hausdorff and locally compact. Hence, since F :M!V is a proper map, it is a also a
closed map.

Next we deduce the paracompactness of M from the following result [20, §20, p. 153],
[3, Theorem 1]: if f :X!Y is a continuous, closed surjective mapping between topological
spaces with compact fibers, and Y is paracompact, then X is paracompact as well.
We may apply this result with X equal to M , Y equal to F (M)⊂Rn and f equal to
F :M!F (M). The map F :M!F (M) is continuous, closed, and it has compact fibers,
and F (M), as a subset of Rn, is paracompact. Hence M is paracompact. This concludes
the proof of the proposition.

(2) Let f : X!Y be such a map. Let A be closed and let y∈F (A). Since Y is Hausdorff, {y} is the
intersection of closed neighborhoods of y. Since Y is locally compact, we may assume that one of these
neighborhoods is compact. As f is continuous and proper, A∩f−1(y) is a decreasing intersection of
non-empty closed subsets of a compact set, and hence is non-empty. Hence y∈f(A) and f(A) is closed.
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4. Main theorem: statement

Again we equip R2 with its standard affine structure with origin at (0, 0), and orientation.

4.1. Delzant semitoric polygons

Let ∆∈Polyg(R2) be a rational convex polygon in R2, as in Definition 2.1. Recall that
in our terminology, ∆ is not necessarily compact. We call a point in the boundary ∂∆
where the meeting edges are not colinear a vertex of ∆. We shall make the following
assumption:

(a1) The intersection of ∆ with a vertical line is compact (it may be empty).
Consider such a vertical line intersecting the polytope. If the intersection is not just

a point, then it is a vertical segment. The top end of this segment is said to belong to
the top-boundary of ∆.

With each vertex z of ∆ we associate a couple Bz of primitive integral vectors starting
at z and extending along the direction of the edges meeting at z, in the order that makes
them oriented. Then Bz defines a Z-basis of Z2⊂R2 when, viewed as a 2×2 matrix, its
determinant is equal to 1.

Let s∈N∗ and let (λ1, ..., λs)∈Rs with λ1<...<λs. As before, `λj is the vertical line
{(x, y):x=λj}. We are interested only in the following case:

(a2) The vertical lines `λj , j=1, ..., s, intersect the top-boundary of ∆.
Let T be the linear transformation acting as the matrix

T :=T 1 =
(

1 0
1 1

)
.

Definition 4.1. Let z be a vertex of the polygon ∆ and (u, v)=Bz. Then z is called
• a Delzant corner when there is no vertical line `λj through it and det(u, v)=1;
• a hidden Delzant corner when there is a vertical line `λj through it, it belongs to

the top-boundary and det(u, Tv)=1;
• a fake corner when there is a vertical line `λj through it, it belongs to the top-

boundary and det(u, Tv)=0.

For the following lemma recall the definition of admissible weighted polygon, see
Definition 2.4.

Lemma 4.2. Let ∆ be a convex rational polygon equipped with a set of vertical lines
(`λ1 , ..., `λs), such that the assumptions (a1) and (a2) are satisfied. Suppose also that

• any point in the top-boundary that belongs to some vertical line `λj is either a
hidden Delzant corner or a fake corner ;

• any other vertex of ∆ is a Delzant corner.
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Then the triple (∆, {`λj
}s

j=1, (1, ..., 1)) is an admissible weighted polygon.

Proof. We need to show that the convexity is preserved under the Gs-action. This
amounts to show that, for any j=1, ..., s, the polygon t~ej

(∆) is convex, where (~e1, ..., ~es)
is the canonical basis of Zs. Since t~ej

is affine on both half-spaces delimited by the
vertical line `λj , it suffices to show that t~ej

(∆) is locally convex near the points where
`λj meets the boundary ∂∆.

We let {a, z}=`λj∩∂∆ and assume that z lies on the top boundary. By assumption,
z is either a hidden Delzant corner or a fake corner. Let us consider the vectors (u, v)=Bz.
Because z belongs to the top-boundary, the vector u must be directed to the left-hand
side of z and v to the right-hand side. Since the transformation t~ej

acts only on the right
half-space (and there it acts as T ), the transformed edges of t~ej

(∆) at z are directed along
(u, Tv). By assumption, det(u, Tv) is either 0 or 1, which implies the local convexity
at z.

Now consider the “bottom boundary” at the point a. By assumption, the polygon
is already locally convex at a (which means that det(u, v)>0), and a quick calculation
shows that the action of t~ej

may only make it even “more” convex.

It is easy to see that the properties of the lemma are preserved by the I-action.
Thus we can state the following definition.

Definition 4.3. Let [∆w] be a semitoric polygon as in Definition 2.5, and suppose
that ∆w is a representative of the form (∆, {`λj}s

j=1, {εj}s
j=1) with all the εj equal to 1.

Then we say that [∆w] is a Delzant semitoric polygon (of complexity s) if the polygon ∆
equipped with the vertical lines `λj satisfies the hypothesis of Lemma 4.2.

We denote by DPolygs(R2)⊂WPolygs(R2)/Gs×I the space of Delzant semitoric
polygons of complexity s, where s<∞.

The following observation is a consequence of the construction of the homeomor-
phism f in §2.2.

Lemma 4.4. The semitoric polygon in Definition 2.8 (iii) is a Delzant semitoric
polygon.

In addition, note also that for any representative ∆ of the semitoric polygon [∆w] in
Definition 2.8, and for each i∈{1, ...,mf} as in Definition 2.8 (iv), the height hi satisfies
the inequality

0<hi< length(∆∩`i). (4.1)

This is because, by (2.5), we have hi :=µ(mi)−mins∈`i∩∆ π2(s), where µ is a toric mo-
mentum map for the system (M,ω, (J,H)) corresponding to ∆. Now, since µ(mi) is a
point in the interior of ∆, along the line `i, the expression (4.1) follows.
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4.2. The main theorem

The following definition describes a collection of abstract ingredients. As we will see in
the theorem following the definition, each such list of elements determines one and only
one integrable system on a symplectic 4-manifold (which is not necessarily a compact
manifold, but we can characterize precisely when it is, in terms of one of the ingredients
of the list). Moreover, this integrable system is of semitoric type.

In the definition, the term R[[X,Y ]] refers to the algebra of real formal power series
in two variables, and R[[X,Y ]]0 is the subspace of such series with vanishing constant
term, and first term σ1X+σ2Y with σ2∈[0, 2π).

Definition 4.5. A semitoric list of ingredients consists of the following items:
(i) An integer number 06mf<∞.
(ii) An mf -tuple of Taylor series {(Si)∞}

mf

i=1∈(R[[X,Y ]]0)mf .
(iii) A Delzant semitoric polygon [∆w] of complexity mf , as in Definition 4.3.
We denote the representative ∆w of [∆w] by (∆, {`λj}

mf

j=1, {εj}
mf

j=1).
(iv) An mf -tuple of numbers {hj}

mf

j=1 with 0<hj<length(∆∩`i) for j∈{1, ...,mf}.
(v) A (Gmf

×I)-orbit of (∆w, {kj}
mf

j=1), where {kj}
mf

j=1 is a collection of integers.

Now we are ready to state the main theorem, the proof of which is contructive and,
in view of §2 and Lemma 4.4, gives a recipe to construct all semitoric integrable systems
up to isomorphisms.

Theorem 4.6. For each semitoric list of ingredients, as in Definition 4.5, there
exists a 4-dimensional simple semitoric integrable system (M,ω, (J,H)), such that the
list of invariants (i)–(v) of (M,ω, (J,H)) as in Definition 2.8 is equal to this list of
ingredients. Moreover, M is compact if and only if the polygon in (iii) is compact.

4.3. Classification of 4-dimensional semitoric systems

Consequently, putting Theorem 4.6 together with Theorem 2.9 proved in [16], we obtain
the classification of integrable systems in symplectic 4-manifolds.

Theorem 4.7. (Classification of 4-dimensional semitoric integrable systems) For
each semitoric list of ingredients, as in Definition 4.5, there exists a 4-dimensional sim-
ple semitoric integrable system with list of invariants equal to this list of ingredients
(cf. Definition 2.8). Moreover, two 4-dimensional simple semitoric integrable systems
are isomorphic if and only if they are constructed from the same list of ingredients.
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5. Proof of the main theorem

Let (∆, {`λj}s
j=1, {εj}s

j=1) be a representative of [∆w] with all the εj ’s equal to 1. The
strategy is to use the glueing procedure of §3 in order to obtain a semitoric system by
constructing a suitable singular torus fibration above ∆⊂R2.

For j=1, ...,mf , let cj∈R2 be the point with coordinates

cj =(λj , hj +minπ2(∆∩`λj
)). (5.1)

Because of the assumption on hj , all points cj lie in the interior of the polygon ∆. We call
these points nodes. We denote by `+j the vertical half-line through cj pointing upwards.
We call these half-lines cuts.

We have divided the proof of the theorem in a preliminary step, three intermediate
steps and a conclusive step. In the preliminary step we construct a convenient covering
of the polygon ∆.

Then we proceed as follows. First we construct a “semitoric system” over the part of
the polygon away from the sets in the covering that contain the cuts `+j ; then we attach
to this “semitoric system” the focus-focus fibrations, i.e. the models for the systems in a
small neighborhood of the nodes. Third, we continue to glue the local models in a small
neighborhood of the cuts. The “semitoric system” is given by a proper toric map only in
the preimage of the polygon away from the cuts. We use the results of §3 as a stepping
stone throughout.

Finally we recover the smoothness of the system and observe that the invariants of
the system are precisely the ingredients we started with.

Preliminary stage: a convenient covering.

We construct an open cover of the polygon. Because of the discreteness of the set of
vertices of the polygon, and the local compactness of R2, we can find an open cover
{Ωα}α∈A of ∆ such that the following three properties hold: there exists %>0 such that
all the Ωα’s are integral-affine images of the open cube C :=I2 with I=:(−%, %), i.e. for
every α∈A there exists Rα∈Aff(2,Z) such that Ωα=Rα(C); each vertex of the polygon,
and each node, is contained in only one open set Ωα; two open sets containing a vertex
or a node never intersect with each other. In fact, if

Ce := {(x, y)∈C : y> 0} and Cee := {(x, y)∈C :x> 0 and y> 0},

one may assume that, for any α∈A, (1) if Ωα intersects ∂∆ but does not contain any
vertex then

Ωα∩∆ =Rα(Ce),
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and (2) if Ωα contains a Delzant corner, then

Ωα∩∆ =Rα(Cee).

The first case holds since along any edge one can find a primitive vector, and complete
it to a Z-basis of Z2. It remains to compose by a suitable translation to position the
image of Ce at the right place. The second case is similar, since at a Delzant corner the
primitive vectors of the meeting edges form a Z-basis of Z2; cf. Definition 4.1.

First stage: away from the cuts.

Let A′⊂A be the subset obtained by removing all indices intersecting the cuts. We
construct a semitoric system above

⋃
α∈A′ Ωα, by glueing the following local models. Let

D be the open disk in T ∗R=R2 of radius
√

2%, centered at the origin. Consider the
following models: the regular model

Mr := T2×C ⊂T ∗T2,

with momentum map
Fr(x1, x2, ξ1, ξ2) := (ξ1, ξ2);

the tranversally elliptic model Me :=(T1×I)×D⊂T ∗T1×T ∗R, with momentum map

Fe(x1, ξ1, x2, ξ2) :=
(
ξ1,

1
2 (x2

2+ξ22)
)
;

and the elliptic-elliptic model Mee :=D×D⊂T ∗R×T ∗R, with momentum map

Fee(x1, ξ1, x2, ξ2) :=
(

1
2 (x2

1+ξ21), 1
2 (x2

2+ξ22)
)
.

Observe that Fr(Mr)=C, Fe(Me)=Ce and Fee(Mee)=Cee. Notice also that these models
are all toric, in the sense that the momentum maps generate an effective Hamiltonian
T2-action. What is more, these momentum maps are proper for the topology induced on
their images.

Given any Ωα, α∈A′, we obtain a (singular) proper Lagrangian momentum map
over Ωα, whose image is precisely Ωα∩∆, and which defines an effective Hamiltonian
T2-action, by the following simple rule:

(a) If Ωα contains no boundary point of ∆ and no node, then we choose Mα :=Mr,
with momentum map Fα :=Rα�Fr. Then Fα is a regular Lagrangian torus fibration.

(b) If Ωα intersects the boundary ∂∆ but does not contain any vertex of ∆, we
choose Mα :=Me, with momentum map Fα :=Rα�Fe. The set of singular values of Fα is
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the bounded open line segment Rα({(x, y)∈Ce :y=0}). The two components Jα and Hα

of the momentum map Fα have colinear differentials on the preimage

U :=F−1
e ({(x, y)∈Ce : y=0})

under Fα of the set of singular values: if (a, b)∈R2 is a vector colinear to this segment,
then we have a dHα=b dJα on U .

(c) If Ωα contains exactly one Delzant corner of ∆, we choose Mα :=Mee, with
momentum map Fα :=Rα�Fee. Then the set of singular values of Fα is the “corner”
Rα(∂Cee). If {(a, b), (c, d)} is an oriented Z-basis of R2, where (a, b) and (c, d) are directed
along the respective directions of the edges of this corner, then the first component of
Fα is

Jα = 1
2a(x

2
1+ξ21)+ 1

2c(x
2
2+ξ22).

In other words, the numbers a and c are the isotropy weights of the S1-action induced
by Jα. This is useful to notice, since this component Jα of Fα will not be modified, near
the Delzant corner, by the rest of the construction process.

We describe now the transition functions: when ∆αβ :=Ωα∩Ωβ 6=∅, we want to
define a symplectomorphism

ϕαβ :F−1
α (∆αβ)−!F−1

β (∆αβ) such that ϕ∗αβFβ =Fα. (5.2)

For this we use the following notation: when R∈Aff(2,Z), we denote by R̃ the symplec-
tomorphism R̃: T2×R2(=T ∗T2)!T2×R2 given by (x, ξ) 7!((tdR)−1x,Rξ), where dR is
the linear part of R. Remark that ξ�R̃=R�ξ.

Case 1. If both Fα and Fβ are regular models, we let

ϕαβ := R̃−1
β �R̃α. (5.3)

Then Fβ �ϕαβ=Rβ �Fr�ϕαβ=Fr�R̃β �ϕαβ=Fr�R̃α=Fα, i.e. (5.2) holds.

Case 2. If Fα is regular and Fβ is transversally elliptic, we introduce the symplectomor-
phism (symplectic polar coordinates)

ϕre :Mr∩(T1×R)×(T1×R∗
+)−! (T1×R)×(R2\{0})∩Me

(x1, ξ1, x2, ξ2) 7−! (x1, ξ1,
√

2ξ2 cosx2,−
√

2ξ2 sinx2).

Notice that ϕ∗reFe=Fr. Thus we can define

ϕαβ :=ϕre�R̃
−1
β �R̃α. (5.4)
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We have Fβ �ϕαβ=Rβ �Fe�ϕre�R̃
−1
β R̃α=Rβ �Fr�R̃

−1
β R̃α=Fr�R̃α=Fα, i.e. (5.2) holds.

Case 3. Similarly, if Fα is regular and Fβ is elliptic-elliptic, we introduce the symplec-
tomorphism

ϕree:Mr∩(T1×R∗
+)×(T1×R∗

+)−! (R2\{0})×(R2\{0})∩Mee

(x1, ξ1, x2, ξ2) 7−!
( √

2ξ1 cosx1,−
√

2ξ1 sinx1√
2ξ2 cosx2,−

√
2ξ2 sinx2

)
.

Again ϕ∗reeFee=Fr, and if we define

ϕαβ :=ϕree�R̃
−1
β �R̃α, (5.5)

then (5.2) holds.

Case 4. If both Fα and Fβ are transversally elliptic models, then we have that the affine
map Rαβ :=R−1

β Rα is an oriented transformation that preserves the upper half-plane.
Thus the horizontal axis is globally preserved, and the vector e1=(1, 0) is an eigenvector
of dRαβ . Since dRαβ∈SL(2,Z) it is of the form

Tk :=
(

1 k

0 1

)
for some k∈Z. Therefore, Rαβ=τu�Tk, where τu is the translation by a horizontal vec-
tor u=(u1, 0). Consider the symplectomorphism 	Rαβ(x1, ξ1, x2, ξ2):=(x′1, ξ

′
1, x

′
2, ξ

′
2) of

T ∗T1×T ∗R given by 
x′1 =x1,

ξ′1 = ξ1+ 1
2k(x

2
2+ξ22)+u1,

(x′2+iξ′2) = eikx1(x2+iξ2).

Observe that Fe�
	Rαβ=Rαβ �Fe. Now we define

ϕαβ := 	Rαβ |F−1
α (∆αβ), (5.6)

and we verify that Fβ �
	Rαβ=Rβ �Fe�

	Rαβ=Rβ �Rαβ �Fe=Rα�Fe=Fα, and hence (5.2)
holds.

Case 5. If Fα is a transversally elliptic model, while Fβ is elliptic-elliptic, then, as in
the previous case, the intersection ∆αβ contains a portion of an edge, but not the vertex
itself. This edge is mapped by Rβ from either the horizontal or the vertical positive axis.
Suppose for simplicity that it is the horizontal axis. As before, the affine map Rαβ defined
in Case 4 is an oriented transformation that preserves the upper half-plane, and thus one
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can construct a symplectomorphism 	Rαβ of T ∗T1×T ∗R such that Fe�
	Rαβ=Rαβ �Fe.

Introduce the symplectomorphism

ϕeee:Me∩(T1×R∗
+)×R2−! (R2\{0})×R2∩Mee,

(x1, ξ1, x2, ξ2) 7−! (
√

2ξ1 cosx1,−
√

2ξ1 sinx1, x2, ξ2).

Notice that Fee�ϕeee=Fe and, whenever both are defined, ϕeee=ϕree�ϕ
−1
re . We define

ϕαβ :=ϕeee�
	Rαβ , (5.7)

and verify now routinely that Fβ �ϕαβ=Fα, i.e. (5.2) also holds in this case.

We have defined the transition maps ϕαβ in the five cases (5.3)–(5.7), and verified
that equation (5.2) holds for each of them. In fact one should also mention that for the
non-symmetric cases (5.4), (5.5) and (5.7), we let ϕβα :=ϕ−1

αβ (this is automatic for the
symmetric cases (5.3) and (5.6)). Then it is easy to verify that the cocycle condition is
fulfilled. Namely, when the triple intersection Ωαβ∩Ωβγ∩Ωγα is non-empty, then

ϕγα�ϕβγ �ϕαβ =Id.

Thus we can apply the glueing construction, cf. Theorem 3.11, and obtain a sym-
plectic manifold MA′ with a surjective map

FA′ :MA′ −!
⋃

α∈A′

Ωα⊂R2,

and, for each α∈A′⊂A, there is a symplectic embedding ια:Mα ↪!MA′ such that ι∗αFA′=
Fα. Since all Fα are proper smooth toric momentum maps, so is FA′ .

Second stage: attaching focus-focus fibrations.

Fix an integer i, with 16i6mf . Using the classification result of [18], one can construct a
focus-focus model associated with an arbitrary Taylor series invariant. Precisely, for each
node ci, there exists a symplectic manifold Mi equipped with a smooth map Fi:Mi!C
such that the symplectic invariant of the induced singular foliation is precisely the Taylor
series S∞. Using the result of [19], one can construct a continuous map µi:Mi!Di,
where Di⊂R2 is some simply connected open set around the origin, that is a smooth
proper toric momentum map outside µ−1

i (`), where `:={(0, y):y>0}. In fact µi=gi�Fi,
for some homeomorphism gi:C!Di which is smooth outside `, and which preserves the
first component: it is of the form

gi(x, y) = (x, fi(x, y)).
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Mi

Fi

µi

Fα

gi Rα

C Di
Ωα

ci

Figure 5.1. The pieces Mi and the chart diagrams for Fα, Fi, gi and Rα.

This construction depends on the choice of a local toric momentum map for the fibration
over C\`. Here we choose the privileged momentum map as defined in §2.4. We are now
in position to add to the index set A′ all the indices α∈A corresponding to the nodes,
and thus defining a new index set A′′. If Ωα contains the node ci, we let Rα be the
matrix Tki left-composed by the translation from the origin to the node ci. Here kj is
the integer given as ingredient (v) in the list. We may assume that Ωα=Rα(Di). Then
we choose Mα :=Mi with momentum map Fα :=Rα�µi.

By making % small enough, one may assume that all Ωβ , β∈A′, intersecting an
open set Ωα containing a node carry regular models. Thus we need to define transition
functions between a regular model and a focus-focus model. On ∆αβ :=Ωα∩Ωβ , both
momentum maps Fα and Fβ are regular. Contrary to all the previous cases, the focus-
focus model Fα is not explicit, and we cannot simply provide an elementary formula for
the transition map ϕαβ . However, since C\` is simply connected and a set of regular
values of Fi, we can invoke the Liouville–Mineur–Arnold action-angle theorem and assert
that there exists a symplectomorphism

ϕi:F−1
i (C\`)−!T2×C ′⊂T ∗T2 = {(x, ξ)∈T2×R2}

such that
Fi =ϕ∗i (hi(ξ)) for some diffeomorphism hi:C ′−!C\`.

Then µi=ϕ∗i (gi�hi(ξ)). Since both µi and ξ are toric momentum maps for the same
foliation, there exists a transformation Hi∈Aff(2,Z) such that gi�hi=Hi.

Thus, if Fα is focus-focus and Fβ is regular, we introduce the symplectomorphism

ϕαβ := R̃−1
β �R̃α�H̃i�ϕi:F−1

α (∆αβ)−!F−1
β (∆αβ). (5.8)
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We verify that

Fβ �ϕαβ =Fr �R̃β �ϕαβ =Rα�Hi�Fr �ϕi =Rα�µi =Fα,

so we have shown (5.2).
We can now include these nodal pieces in the symplectic glueing construction using

Theorem 3.11, which defines a symplectic manifold MA′′ and a proper map

FA′′ :MA′′ −!
⋃

α∈A′′

Ωα⊂R2.

However FA′′ is not smooth everywhere, but it is a smooth toric momentum map outside
the preimages of the cuts `+j , j=1, ...,mf .

Third stage: filling in the gaps.

Here we add the open sets Ωα that were covering the cuts `i by switching these lines on the
other side. Let ti :=t`λi

as in §2.2. The cut `+i is invariant under ti. The open sets ti(Ωα),
α∈A\A′′, form a cover of `i∩ti(∆). Within the geometry of the new polygon ti(∆), each
of these open sets can be associated with either a regular model, a transversally elliptic
model, or an elliptic-elliptic model (indeed, under the transformation ti, a fake corner
disappears, and a hidden Delzant corner unhides itself).

Thus we can add these to our glueing data, which amounts to equip each such open
set Ωα with the model (Mα, t

−1
i �Fα), where (Mα, Fα) is determined as before, but for

the transformed polygon ti(∆).
The transition maps are defined with the same formulas as before, taking into ac-

count that the map Rα is now a piecewise affine transformation. The cocycle conditions
remain valid as well.

Doing this for all indices i, because all the Fα’s are continuous and proper, by
Theorem 3.11, we obtain a smooth symplectic manifold M=MA equipped with a proper,
continuous map µ=FA,

µ:M −!
⋃

α∈A

Ωα⊂R2, (5.9)

whose image is precisely ∆.
However, the map µ is a proper toric momentum map only outside the cuts `i. In

other words, µ fails to be smooth along the cuts `i. (Note that in the symplectic glueing
construction, Theorem 3.11, we did not make any smoothness assumption on the Fα, nor
made any conclusion on the smoothness of F .)
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Fourth and final stage: recovering smoothness.

In this step we compose the final momentum map µ in (5.9) on the left by a suitable
homeomorphism in order to make it smooth. Let Ωα be the open set containing the node
ci. Let hi=g−1

i :Di!C. The map hi is a bilipschitz homeomorphism fixing the origin
and a smooth diffeomorphism outside the positive vertical axis. It is of the form

hi(x, y) = (x, ηi(x, y)).

Since hi is orientation preserving, (∂ηi/∂y)(x, y)>0 for all (x, y)∈Di. Let δi>0 be such
that [−2δi, 2δi]2⊂Di and consider the vertical half-strip Sδi :=[−δi, δi]×[−δi,∞).

Claim 5.1. There exists a function η̃i:Di!C such that
(1) η̃i(x, y)=ηi(x, y) for all (x, y)∈Di∩Sδi ;
(2) η̃i(x, y)=y for all (x, y)∈Di\S2δi ;
(3) (∂η̃/∂y)(x, y)>0 for all (x, y)∈Di.

In order to show this recall that if f :A!R is smooth and A⊂U⊂R2 is closed, then
f has a smooth extension to f̃ :U!R, where U is open, see for example [21, Lemma 5.58
and the remark below it]. Let us apply this fact in our situation. Let

Aδi
:= (Di∩Sδi

)∪(Di\Int(S3δi/2)),

which is a closed subset of Di⊂R2, and let η̂i:Aδi
!R be the smooth function given by

η̂i(x, y) =
{
ηi(x, y), if (x, y)∈Di∩Sδi

,
y, if (x, y)∈Di\Int(S3δi/2).

(5.10)

Because Aδi
⊂Di, and Di is bounded, there exists a constant 0<ci<1 such that

∂ηi/∂y>c on Aδi and hence ∂η̂i/∂y>ci on Aδi . Let ζi :=∂η̂i/∂y−ci:Aδi!R, which by
assumption is strictly positive. By the above fact, ζi extends to a smooth function
Gi:Di!R. Because the proof of this fact preserves non-negativity, and ζi>0, we have
that Gi>0. By possibly shrinking the size of Di, we may assume that Di is a disk of
radius ri>0 centered at the origin. Let

Xδi
:=

[
−ri,− 3

2δi
]
∪

[
3
2δi, ri

]
, Yδi := [−δi, δi], Zδi :=

[
− 3

2δi,−δi
]
∪

[
δi,

3
2δi

]
,

and let νi
1:Xδi

!R and νi
2:Yδi

!R be the functions given by νi
1(x):=−η̂i(x, 0) and

νi
2(x) := η̂i

(
x,−3δi

2

)
−

∫ −3δi/2

0

(Gi(x, t)+ci) dt,
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Figure 5.2. The set Aδi
:=(Di∩Sδi

)∪(Di\Int(S3δi/2)), on which η̂i is defined.

where we are using the convention
∫ b

a
h=−

∫ a

b
h when a>b. Because η̂i and Gi are smooth

functions, νi
1 and νi

2 are also smooth. Let βi: [−ri, ri]!R be a smooth extension of the
function Xδi∪Yδi!R defined by νi

1 on Xδi and by νi
2 on Yδi , which again exists by a

partition of unity argument.
Consider the function η̃i:Di!R given by

η̃i(x, y) :=βi(x)+
∫ y

0

(Gi(x, t)+ci) dt.

Because β is a smooth extension of νi
1 and νi

2, and G is smooth, η̃i is smooth. We claim
that η̃i|Aδi

(x, y)=η̂i(x, y) if (x, y)∈Aδi . First assume that x∈Yδi , and moreover that
−ri6y6− 3

2δi. Because Gi is an extension of gi we have that

η̃i|Aδi
(x, y) = νi

2(x)+
∫ −3δi/2

0

(Gi(x, t)+ci) dt+
∫ y

−3δi/2

∂η̂i

∂y
(x, t) dt,

and hence, by the fundamental theorem of calculus, and using the definition of νi
2, we

obtain that

η̃i|Aδi
(x, y) = νi

2(x)+
∫ −3δi/2

0

(Gi(x, t)+ci) dt+η̂i(x, y)−η̂i

(
x,−3δi

2

)
= η̂i(x, y). (5.11)

The remaining subcases within the case of x∈Yδi are when −δi6y60, which follows
by the same reasoning as in (a) using the formula for νi

1 instead of νi
2, the case where

3
2
δi

δi

2δi

Di

Aδi
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06y6ri, which is trivial because the extension is defined by the original function therein,
and the case where − 3

2δi6y6−δi, in which (x, y) /∈Aδi , so there is nothing to prove. The
case where x∈Xδi follows by the same type of argument as the case of Yδi . The case of
x∈Zδi is immediate because the extension is defined by the original function therein.

Applying again the fundamental theorem of calculus, because the functions νi
1, ν

i
2

and βi do not depend on y, we have that

∂η̃i

∂y
=Gi+ci, (5.12)

which is strictly positive, since Gi>0 and ci>0. Because (5.11) and (5.12) hold, we
in turn have, in view of the definition (5.10) of η̂, that properties (1), (2) and (3) are
satisfied. This concludes the proof of Claim 5.1.

Let Ωi :=Di∪{(x, y):y<2δi}. Because of properties (1), (2) and (3) of η̃i, the map

h̃i: (x, y) 7−! (x, η̃i(x, y))

coincides with hi in Sδi , while it is equal to the identity outside S2δi . Thus we can
extend it to Ωi by letting it be the identity outside Di∪S2δi . We call this extension h̃Ωi .
Consider the map

ȟΩi := h̃Ωi �t
−1
0 ,

where t0 is the piecewise affine map t` with ` being the positive vertical axis. In t0(Ω∩
Sδi), it is equal to hi�t

−1
0 , which is now smooth outside the negative vertical axis (this

follows from [19, Theorem 3.8]; also from the fact that it is the homeomorphism that
one obtains in the construction of the generalized momentum map t0�gi�Fi=t0�µi: this
amounts to switching the cut downwards). Using the claim at the beginning of this step
upside-down we can modify ȟΩi in {(x, y)∈Ωi :y>δi} in such a way that we can then
extend it to be smooth on t0({(x, y):y>δi}). We obtain a homeomorphism of R2 that
we denote (ȟR2)i.

Define the map ϕi: R2!R2 by

ϕi :=Rα�(ȟR2)i�t0�R
−1
α .

Because ϕi is a composition of homeomorphisms, it is a homeomorphism. Moreover,
outside of S2δi

we have that

ϕi =Rα�(ȟR2)i�t0�R
−1
α =Rα�(h̃Ωi �t

−1
0 )�t0�R−1

α ,

and since h̃Ωi
is the identity outside of S2δi

we conclude that ϕi is the identity map
outside S2δi . Now let ϕ: R2!R2 be the piecewise defined map

ϕ(x, y) :=
{
ϕi(x, y), if (x, y)∈S2δi ,
(x, y), otherwise.

(5.13)
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Since each ϕi is a homeomorphism, and equal to the identity outside of S2δi
, the formula

(5.13) defines a homeomorphism.

Claim 5.2. The map F̃ :M!R2 defined by F̃ :=ϕ�µ is proper, and smooth every-
where.

The properness claim is immediate, since ϕ is a homeomorphism and µ is proper.
In order to show that F̃ is smooth, consider the map F̃i:M!R2 defined as a compo-

sition F̃i :=ϕi�µ, where we recall that µ is the map (5.9). By the definition of ϕ, we have
that F̃ |Sδi

=F̃i, and hence to prove the claim it suffices to show that each F̃i is smooth.
To prove this, we distinguish three cases.

Case 1. (In a neighborhood of ci) In the neighborhood Ωα of ci sent by R−1
α into

[−δi, δi]2, we have that

(ȟR2)i�t0�R
−1
α = ȟΩi �t0�R

−1
α = h̃Ωi �t

−1
0 �t0�R

−1
α =hi�R

−1
α .

Recall that y∗αµ=Fα=Rα�µi. Therefore one can write, in the preimage by µ of this
neighborhood, y∗α(F̃i)=y∗α(hi�µi)=Fi. Since Fi is smooth, it follows that F̃i is smooth
in Ωα.

Case 2. (Away from the cut `i) Let Λi :=
⋃

j 6=i µ
−1(`j)⊂R2. We have that

(ȟR2)i�t0�R
−1
α = ȟΩ�t0�R

−1
α = h̃Ω�R

−1
α on the set (Rα�t

−1
0 )

({
(x, y) : y <− 1

2δi
})

,

which by construction is smooth on this set. Thus F̃i has the same degree of smoothness
as µ on the set

µ−1
(
(Rα�t

−1
0 )

({
(x, y) : y <− 1

2δi
}))

.

Note that this set does not contain µ−1(`i). The same argument applies to the analogue
subsets of M corresponding to the regions

{
(x, y):x<− 1

2δi
}

and
{
(x, y):x> 1

2δi
}
. On

the subset of M corresponding to the region
{
(x, y):y> 1

2δi
}
, the map (ȟR2)i is smooth

by construction. Hence the map F̃i is smooth on M \Λi.

Case 3. (Along the cut `i, away from ci) Remark that t0�R−1
α =R−1

α �ti. By the con-
struction of µ above the open sets Ωβ covering the cut `i, we have that y∗βµ=t−1

i �Fβ .
Hence

y∗β((ȟR2)i�t0�R
−1
α �µ) = y∗β((ȟR2)i�Fβ) on the set µ−1(Ωβ),

and this expression defines a smooth map. Thus F̃i is smooth.

Hence putting cases 1, 2 and 3 together we have shown that F̃i is smooth on µ−1(Ωβ)
for all Ωβ covering the cut `i, and elsewhere, F̃i is as smooth as µ. This concludes the
proof of Claim 5.2.

Write F̃ :=(J,H). We then have the following conclusive claim.
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Claim 5.3. The symplectic manifold (M,ω), equipped with J and H, is a semitoric
integrable system. Furthermore, the list of invariants (i)–(v) of the semitoric integrable
system (M,ω, (J,H)) is equal to the list of ingredients (i)–(v) that we started with. Fi-
nally, M is a compact manifold if and only ∆ is compact.

Let us prove this claim. We know from Claim 5.2 that F̃ is smooth. Since the first
component J is obtained from glueing proper maps, it follows from Theorem 3.11 that
J is proper. Moreover, the Hamiltonian flow of J is everywhere periodic of period 2π
because this is true in any local piece Mα. Clearly {J,H}=0, since it is a local property.
It is also easy to see that the only singularities of F̃ come from the singularities of the
models Fα, as the glueing procedure does not create any additional singularities. Now,
near any elliptic critical value, the homeomorphism µ is a local diffeomorphism, so F̃

has the same singularity type as the elliptic model Fα. Finally, near a node we have
checked in the proof of Claim 5.2 that F̃ is precisely equal to the model Fi, and hence
possesses a focus-focus singularity. Thus, provided we show that M is connected, (J,H)
is a semitoric system.

Let us now consider its invariants (the connectedness of M will follow).
(i) As we mentioned, the singularities of F̃ are only elliptic, except for the nodes

c1, ..., cmf
above each of which we have constructed a focus-focus singularity. Hence we

have mf focus-focus singularities.
(ii) Each focus-focus singularity was constructed by glueing a semilocal model with

prescribed Taylor series invariant (Si)∞. Since this Taylor series is precisely a semilocal
symplectic invariant, it is unchanged in the glued system (M, F̃ ).

(iii) Thus we have a completely integrable system on M that defines an integral
affine structure (with boundary) on the image of F̃ , except at the nodes ci. For any
choice of vertical half cuts (`i, εi), the generalized momentum polygon is the image of
the affine developing map. But the momentum map µ, outside the focus-focus fibers, is
precisely such a developing map and its image, by the glueing procedure, is the polygon
∆. Hence the semitoric polygon invariant of F̃ is the orbit of ∆w. (See Lemma 2.3.)

Notice that this shows that the image of µ is connected, which implies that the total
space M , obtained by glueing above the image of µ, is connected as well.

(iv) It follows directly from (iii) above and the definition of the nodes cj in (5.1)
that the volume invariant defined in (2.5) is equal to (h1, ..., hmf

).
(v) We calculate the twisting indices of our semitoric system with respect to the

fixed polygon ∆ or, which amounts to the same, with respect to the toric momentum
map µ. By definition, the jth twist is the integer k̃j such that

dµ=T k̃j
�dµj ,
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where µj is the privileged momentum map of the focus-focus fibration above cj . From
the second stage of the construction, we know that

µ=Fα =Rα�µj = τ �T kj
�µj ,

where τ is some translation. Hence dµ=T kj
�dµj , and thus k̃j =kj .

Thus we see that we could prove the second part of the claim because our con-
struction is by symplectically glueing local pieces with the appropriate ingredients as in
Definition 4.5. This is an advantage of constructing by glueing local pieces together,
rather than, for example, a global reduction on a larger space.

This concludes the proof of Claim 5.3, and hence the proof of the theorem.
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