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1. Introduction

Let n�2 and denote by Tn the linear space of n×n real skew-symmetric matrices. For
each θ∈Tn the corresponding n-dimensional noncommutative torus Aθ is defined as the
universal C∗-algebra generated by unitaries U1, ..., Un satisfying the relation

UkUj = e(θkj)UjUk,

where e(t)=e2πit. Noncommutative tori are one of the canonical examples in noncom-
mutative differential geometry [34], [10].

One may also consider the smooth version A∞
θ of a noncommutative torus, which is

the algebra of formal series ∑
cj1,...,jn

U j1
1 ... U jn

n ,

where the coefficient function Zn�(j1, ..., jn) �!cj1,...,jn
belongs to the Schwartz space

S(Zn). This is the space of smooth elements of Aθ for the canonical action of Tn on Aθ.
A notion of Morita equivalence of C∗-algebras (as an analogue of Morita equivalence

of unital rings [1, Chapter 6]) was introduced by Rieffel in [31] and [33]. This is now
often called Rieffel–Morita equivalence. It is known that two unital C∗-algebras are
Morita equivalent as unital C-algebras if and only if they are Rieffel–Morita equivalent
[2, Theorem 1.8]. Rieffel–Morita equivalent C∗-algebras share a lot in common such as
equivalent categories of Hilbert C∗-modules, isomorphic K-groups, etc., and hence are
usually thought of as having the same geometry.

In [36] Schwarz introduced the notion of complete Morita equivalence of smooth
noncommutative tori, which includes Rieffel–Morita equivalence of the corresponding
C∗-algebras, but is stronger, and has important application in M(atrix) theory, [36], [23].

This research was supported by a grant from the Natural Sciences and Engineering Research Council
of Canada, held by the first named author.
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A natural question is to classify noncommutative tori and their smooth counterparts
up to the various notions of Morita equivalence. Such results have important application
to physics [11], [36]. For n=2 this was done by Rieffel [32]. (For the earlier problem of
isomorphism, see below.) In this case it does not matter what kind of Morita equivalence
we are referring to: there is a (densely defined) action of the group GL(2,Z) on T2,
and two matrices in T2 give rise to Morita equivalent noncommutative tori or smooth
noncommutative tori if and only if they are in the same orbit of this action, and also if and
only if the ordered K0-groups of the algebras are isomorphic. The higher-dimensional case
is much more complicated and there are examples showing that the smooth counterparts
of two Rieffel–Morita equivalent noncommutative tori may fail to be completely Morita
equivalent [35].

In [35] Rieffel and Schwarz found a (densely defined) action of the group SO(n, n|Z)
on Tn generalizing the above GL(2,Z) action. Recall that O(n, n|R) denotes the group
of linear transformations of the vector space R2n preserving the quadratic form x1xn+1+
x2xn+2+...+xnx2n, and that SO(n, n|Z) refers to the subgroup of O(n, n|R) consisting
of matrices with integer entries and determinant 1.

Following [35], let us write the elements of O(n, n|R) in 2×2 block form:

g =
(

A B

C D

)
.

Then A, B, C and D are arbitrary n×n matrices satisfying

AtC+CtA = 0, BtD+DtB = 0 and AtD+CtB = I. (1)

The action of SO(n, n|Z) is then defined as

gθ = (Aθ+B)(Cθ+D)−1, (2)

whenever Cθ+D is invertible. There is a dense subset of Tn on which the action of every
g∈SO(n, n|Z) is defined [35, p. 291].

After the work of Rieffel, Schwarz and the second named author in [35], [36] and [24]
(see also [39]), it is now known that two matrices in Tn give completely Morita equivalent
smooth noncommutative tori (in the sense of [36]) if and only if they are in the same
orbit of the SO(n, n|Z) action.

Phillips has been able to show that two simple noncommutative tori are Rieffel–
Morita equivalent if and only if their ordered K0-groups are isomorphic [29, Theo-
rem 3.11]. Using the result in [24] and Phillips’s result, recently we have completed
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the classification of noncommutative tori up to Rieffel–Morita equivalence [17]. In gen-
eral, two noncommutative tori are Rieffel–Morita equivalent if and only if they have
isomorphic ordered K0-groups and centers.

It remains to classify smooth noncommutative tori up to Morita equivalence as
unital algebras. We shall consider a natural subset T ′

n⊆Tn which can be described
both algebraically in terms of the properties of the algebra A∞

θ (see Notation 4.1 and
Corollary 4.10) and number theoretically (see Proposition 4.11), and has the property
that the complement Tn\T ′

n has Lebesgue measure zero (Proposition 4.3). The main
result of this paper is the Morita equivalence classification of the algebras arising from
the subset T ′

n. (In particular, we have solved the problem of classification up to Morita
equivalence in the generic case.)

Theorem 1.1. (1) The set T ′
n is closed under Morita equivalence of the associated

smooth noncommutative tori ; in other words, if the algebras A∞
θ and A∞

θ′ are Morita
equivalent and θ∈T ′

n, then θ′∈T ′
n.

(2) Two matrices in T ′
n give rise to Morita equivalent smooth noncommutative tori

if and only if they are in the same orbit of the SO(n, n|Z) action.

Denote by T �
n the subset of Tn consisting of the θ’s such that Aθ is simple. The

weaker form of Theorem 1.1 (1) with T ′
n replaced by T ′

n∩T �
n is a consequence of [28] (see

the discussion after the proof of Proposition 4.11).

Consider the subset T̃3 of T3 consisting of the θ’s such that the seven numbers
consisting of 1, θ12, θ13, θ23, together with all products of any two of these four, are
linearly independent over the rational numbers. In [35] Rieffel and Schwarz showed that
for any θ∈T̃3, the matrices θ and −θ are not in the same orbit of the SO(n, n|Z) action,
although, by the work of Qing Lin and the first named author on the structure of 3-
dimensional simple noncommutative tori culminating in [25], the C∗-algebras Aθ and
A−θ are isomorphic. It is easy to see that the complement T3\T̃3 has Lebesgue measure
zero. Our Theorem 1.1 (together with Proposition 4.3) shows that the complement
T3\(T ′

3∩T̃3) also has Lebesgue measure zero, and for any θ∈T ′
3∩T̃3, the algebras A∞

θ

and A∞
−θ are not Morita equivalent.

A related question is the classification of noncommutative tori and their smooth
counterparts up to isomorphism. The case n=2 was done by Pimsner, Rieffel and
Voiculescu [30], [32], and the simple C∗-algebra case for n>2 was also done by Phillips
[29, Theorem 3.12] (see [29, §0] for more of the history). There have been various results
for the smooth algebra case with n>2, [15], [13], [7]. In particular, Cuntz, Goodman,
Jorgensen, and the first named author showed that two matrices in T ′

n∩T �
n give isomor-

phic smooth noncommutative tori if and only if the associated skew-symmetric bichar-
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acters of Zn are isomorphic [13]. This result is essentially a special case of Theorem 1.1,
and the proof of it obtained in this way (see Remark 5.8) is new.

Schwarz proved the “only if” part of Theorem 1.1 (2) in the context of complete
Morita equivalence [36, §5]. His proof is based on the Chern character [8], [16], which is
essentially a topological algebra invariant. In order to show that his argument still works
in our situation, we have to show that a purely algebraic Morita equivalence between
smooth noncommutative tori is automatically “topological” in a suitable sense. For this
purpose and also for the proof of Theorem 1.1 (1), in §2 and §3 we show that any algebraic
isomorphism between two “smooth algebras” (see Remark 2.5 below) is continuous and
any derivation of a “smooth algebra” is continuous. These are the noncommutative ana-
logues of the following well-known facts in classical differential geometry: any algebraic
isomorphism between the smooth function algebras of two smooth manifolds corresponds
to a diffeomorphism between the manifolds, and any derivation of the smooth function al-
gebra corresponds to a (complexified) smooth vector field on the manifold. We introduce
the set T ′

n and prove Theorem 1.1 (1) in §4. Theorem 1.1 (2) will be proved in §5.

Throughout this paper A will be a C∗-algebra, and A∞ will be a dense sub-∗-algebra
of A closed under the holomorphic functional calculus (after the adjunction of a unit)
and equipped with a Fréchet space topology stronger than the C∗-algebra norm topology.
Unless otherwise specified, the topology considered on A∞ will always be this Fréchet
topology.

We thank the referees and Ryszard Nest for very helpful comments. This work was
carried out while Hanfeng Li was at the University of Toronto.

2. Continuity of algebra isomorphisms

In this section we shall prove Proposition 2.2 and Theorem 2.3, which indicate that the
topology of A∞ necessarily behaves well with respect to the algebra structure.

Lemma 2.1. Let ϕ: A∞!A∞ be an R-linear map. If A∞ ϕ−!A is continuous, then
so is A∞ ϕ−!A∞.

Proof. We shall use the closed graph theorem [3, Corollary 48.6] to prove the conti-
nuity of A∞ ϕ−!A∞. Since A∞ ϕ−!A is continuous, the graph of ϕ is closed with respect
to the norm topology in the second coordinate. It is then also closed with respect to the
Fréchet topology in the second coordinate. It follows that A∞ ϕ−!A∞ is continuous.

Proposition 2.2. In A∞ the ∗-operation is continuous, and the multiplication is
jointly continuous. In other words, A∞ is a topological ∗-algebra.
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Proof. By Lemma 2.1, the ∗-operation is continuous and the multiplication is sepa-
rately continuous in A∞. Proposition 2.2 follows because of the fact that if the multipli-
cation of an algebra equipped with a Fréchet topology is separately continuous then it is
jointly continuous [40, Proposition VII.1].

The following result was proved by Gardner in the case A∞=A [18, Proposition 4.1],
and was given as Lemma 4 of [13] in the case of smooth noncommutative tori.

Theorem 2.3. Every algebra isomorphism ϕ: A∞
1 !A∞

2 is an isomorphism of topo-
logical algebras.

Proof. Our proof is a modification of that for [18, Proposition 4.1]. It suffices to
show that ϕ−1 is continuous. For a∈A∞

1 let r(a) denote the spectral radius of a, in A∞
1

and also in A1 [37, Lemma 1.2].
First, for any a∈A∞

1 we have

‖a‖2 = ‖aa∗‖= r(aa∗) = r(ϕ(a)ϕ(a∗)) � ‖ϕ(a)ϕ(a∗)‖� ‖ϕ(a)‖·‖ϕ(a∗)‖.

Next, we use the closed graph theorem (cf. above) to show that ϕ ∗ ϕ−1 is con-
tinuous on A∞

2 . Let {am}m∈N⊆A∞
1 be such that ϕ(am)!0 and ϕ(a∗

m)!ϕ(b) for some
b∈A∞

1 . By the preceding inequality we have

‖am‖2 � ‖ϕ(am)‖·‖ϕ(a∗
m)‖! 0·‖ϕ(b)‖= 0,

‖a∗
m−b‖2 � ‖ϕ(a∗

m)−ϕ(b)‖·‖ϕ(am)−ϕ(b∗)‖! 0·‖ϕ(b∗)‖= 0.

Therefore b=0. This shows that the graph of ϕ ∗ ϕ−1 is closed.
Finally, let us use the closed graph theorem to show that ϕ−1 is continuous. Let

{am}m∈N⊆A∞
1 be such that ϕ(am)!0 and am!b for some b∈A∞

1 . By continuity of
ϕ ∗ ϕ−1 we have ϕ(a∗

m)!0. By the inequality derived in the second paragraph it follows
that ‖am‖2!0. Therefore b=0. This shows that the graph of ϕ−1 is closed.

Question 2.4. Is every algebra isomorphism ϕ: A∞
1 !A∞

2 continuous with respect to
the C∗-algebra norm topology?

Remark 2.5. Let us say that a Fréchet topology on an algebra A is a smooth topology
if there is a C∗-algebra A and a continuous injective homomorphism ϕ:A↪!A such that
ϕ(A) is a dense sub-∗-algebra of A closed under the holomorphic functional calculus.
Theorem 2.3 can be restated as that every algebra admits at most one smooth topology.

Example 2.6. Let p∈Mn(A∞) be a projection. Then pMn(A∞)p is a dense sub-
∗-algebra of pMn(A)p, and the relative topology on pMn(A∞)p is a Fréchet topology
stronger than the C∗-algebra norm topology. By [37, Corollary 2.3] the subalgebra
Mn(A∞)⊆Mn(A) is closed under the holomorphic functional calculus. It follows that the
subalgebra pMn(A∞)p⊆pMn(A)p is closed under the holomorphic functional calculus.



6 g. a. elliott and h. li

3. Continuity of derivations

Throughout this section we shall assume further that A∞ is closed under the smooth func-
tional calculus. By this we mean that, after the adjunction of a unit, for any a∈(A∞)sa
and f∈C∞(R) we have f(a)∈A∞. Our goal in this section is to prove Theorem 3.4.

Example 3.1. Let B be a C∗-algebra, and let Δ be a set of closed, densely defined
∗-derivations of B. For k=1, 2, ...,∞, define

Bk := {b∈B : if j <k+1 and δ1, ..., δj ∈Δ then b belongs to the domain of δ1 ... δj}.

It is routine to check that Bk is a sub-∗-algebra of B and has the Fréchet topology
determined by the seminorms

b �−! ‖δ1 ... δjb‖, j < k+1 and δ1, ..., δj ∈Δ.

By [6, Lemma 3.2], if B is unital, then Bk is closed under the smooth functional calculus.
In particular, A∞

θ is closed under the smooth functional calculus.

Example 3.2. Let G be a discrete group equipped with a length function l, that is,
a nonnegative real-valued function on G such that l(1G)=0, l(g−1)=l(g), and l(gh)�
l(g)+l(h) for all g and h in G. Consider the self-adjoint and closed unbounded linear
operator Dl: l2(G)!l2(G) defined by (Dlξ)(g)=l(g)ξ(g) for g∈G. Then δl(a)=i[Dl, a]
defines a closed, unbounded ∗-derivation from B(l2(G)) into itself. By Example 3.1 the
intersection of the domains of the δk

l ’s for all k∈N is a Fréchet sub-∗-algebra of B(l2(G))
closed under the smooth functional calculus. Denote by Sl(G) the intersection of this
algebra with the reduced group algebra C∗

r (G). Then Sl(G) is a dense Fréchet sub-∗-
algebra of C∗

r (G) closed under the smooth functional calculus and containing CG. This
construction is due to Connes and Moscovici [12, p. 384]. Recall that G is said to be
rapidly decaying if there exists a length function l on G such that the intersection of the
domains of the Dk

l ’s for all k∈N, which we shall denote by H∞
l (G), is contained in C∗

r (G)
[12], [21]. In such a case, it is a result of Ji [20, Theorem 1.3] that H∞

l (G) coincides
with Sl(G), and the Fréchet topology is also induced by the seminorms ‖Dk

l ( ·)‖l2 for
0�k<∞. Consequently, H∞

l (G) is closed under the smooth functional calculus if it is
contained in C∗

r (G).

Question 3.3. Is Mm(A∞) closed under the smooth functional calculus for all m∈N?

The following theorem was proved by Sakai in the case A∞=A and by Bratteli,
Elliott and Jorgensen in the case A∞=A∞

θ [6, Corollary 5.3.C2]) (cf. also [27, Theorem 1],
[6, Theorem 3.1] and the proof of [13, Lemma 4]). (In fact we shall only use the result
in the case A∞=A∞

θ —in contrast to Theorem 2.3 which is needed in a more general
setting.)
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Theorem 3.4. Every derivation δ: A∞!A∞ is continuous.

Theorem 3.4 is useful for determining the derivations of various smooth (twisted)
group algebras. As an example, let us determine the derivations of the smooth group al-
gebra of the 3-dimensional discrete Heisenberg group H3. This group is the multiplicative
group ⎧⎪⎨

⎪⎩
⎛
⎜⎝ 1 a c

0 1 b

0 0 1

⎞
⎟⎠ : a, b, c∈Z

⎫⎪⎬
⎪⎭ .

It is also the universal group generated by two elements U and V such that

W = V UV −1U−1

is central. It is amenable [14, p. 200]. Note that it is finitely generated. The Fréchet
space H∞

l (H3) does not depend on the choice of generators if we use the word length
function corresponding to finitely many generators. So we shall denote it by H∞(H3).
Using the word length function associated with the generators U and V , we have

H∞(H3) =
{ ∑

p,q,r∈Z

ap,q,rU
pV qW r

}
, (3)

where {ap,q,r} is in the Schwartz space S(Z3), and the Fréchet topology on H∞(H3) is
just the canonical Fréchet topology on S(Z3). Note that H3 has polynomial growth, and
thus H∞(H3) is contained in C∗(H3)=C∗

r (H3) [21, Theorem 3.1.7]. By Example 3.2
and Theorem 3.4 we know that every derivation of H∞(H3) into itself is continuous, and
hence is determined by the restriction on CH3. Define derivations ∂U and ∂V on CH3 by

∂U (U)=U, ∂U (V )= 0, ∂U (W )= 0,

∂V (U)= 0, ∂V (V )= V, ∂V (W )= 0,

and extend them continuously to H∞(H3) using (3). We shall denote these extensions
also by ∂U and ∂V . It is a result of Hadfield that every derivation δ:CH3!H∞(H3) can
be written uniquely as δ=zU∂U +zV ∂V +δ̃ for some zU and zV in the center of H∞(H3)
and some δ̃ as the restriction of some inner derivation of H∞(H3) [19, Theorem 6.4]. It
is also known that the center of H∞(H3) is just the smooth algebra generated by W ,
i.e.,

{∑
r∈Z arW

r :{ar}r∈Z∈S(Z)
}

[19, Lemma 6.2]. Thus we get the following result.

Corollary 3.5. Every derivation δ: H∞(H3)!H∞(H3) can be written uniquely
as δ=zU∂U +zV ∂V +δ̃ for some zU and zV in the center of H∞(H3) and some inner
derivation δ̃ of H∞(H3).
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In view of Lemma 2.1, to prove Theorem 3.4 it suffices to prove the following lemma.

Lemma 3.6. Every derivation δ: A∞!A is continuous.

The proof of Lemma 3.6 is similar to that of [27, Theorem 1] and [6, Theorem 3.1].
For the convenience of the reader, we repeat the main arguments in our present setting
below (in which the seminorms may not be submultiplicative).

Lemma 3.7. Let I be a closed (two-sided) ideal of A such that A/I is infinite-
dimensional. Then there exists b∈(A∞)sa such that the image of b in A/I has infinite
spectrum.

Proof. Without loss of generality, we may assume that A∞ is unital. Consider the
quotient map ϕ: A!A/I. Note that A:=ϕ(A∞) is infinite-dimensional. Assume that
every element in Asa=ϕ((A∞)sa) has finite spectrum (in A/I). We assert that there exist
nonzero projections P1, ..., Pm, ... in Asa such that PjPk=0 for all j 
=k. Assume that we
have constructed P1, ..., Pj for some j�0 with the additional property that QjAQj is
infinite-dimensional, where Qj =1−

∑j
s=1 Ps. Choose an element b in (QjAQj)sa\RQj .

Since b has finite spectrum (in A/I) we can find a nonzero projection P∈QjAQj with
P 
=Qj . Since QjAQj is infinite-dimensional, it is easy to see that either PAP or
(Qj−P )A(Qj−P ) has to be infinite-dimensional. (Recall that A/I is a C∗-algebra.)
We may now choose Pj+1 to be one of P and Qj−P in such a way that Qj+1AQj+1 is
infinite-dimensional, where Qj+1=1−

∑j+1
s=1 Ps. This finishes the induction step.

Since A∞ is a Fréchet space we can find a complete translation-invariant metric d

on A∞ giving the topology of A∞ [3, Corollary 13.5]. Choose bm∈(A∞)sa such that
ϕ(bm)=Pm. Choose λm∈R\{0} such that d(λmbm, 0)�2−m. Note that

d

( m∑
n=k+1

λnbn, 0
)

� 2−k for all k <m.

So the series
∑∞

n=1 λnbn converges to some b in A∞. Since the convergence holds in
particular in A, it follows that ϕ(b)=

∑∞
n=1 λnPn, the convergence being with respect to

the norm topology on A/I. In particular, we have that λm!0. Since also λm 
=0, we
see that ϕ(b) has infinite spectrum (in A/I). This contradicts the assumption to the
contrary, which is therefore false. In other words, Asa=ϕ((A∞)sa) contains an element
with infinite spectrum (in A/I).

Lemma 3.8. Let δ: A∞!A be a derivation. Set

I = {b∈A∞ : a∈A∞ �! δ(ab)∈A is continuous}

and denote by I the closure of I in A. Then I is a closed (two-sided) ideal of A, and
A/I is finite-dimensional.
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Proof. Clearly I is an ideal of A∞. So I is an ideal of A. Assume that A/I is
infinite-dimensional. By Lemma 3.7 we can find a self-adjoint element b of A∞ such that
the image of b in A/I has infinite spectrum (in A/I). Choosing suitable fm∈C∞(R) and
setting bm=fm(b) we obtain {bm}m∈N⊆A∞ such that b2

j /∈I for all j∈N and bjbk=0 for
all j 
=k. We may assume that ‖bj‖�1 and ‖δ(bj)‖�1 for all j∈N.

Let d be as in the proof of Lemma 3.7. Since b2
m /∈I, there exists some εm>0 such

that for any ε>0 we can find some a′∈A∞ with d(a′, 0)<ε and ‖δ(a′b2
m)‖�εm. The

multiplication in A∞ is continuous by Proposition 2.2. Thus there exists some ε>0 such
that d((m/εm)b′bm, 0)�2−m for any b′∈A∞ with d(b′, 0)<ε. Take an a′ as above for
this ε and set am=(m/εm)a′. Then d(ambm, 0)�2−m and ‖δ(amb2

m)‖�m. Note that
d
(∑m

n=k+1 anbn, 0
)
�2−k for all k<m. So the series

∑∞
n=1 anbn converges in A∞, say

to a. Then (with a second use of Proposition 2.2)

‖δ(a)‖+‖a‖� ‖δ(a)bm‖+‖aδ(bm)‖� ‖δ(abm)‖= ‖δ(amb2
m)‖�m,

which is a contradiction. The assumption that A/I is infinite-dimensional is therefore
not tenable. We must conclude that A/I is finite-dimensional.

4. The generic set

In this section we shall define the set T ′
n and prove the part (1) of Theorem 1.1.

Denote by Der(A∞
θ ) the linear space of derivations δ: A∞

θ !A∞
θ . Set Rn=L. We

shall think of Zn as the standard lattice in L∗ (so that Hom(G,R) in [6] is just our L), and
shall regard θ as an element of

∧2
L. Let us write L⊗RC=LC. Recall that e(t)=e2πit.

One may also describe the C∗-algebra Aθ as the universal C∗-algebra generated by uni-
taries {Ux}x∈Zn satisfying the relations

UxUy = σθ(x, y)Ux+y, (4)

where σθ(x, y)=e((x·θy)/2). In this description the smooth algebra A∞
θ becomes

S(Zn, σθ),

the Schwartz space S(Zn) equipped with the multiplication induced by (4). There is a
canonical action of the Lie algebra LC as derivations of A∞

θ , which is induced by the
canonical action of Tn on Aθ and is given explicitly by

δX(Ux) = 2πi〈X, x〉Ux

for X∈LC and x∈Zn.
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Notation 4.1. Let e1, ..., en be a basis of Zn. Denote by T ′
n the subset of Tn consist-

ing of those θ’s such that every δ∈Der(A∞
θ ) can be written as

∑n
j=1 ajδej

+δ̃ for some
a1, ..., an in the center of A∞

θ and some inner derivation δ̃.

Remark 4.2. For any θ∈Tn and δ∈Der(A∞
θ ) there is at most one way of writing δ

as
∑n

j=1 ajδej
+δ̃ for some a1, ..., an in the center of A∞

θ and some inner derivation δ̃ (see
Proposition 4.7).

One may identify Tn with Rn(n−1)/2 in a natural way. We may therefore talk about
Lebesgue measure on Tn.

Proposition 4.3. The Lebesgue measure of Tn\T ′
n is zero.

Let �θ:Zn∧Zn!T denote the bicharacter of Zn corresponding to θ, i.e.,

�θ(x∧y) = e(x·θy).

Recall that Aθ is simple if �θ is nondegenerate in the sense that if �θ(g∧h)=1 for some
g∈Zn and all h∈Zn, then g=0 [38, Theorem 3.7]. (In fact, the converse is also true,
though we don’t need this fact here.) If �θ is nondegenerate, and for every 0 
=g∈Zn

the function h �!|�θ(g∧h)−1|−1 for �θ(g∧h) 
=1 grows at most polynomially, then θ∈T ′
n

[6, p. 185]. So Proposition 4.3 follows from the following lemma.

Lemma 4.4. Denote by T ′′
n the set of θ∈Tn such that �θ is nondegenerate and for

every 0 
=g∈Zn the function h �!|�θ(g∧h)−1|−1 for �θ(g∧h) 
=1 grows at most polyno-
mially. Then Tn\T ′′

n has Lebesgue measure zero.

Proof. If θ−θ′∈Mn(Z), then �θ=�θ′ . Hence

Tn\T ′′
n =

⋃
η∈Mn(Z)∩Tn

(η+T̃n\T ′′
n ),

where T̃n consists of θ=(θjk)∈Tn with 0�θjk<1 for all 1�j<k�n. Denote the Lebesgue
measure on Tn by μ. It suffices to show that μ(T̃n\T ′′

n )=0. If there is some polynomial f

in 1
2n(n−1) variables such that

1 <

∣∣∣∣ ∑
1�j<k�n

θjkmjk−t

∣∣∣∣f(m)

for all t∈Z and 0 
=m=(mjk)1�j<k�n∈Zn(n−1)/2, then both �θ is nondegenerate and the
required growth condition is satisfied—in other words, θ∈T ′′

n . Set

F (m) =
∏

1�j<k�n

(m2
jk+1)2,
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and consider the set

Zs,m,t =
{

θ∈ T̃n : 1 �
∣∣∣∣ ∑
1�j<k�n

θjkmjk−t

∣∣∣∣sF (m)
}

for every s∈N, 0 
=m∈Zn(n−1)/2 and t∈Z. Set⋃
m,t

Zs,m,t = Ws.

Then every θ∈T̃n\
⋂

s∈N Ws satisfies the above condition. Therefore, it suffices to show
that

⋂
s∈N Ws has measure zero. Set⋃

m,t
m12 �=0

Zs,m,t = W ′
s.

Then μ(Ws)� 1
2n(n−1)μ(W ′

s) because of the symmetry between the θjk’s for 1�j<k�n.
Integrating the characteristic function of Zs,m,t over θ12 first and then over the other θjk’s
for 1�j<k�n, (j, k) 
=(1, 2), we get that

μ(Zs,m,t) � 2s−1F (m)−1|m−1
12 |

for m12 
=0 and |t|�|m|:=
∑

1�j<k�n |mjk|, while

Zs,m,t = ∅

for |t|>|m|. It follows that

μ(W ′
s) � 2s−1

∑
m

m12 �=0

F (m)−1|m−1
12 | |m|� 2s−1

(∑
v∈Z

1
v2+1

)−n(n−1)/2

! 0, as s!∞.

Consequently, μ
(⋂

s∈N Ws

)
=0.

We shall now give two other characterizations of T ′
n, one in Corollary 4.10, in terms

of the properties of the algebra, and one in Proposition 4.11, in terms of the number-
theoretical properties of θ. We need the following well-known fact.

Lemma 4.5. An element a=
∑

h∈Zn ahUh is in the center of A∞
θ if and only if the

support of the coefficients ah is contained in the subgroup

H = {h∈Zn : �θ(g∧h) = 1 for all g ∈Zn}.

In particular , the center of A∞
θ is C if and only if �θ is nondegenerate in the sense

that H={0}.
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Proof. The element a is in the center of A∞
θ exactly if Uga=aUg for all g∈Zn. Note

that Uga(Ug)−1=
∑

h∈Zn ah�θ(g∧h)Uh. Consequently, Uga=aUg for all g∈Zn if and only
if ah=0 for all h∈Zn\H.

Recall that the topology considered on A∞
θ will always be the Fréchet topology,

unless otherwise specified.

Definition 4.6. Let us say that a derivation δ∈Der(A∞
θ ) is approximately inner if

there is a sequence {am}m∈N⊆A∞
θ such that [am, a]!δ(a) (in the Fréchet topology) for

every a∈A∞
θ . Denote by ADer(A∞

θ ) the linear space of approximately inner derivations
of A∞

θ .

By [6, Corollary 5.3.D2], every δ∈Der(A∞
θ ) can be written uniquely as

∑n
j=1 ajδej

+δ̃

for some a1, ..., an in the center of A∞
θ and some δ̃∈Der(A∞

θ ) such that there is a sequence
{bm}m∈N⊆A∞

θ with ‖[bm, a]−δ̃(a)‖!0 for every a∈A∞
θ . In fact, we can require [bm, a]!

δ̃(a) in the Fréchet topology.

Proposition 4.7. Every δ∈Der(A∞
θ ) can be written uniquely as

∑n
j=1 ajδej +δ̃ for

some a1, ..., an in the center of A∞
θ and some δ̃∈ADer(A∞

θ ). The bicharacter �θ is
nondegenerate if and only if every δ∈Der(A∞

θ ) can be written uniquely as δX +δ̃ for
some X∈LC and some δ̃∈ADer(A∞

θ ).

Denote by AF
θ the linear span of {Ux}x∈Zn . This is a dense sub-∗-algebra of Aθ. In

the proof of [6, Corollary 5.3.D2], which itself is based on the proof of [6, Theorem 2.1], one
sees easily that in the present case actually the sequence {bm}m∈N can be chosen in such
a way that [bm, a]!δ̃(a) in the Fréchet topology for every a∈AF

θ . Thus Proposition 4.7
follows from the following lemma and Lemma 4.5.

Lemma 4.8. Let δ, δ1, δ2, ...∈Der(A∞
θ ) be such that

δm(a)! δ(a) for every a∈AF
θ ⊆A∞

θ .

Then δm(a)!δ(a) for every a∈A∞
θ .

Proof. The proof is similar to that of [6, Corollary 3.3.4]. Let �j=(j1, ..., jk) with
1�j1, ..., jk�n and k�0. We say that w=(w1, ..., ws) is a subtuple of �j if s�k and there
is a strictly increasing map f :{1, ..., s}!{1, ..., k} such that wm=jf(m). Set

‖a‖�j = sup ‖δws ... δw1(a)‖,

where the supremum runs over all subtuples w of �j, for a∈A∞
θ . It suffices to show that

‖δ(a)−δm(a)‖�j! 0 for every a∈A∞
θ and �j.
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For each g=(q1, ..., qn)∈Zn set |g|=
∑s

s=1 |qs|. Set

M = sup{‖δm(Us
t )‖�j : t = 1, ..., n, s=±1 and m = 1, 2, ... }.

Using the derivation property of δm we have ‖δm(Uq1
1 ... Uqn

n )‖�j �(2π)kM |g|k+1 for every
g=(q1, ..., qn)∈Zn. For any finite subset Z⊆Zn and a=

∑
g∈Zn agUg∈A∞

θ set

aZ =
∑
g∈Z

agUg ∈AF
θ .

By Theorem 3.4, every derivation on A∞
θ is continuous. Thus ‖δ(a−aZ)‖�j!0, as Z goes

to Zn. Also
‖δm(a−aZ)‖�j �

∑
g∈Zn\Z

(2π)kM |g|k+1|ag|.

So ‖δm(a−aZ)‖�j!0 uniformly, as Z goes to Zn. By assumption ‖δ(aZ)−δm(aZ)‖�j!0,
as m!∞. Thus ‖δ(a)−δm(a)‖�j!0, as m!∞.

Corollary 4.9. A derivation δ∈Der(A∞
θ ) is approximately inner if and only if

there is a sequence {bm}m∈N⊆A∞
θ with ‖[bm, a]−δ(a)‖!0 for every a∈A∞

θ .

Combining Lemma 4.5 and Proposition 4.7 we get the following result.

Corollary 4.10. The set T ′
n consists of those θ’s such that every δ∈ADer(A∞

θ ) is
inner.

Set F (g)=max1�j�n |�θ(g∧ej)−1| for g∈Zn. Then F vanishes exactly on the sub-
group H in Lemma 4.5. Denote by F−1 the function on Zn taking on the value F (g)−1

at g /∈H and the value 0 at g∈H.

Proposition 4.11. The set T ′
n consists of those θ’s which are such that the function

F−1 grows at most polynomially.

Proof. In view of Corollary 4.10 it suffices to show that every δ∈ADer(A∞
θ ) is inner

if and only if the function F−1 grows at most polynomially.
By Proposition 4.7, Theorem 3.4, [6, Corollary 5.3.E2] and the proof of [6, Theo-

rem 5.1] (see also the first paragraph of the proof of [6, Theorem 2.1]), the derivations
δ∈ADer(A∞

θ ) are in bijective correspondence with those C-valued functions Q on Zn

which are such that Q vanishes on H and the function ch: g �!Q(g)(�θ(g∧h)−1) on Zn

is in the Schwartz space S(Zn) for every h∈Zn. Actually δ(Uh)=
∑

g ch(g)UhUg. Fur-
thermore, δ is inner if and only if Q∈S(Zn). In this case, δ( ·)=

[∑
g Q(g)Ug, ·

]
. Clearly,

ch∈S(Zn) for every h∈Zn if and only if cej
∈S(Zn) for every 1�j�n, and if and only

if the function g �!Q(g)F (g) is in S(Zn). In other words, the derivations δ∈ADer(A∞
θ )
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are in bijective correspondence with those Q:Zn!C which are such that Q vanishes on
H and the function g �!Q(g)F (g) is in S(Zn). Therefore, every δ∈ADer(A∞

θ ) is inner if
and only if the pointwise multiplication by F−1 sends S(Zn) into itself. Using the closed
graph theorem [3, Corollary 48.6] it is easy to see that if the pointwise multiplication
by F−1 sends S(Zn) into itself, then this map is continuous and hence F−1 grows at
most polynomially. Conversely, if F−1 grows at most polynomially, then obviously the
pointwise multiplication by F−1 sends S(Zn) into itself. Therefore every δ∈ADer(A∞

θ )
is inner if and only if F−1 grows at most polynomially.

Denote by T �
n the subset of Tn consisting of the θ’s such that �θ is nondegenerate.

Let us indicate how to deduce the weaker form of the part (1) of Theorem 1.1, with T ′
n

replaced by T ′
n∩T �

n , from [28] using the topological or algebraic Hochschild cohomology
of A∞

θ . Recall that if two unital algebras are Morita equivalent, then their algebraic
Hochschild cohomologies are isomorphic [26]. By Theorem 2.3 and Example 2.6, if two
unital smooth algebras are Morita equivalent, then their topological Hochschild coho-
mologies are also isomorphic. Nest, in [28, Theorem 4.1], calculated the topological
Hochschild cohomology H∗

top(A∞
θ , (A∞

θ )∗top) of (the Fréchet algebra) A∞
θ with coefficients

in the topological dual (A∞
θ )∗top (the 2-dimensional case was calculated earlier by Connes

in [9]). From [28, Theorem 4.1] it is easy to see that the combined condition that �θ

be nondegenerate and that θ satisfy the condition in Proposition 4.11 is equivalent to
the condition that H∗

top(A∞
θ , (A∞

θ )∗top) be finite-dimensional in every degree. Using the
simple projective resolution of A∞

θ as an A∞
θ -bimodule in [28, §3], one also finds that this

happens if and only if the algebraic Hochschild cohomology H∗
alg(A

∞
θ , (A∞

θ )∗alg) is finite-
dimensional in every degree. Thus the above weak form of the part (1) of Theorem 1.1
follows from considering either the topological or algebraic Hochschild cohomology of A∞

θ .

In the 2-dimensional case, when �θ is nondegenerate, the condition in Proposi-
tion 4.11 was called a Diophantine condition by Connes [9, p. 349].

In [5] Boca introduced a certain subset of Tn, the complement of which has Lebesgue
measure zero and which is also described number theoretically. His set is contained in T �

n .
We do not know whether his set is the same as T ′

n∩T �
n or not.

To prove Theorem 1.1 (1), we start with some general facts about the comparison
of derivation spaces for Morita equivalent algebras. Let A be a unital algebra. Let E

be a finitely generated projective right A-module and set End(EA)=B. If we take an
isomorphism of right A-modules E!p(kA) for some projection p∈Mk(A), where kA is
the direct sum of k copies of A as right A-modules with vectors written as columns, then
we have an induced isomorphism B!pMk(A)p.

Let δ∈Der(A). Recall [8] that a connection for (EA, δ) is a linear map ∇: E!E
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satisfying the Leibnitz rule
∇(fa) =∇(f)a+fδ(a) (5)

for all f∈E and a∈A. Let us say that a pair (δ′, δ)∈Der(B)×Der(A) is compatible
if there is a linear map ∇: E!E which is a connection for both (BE, δ′) and (EA, δ).
One easily checks that for every δ∈Der(A) there exists δ′∈Der(B) such that the pair
(δ′, δ) is compatible, and δ′ is unique up to adding an inner derivation. Explicitly,
identifying E and B with p(kA) and pMk(A)p, respectively, as above, and extending δ

to kA and Mk(A) componentwise, one may choose ∇ and δ′ as defined by ∇(u)=p(δ(u))
for u∈p(kA) and δ′(b)=pδ(b)p for b∈pMk(A)p, respectively.

Lemma 4.12. If δ is inner and the pair (δ′, δ) is compatible, then δ′ is also inner.

Proof. We have δ( ·)=[ · , a] for some a∈A. The pair (0, δ) is compatible with re-
spect to the connection ∇a: f �!fa. Let ∇ be a connection such that the pair (δ′, δ) is
compatible with respect to ∇. Then the pair (δ′, 0) is compatible with respect to the
connection ∇−∇a. Therefore, δ′ is inner.

Assume further that A=A∞ is equipped with a smooth topology. By Example 2.6
and Theorem 2.3 we know that B=B∞ also admits a unique smooth topology. Thus,
the above isomorphism B∞!pMk(A∞)p is a homeomorphism.

Lemma 4.13. If δ∈ADer(A∞) and (δ′, δ) is compatible, then δ′∈ADer(B∞).

Proof. We may assume that E=p(kA∞) and B∞=pMk(A∞)p for some projection
p∈Mk(A∞). Choose a sequence of inner derivations δm∈Der(A∞) such that δm(a)!δ(a)
for every a∈A∞. Extend δm and δ to Mk(A∞) componentwise. Consider the maps
δ̃: b �!pδ(b)p and δ̃m: b �!pδm(b)p on B∞. Then δ̃ and δ̃m are derivations of B∞. The pair
(δ̃, δ) is compatible, with respect to the Grassmann connection ∇: u �!p(δ(u)). Similarly,
the pair (δ̃m, δm) is compatible, with respect to the connection ∇m: u �!p(δm(u)). Notice
that δ̃m(b)!δ̃(b) for every b∈B∞. Lemma 4.13 now follows from Lemma 4.12.

There are several equivalent ways of defining Morita equivalence of algebras (see,
for instance, [1, §22]). Recall that a right A-module EA of a unital algebra A is a
generator if AA is a direct summand of rEA for some r∈N. We shall say that two
unital algebras B and A are Morita equivalent if there exists a bimodule BEA—a Morita
equivalence bimodule—such that EA and BE are finitely generated projective modules
and also generators, and, furthermore, B=End(EA) and A=End(BE) [1, Theorem 22.2].

Now, Theorem 1.1 (1) follows from Corollary 4.10 and Lemmas 4.12 and 4.13.
The above proof employs the Fréchet topology on A∞

θ . We give below a more alge-
braic proof. We are grateful to Ryszard Nest for suggesting to use the Morita invariance
of the module structure of H1(A,A) over the center of A for a unital algebra A.
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Theorem 1.1 (1) follows directly from two facts. Denote by Z(A) the center of
a unital algebra A. Given a Morita equivalence bimodule BEA between two unital
algebras B and A, we may identify both Z(B) and Z(A) with End(EA)∩End(BE)
inside HomC(E). Note that Der(A) has a natural Z(A)-module structure given by
(aδ)(x)=a(δ(x)) for all a∈Z(A), x∈A and δ∈Der(A). Clearly the space of inner deriva-
tions is a submodule. Denote by Out(A) the quotient Z(A)-module. By Lemma 4.12 we
have a natural linear isomorphism Out(A)!Out(B). The first fact we need is that this
linear isomorphism is (clearly) an isomorphism of Z(A)(=Z(B))-modules. The second
fact is that θ∈Tn if and only if Out(A∞

θ ) is generated by n elements as a Z(A∞
θ )-module.

This follows from the decomposition of Der(A∞
θ ) quoted after Definition 4.6.

One may also deduce the second fact as follows. Recall that the first (algebraic)
Hochschild cohomology H1(A,A) of A with coefficients in A is exactly Out(A) [26, p. 38].
Using the simple projective resolution of A∞

θ as an A∞
θ -bimodule in [28, §3] one can

calculate H∗(A∞
θ , A∞

θ ) and find that θ satisfies the condition in Proposition 4.11 if and
only if H1(A∞

θ , A∞
θ ) is generated by n elements as a Z(A∞

θ )-module.

Combining Lemma 4.5, Proposition 4.7 and Lemma 4.13, we also get the following
result.

Proposition 4.14. Suppose that �θ and �θ′ are nondegenerate, and that E is a
finitely generated projective right A∞

θ -module with End(EA∞
θ

)=A∞
θ′ . Then there is a

unique linear map ϕ: LC!LC such that for any X∈LC and δ̃∈ADer(A∞
θ ) there exists

some δ̃′∈ADer(A∞
θ′ ) such that the pair (δϕ(X)+δ̃′, δX +δ̃) is compatible. If , furthermore,

the bimodule A∞
θ′ EA∞

θ
is a Morita equivalence bimodule, then ϕ is an isomorphism.

5. Proof of Theorem 1.1

In this section we prove Theorem 1.1 (2).

We first recall the theory of curvature introduced by Connes in [8]. Let E be a
finitely generated projective right A∞

θ -module. If X∈LC �!∇X∈HomC(E) is a linear
map such that ∇X is a connection of (EA∞

θ
, δX) for every X∈LC, one may consider the

curvature [∇X ,∇Y ] which is easily seen to be in End(EA∞
θ

). We say that ∇ has constant
curvature if [∇X ,∇Y ]∈C(=C·idE) for all X, Y ∈LC.

Since complete Morita equivalence in the sense of Schwarz [36] explicitly implies
Morita equivalence (see [17, §2.1]), the “if” part of the statement follows from [24, The-
orem 1.2] (which deals with complete Morita equivalence).

Recall that T �
n is the subset of Tn consisting of the θ’s such that �θ is nondegenerate.

To prove the “only if” part of the statement for all n, we shall reduce it first to the case of
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matrices in T ′
n∩T �

n . For this purpose, we need the following lemma, in which we consider
also T0 for convenience.

Lemma 5.1. Suppose that θ∈Tn is of the form

θ =
(

0 0
0 θ̃

)
,

where θ̃ belongs to Tk for some 0�k�n and �θ̃ is nondegenerate. Then, for any maximal
two-sided ideal I of A∞

θ , A∞
θ /I is isomorphic to A∞

θ̃
.

Proof. Since A∞
θ is closed under the smooth functional calculus (Example 3.1), by

Theorem 13 of [22] and the remark following it, there is a bijective correspondence be-
tween the lattice of two-sided ideals of A∞

θ closed with respect to the relative C∗-algebra
topology and the lattice of closed two-sided ideals of Aθ which in one direction consists
in taking the intersection of an ideal with A∞

θ and in the other direction in taking the
closure in Aθ. Since I is maximal, it is closed in the relative C∗-algebra topology. It
follows that the closed two-sided ideal K of Aθ corresponding to I is maximal. Note that
Aθ=C(Tn−k)⊗Aθ̃ and that the center of Aθ is C(Tn−k). Since �θ̃ is nondegenerate, Aθ̃

is simple [38, Theorem 3.7]. It follows that K is equal to the kernel of the homomorphism
Aθ!Aθ̃ given by the evaluation at some point of Tn−k. Then we may identify Aθ/K

with Aθ̃. It follows that A∞
θ /I, which is contained in Aθ/K, is just A∞

θ̃
.

Let θ′, θ∈T ′
n and suppose that A∞

θ′ and A∞
θ are Morita equivalent. By [17, Proposi-

tion 3.3], we can find θ′1, θ1∈Tn such that θ′ and θ are in the same orbit of the SO(n, n|Z)
action as θ′1 and θ1, respectively, and such that

θ′1 =
(

0 0
0 θ̃′

)
and θ1 =

(
0 0
0 θ̃

)
,

where θ̃′ and θ̃ belong to Tk′ and Tk, respectively, for some 0�k′, k�n, and �θ̃′ and �θ̃

are nondegenerate. By [24, Theorem 1.2], A∞
θ′ and A∞

θ are completely Morita equivalent
to A∞

θ′
1

and A∞
θ1

, respectively. Then A∞
θ′
1

and A∞
θ1

are Morita equivalent. Since Morita
equivalence between unital algebras (or rings) preserves the center [1, Proposition 21.10],
by Lemma 4.5 we have n−k′=n−k. Therefore, k′=k. There is a natural bijection
between the lattices of two-sided ideals of Morita equivalent unital algebras (or rings),
and the corresponding quotient algebras are also Morita equivalent [1, Proposition 21.11].
It follows from Lemma 5.1 that A∞

θ̃′ and A∞
θ̃

are Morita equivalent. By Theorem 1.1 (1),
θ′1 and θ1 are also in T ′

n. From Proposition 4.11 we see that θ̃′ and θ̃ are both in T ′
k . If

the “only if” part of Theorem 1.1 (2) holds for all n with T ′
n replaced by T ′

n∩T �
n , then
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we can conclude that θ̃′ and θ̃ are in the same orbit of the SO(k, k|Z) action. It follows
that θ′1 and θ1 are in the same orbit of the SO(n, n|Z) action. Consequently, θ′ and θ

are in the same orbit of the SO(n, n|Z) action.
Now what remains is to prove the “only if” part of the statement with T ′

n replaced
by T ′

n∩T �
n . This follows from Theorems 5.2 and 5.3 below.

Theorem 5.2. Suppose that A∞
θ′ and A∞

θ are Morita equivalent with respect to a
Morita equivalence bimodule E=A∞

θ′ EA∞
θ

with the following property : there are a C-
linear isomorphism ϕ: LC!LC and a linear map ∇ from LC to HomC(E), with ∇X

being a connection for both (EA∞
θ

, δX) and (A∞
θ′ E, δϕ(X)) for every X∈LC, such that ∇

has constant curvature (in both End(EA∞
θ

) and End(A∞
θ′ E)). Then θ′ and θ are in the

same orbit of the SO(n, n|Z) action.

Theorem 5.3. Let θ′, θ∈T ′
n∩T �

n and suppose that A∞
θ′ and A∞

θ are Morita equiva-
lent. Let A∞

θ′ EA∞
θ

be a Morita equivalence bimodule. Then there exist ϕ and ∇ satisfying
the conditions of Theorem 5.2. (Note that E and ∇ are not necessarily Hermitian—see
the proof of Theorem 5.2 below.)

Proof of Theorem 5.3. Let ϕ be as in Proposition 4.14. Let e1, ..., en be a basis
of LC. Then for each 1�k�n there is some δ′k∈ADer(A∞

θ′ ) such that (δϕ(ek)+δ′k, δek
) is

compatible. Since θ′∈T ′
n, by Corollary 4.10 the derivation δ′k is inner. Then (δϕ(ek), δek

)
is compatible. Let ∇ek

be a connection for both (A∞
θ′ E, δϕ(ek)) and (EA∞

θ
, δek

). Set

∇∑n
k=1 λkek

=
n∑

k=1

λk∇ek

for all λ1, ..., λn∈C. Then, for every X∈LC, ∇X is a connection for both (A∞
θ′ E, δϕ(X))

and (EA∞
θ

, δX). Consequently, [∇X ,∇Y ]∈HomC(E) is in both A∞
θ′ and A∞

θ . Therefore,
[∇X ,∇Y ] lies in the center of A∞

θ , which, by Lemma 4.5, is C. Thus, [∇X ,∇Y ]∈C.

Theorem 5.2 is an extension of Schwarz’s result of [36, §5], in which he proved
Theorem 5.2 under the additional hypotheses that E is a Hilbert bimodule, ϕ maps L

to L, and ∇ is a Hermitian connection. We shall essentially follow Schwarz’s argument.
In order to show that his argument still works without these additional hypotheses, we
have to make some preparations.

Let EA∞
θ

be a finitely generated projective right A∞
θ -module. Let τ be a trace on

A∞
θ . Denote by τ also the unique extension of τ to a trace of Mk(A∞

θ ) for each k∈N.
Choosing an isomorphism E!p(kA∞

θ ) for some idempotent p∈Mk(A∞
θ ), we get a trace

τ ′ on End(EA∞
θ

), via the natural isomorphism of this algebra with pMk(A∞
θ )p. It is not

difficult to see that τ ′ does not depend on the choice of p or the isomorphism E!p(kA∞
θ ).
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Lemma 5.4. Let δ∈Der(A∞
θ ) be such that τ δ=0. Then τ ′ δ′=0 for any

δ′ ∈Der(End(EA∞
θ

))

such that the pair (δ′, δ) is compatible.

Proof. We may assume that E=p(kA∞
θ ) and End(EA∞

θ
)=pMk(A∞

θ )p for some idem-
potent p∈Mk(A∞

θ ). Extend δ to Mk(A∞
θ ) componentwise. Let δ̃ be the derivation

of pMk(A∞
θ )p defined as δ̃(b)=pδ(b)p. Then the pair (δ̃, δ) is compatible. For each

b∈pMk(A∞
θ )p, pick uj , vj∈kA∞

θ for 1�j�k such that b=
∑k

j=1 ujv
t
j . Then

b = pbp =
k∑

j=1

(puj)(vt
jp),

so we may assume that puj =uj and vt
jp=vt

j . Now

τ(δ̃(b)) = τ

( k∑
j=1

(pδ(uj)vt
jp+pujδ(vt

j)p)
)

= τ

( k∑
j=1

(vt
jpδ(uj)+δ(vt

j)puj)
)

= τ

( k∑
j=1

(vt
jδ(uj)+δ(vt

j)uj)
)

= τ

( k∑
j=1

δ(vt
juj)

)
= 0.

Denote by τθ the canonical trace on A∞
θ defined by

τθ

( ∑
h∈Zn

chUh

)
= c0.

Notice that, up to multiplication by a scalar, τθ is the unique continuous linear functional
γ on A∞

θ satisfying γ δX =0 for all X∈LC. In the proof of the next lemma, which is
trivial in case E is a Hilbert bimodule, we make crucial use of Theorem 2.3.

Lemma 5.5. Let A∞
θ′ , E, A∞

θ , ϕ and ∇ be as in Theorem 5.2. Denote by τ ′ the
induced trace on A∞

θ′ =End(EA∞
θ

) obtained by the construction described above beginning
with the trace τθ on A∞

θ . Then τ ′=λτθ′ for some 0 
=λ∈C.

Proof. By [37, Corollary 2.3], the subalgebra Mk(A∞
θ )⊆Mk(Aθ) is closed under the

holomorphic functional calculus for any k∈N. Therefore, by [4, Proposition 4.6.2], every
idempotent in Mk(A∞

θ ) is similar to a self-adjoint one, i.e. a projection. Consequently,
in the definition of τ ′ we may choose the idempotent p∈Mk(A∞

θ ) to be a projection. By
Example 2.6, pMn(A∞

θ )p is closed under the holomorphic functional calculus and has
the Fréchet topology as the restriction of that on Mk(A∞

θ ). By Theorem 2.3, applied
to the two algebras A∞

θ′ and the sub-∗-algebra (pMk(Aθ)p)∞ :=pMk(A∞
θ )p of pMk(Aθ)p,
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the natural isomorphism A∞
θ′ =End(EA∞

θ
)!pMk(A∞

θ )p is a homeomorphism. Therefore,
the trace τ ′ is continuous on A∞

θ′ (as τθ is obviously continuous on pMk(A∞
θ )p). By

Lemma 5.4, we have τ ′ δX =0 for all X∈LC. Thus, (by the remark above) τ ′=λτθ′ for
some λ∈C.

Using either that p is full (since EA∞
θ

is a generator) or that τθ is faithful, one sees
that τθ(p)>0. Therefore λ 
=0.

Let A∞ (resp. B∞) be a dense sub-∗-algebra of a C∗-algebra A (resp. B) closed
under the holomorphic functional calculus and equipped with a Fréchet topology stronger
than the C∗-algebra norm topology.

Lemma 5.6. The algebra C∞(T, A∞) is a dense sub-∗-algebra of the C∗-algebra
C(T, A) closed under the holomorphic functional calculus and has a natural Fréchet
topology stronger than the C∗-algebra norm topology. If B∞EA∞ is a Morita equiva-
lence bimodule, then C∞(T, B∞) and C∞(T, A∞) are Morita equivalent with respect to
the equivalence bimodule C∞(T,B∞)C

∞(T, E)C∞(T,A∞).

Proof. Clearly C∞(T, A∞) is a sub-∗-algebra of C(T, A). Since it contains the
algebraic tensor product A∞⊗C∞(T), we see that C∞(T, A∞) is dense in C(T, A).
Endow C∞(T, A∞) with the topology of uniform convergence on T of the functions and
of their derivatives up to s for every s∈N. Clearly this is a metrizable locally convex
topology stronger than the C∗-algebra norm topology. We will show that this topology is
complete. Let {fm}m∈N be a Cauchy sequence in C∞(T, A∞). Then the sth derivatives
f

(s)
m converge uniformly to continuous functions gs:T!A∞. Notice that

f (s)
m (eiw)−f (s)

m (eiv) =
∫ w

v

f (s+1)
m (eit) dt.

Taking limits, we get

gs(eiw)−gs(eiv) =
∫ w

v

gs+1(eit) dt.

Consequently, g′s=gs+1. Thus g0∈C∞(T, A∞). It follows that fm!g0 in C∞(T, A∞),
as m!∞. So C∞(T, A∞) is complete. Using the identity a−1

1 −a−1
2 =a−1

1 (a2−a1)a−1
2

it is easy to see that for any f∈C∞(T, A∞), if f(t) is invertible in A∞ for every t∈T,
then f−1∈C∞(T, A∞). By [37, Lemma 1.2], f(t) is invertible in A∞ if and only if it
is invertible in A. Therefore, for any f∈C∞(T, A∞), if it is invertible in C(T, A) then
it is invertible in C∞(T, A∞). By [37, Lemma 1.2], C∞(T, A∞) is closed under the
holomorphic functional calculus.

Let B∞EA∞ be a Morita equivalence bimodule. Identify E with p(kA∞) for some
projection p∈Mk(A∞). Define P∈C∞(T,Mk(A∞))=Mk(C∞(T, A∞)) to be the con-
stant function with value p everywhere. Then

P 2 = P, P (kC∞(T, A∞)) = C∞(T, E)
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and

End(C∞(T, E)C∞(T,A∞)) =PMk(C∞(T, A∞))P = C∞(T, pMk(A∞)p) =C∞(T, B∞).

Since B∞EA∞ is a Morita equivalence bimodule, the right module EA∞ is a generator,
which means that A∞

A∞ is a direct summand of rEA∞ for some r∈N. Equivalently, there
exist φj∈Hom(EA∞ , A∞) and uj∈E for 1�j�r such that

r∑
j=1

φj(uj) = 1A∞ .

Denote by Φj : C(T, E)!C(T, A∞) the map consisting of φj acting in fibres. Clearly,
Φj(C∞(T, E))⊆C∞(T, A∞). Let Uj∈C∞(T, E) denote the constant function with value
uj everywhere. Then,

r∑
j=1

Φj(Uj) = 1C∞(T,A∞).

Therefore the right module C∞(T, E)C∞(T,A∞) is a generator. Similarly,

End(C∞(T,B∞)C
∞(T, E)) = C∞(T, A∞),

and C∞(T,B∞)C
∞(T, E) is a finitely generated projective module and a generator. Hence

C∞(T,B∞)C
∞(T, E)C∞(T,A∞) is a Morita equivalence bimodule.

Proposition 5.7. If B∞EA∞ is a Morita equivalence bimodule, then there are nat-
ural group isomorphisms

K0(B)⊕K1(B)−!K0(C∞(T, B∞))−!K0(C∞(T, A∞))−!K0(A)⊕K1(A).

Proof. By Bott periodicity, we have a natural isomorphism

K0(A)⊕K1(A)−!K0(C(T, A)).

By Lemma 5.6, the algebra C∞(T, A∞) is closed under the holomorphic functional cal-
culus, so we have a natural isomorphism

K0(C(T, A))−!K0(C∞(T, A∞)).

Finally, the Morita equivalence bimodule C∞(T,B∞)C
∞(T, E)C∞(T,A∞) gives us a natural

isomorphism
K0(C∞(T, B∞))−!K0(C∞(T, A∞)).
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We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Consider the Fock space F∗=Λ((LC)∗). Then one can iden-
tify K0(Aθ) and K1(Aθ) with Λeven(Zn) and Λodd(Zn), respectively [16, Theorem 2.2].
By Proposition 5.7, we have a group isomorphism K0(Aθ′)⊕K1(Aθ′)!K0(Aθ)⊕K1(Aθ),
which we shall think of as ψ: Λ(Zn)!Λ(Zn). Of course ψ(Λeven(Zn))=Λeven(Zn). Notice
that L∗ acts on F∗ via multiplication. Also L acts on F∗ via contraction. Let a1, ..., an

and b1, ..., bn denote the standard bases of L∗ and L, respectively. Denote (a1, ..., an)
and (b1, ..., bn) by �a and �b respectively. Denote by A the matrix of ϕ with respect to �b.
Denote by Φ the n×n matrix

1
2πi

([∇bj ,∇bk
]).

Using the Chern character which was defined in [8] and calculated for noncommutative
tori in [16], Schwarz showed that in the case of complete Morita equivalence (not assumed
here), the matrix

g =
(

S R

N M

)
:=

(
A −1+θΦA −1 −A −1θ′−θΦA −1θ′+θA t

ΦA −1 −ΦA −1θ′+A t

)
(6)

is in SO(n, n|R) and there is a linear operator V on F∗ extending ψ|Λeven(Zn) such that

V (�b,�a)V −1 = (�b,�a)g. (7)

Our equations (6) and (7) are exactly the equations (49), (50) and (53) of [36], in slightly
different form. From the equation (6) above, Schwarz deduced

θ = (Sθ′+R)(Nθ′+M)−1, (8)

which is our desired conclusion, except for the assertion that the matrix g belongs to
M2n(Z) (and hence to SO(n, n|Z)). Note that although in the definition of the Chern
character in [8] Connes required the connections to be Hermitian, all the arguments there
hold for arbitrary connections. Using Lemma 5.5, one checks that Schwarz’s argument
to get (7) and (8) still works in our situation (in which neither the connection nor the
Morita equivalence necessarily are Hermitian), except that now we can only say that V

acts on F∗ and g is in SO(n, n|C); in other words, g might not be in M2n(R) a priori. In
the complete Morita equivalence case, referring to the fact that V maps Λeven(Zn) into
itself and satisfies (7) with g∈SO(n, n|R), Schwarz concluded that g∈M2n(Z) for the
case n>2 (this is not true for n=2), so that g∈SO(n, n|Z), as desired. We have not been
able to understand this part of the argument, and so we shall follow another route: we
assert that actually V extends all of ψ and hence maps all of Λ(Zn) onto itself (not just
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Λeven(Zn)). This follows from applying Schwarz’s argument to the Morita equivalence
bimodule C∞(T,A∞

θ′ )C
∞(T, E)C∞(T,A∞

θ ) (combining even and odd degrees) of Lemma 5.6
instead of to A∞

θ′ EA∞
θ

. For the convenience of the reader, we sketch the argument here.
We recall the definition of the Chern character first. Consider the trivial Lie algebra

LC⊕C. It acts on C∞(T, A∞
θ′ ) as derivations δ by extending the action of LC on A∞

θ′ ,
with LC acting on C∞(T) trivially, and the action of the canonical unit vector of C
being the differentiation with respect to the anti-clockwise unit vector field on T. Ten-
soring τθ′ with the Lebesgue integral on C∞(T), we obtain an (LC⊕C)-invariant trace
on C∞(T, A∞

θ′ ), which we still denote by τθ′ . For a finitely generated projective right
C∞(T, A∞

θ′ )-module F ′
C∞(T,A∞

θ′ )
, the Chern character chF ′ is defined by

ch F ′ = τθ′(eΩ′/2πi) =
∞∑

j=0

1
j!

τθ′((Ω′)j)· 1
(2πi)j

∈Λeven((LC⊕C)∗) = Λ((LC)∗), (9)

where Ω′∈End(F ′
C∞(T,A∞

θ′ )
)⊗Λ2((LC⊕C)∗) is the curvature of an arbitrary connection

on F ′ (with respect to the action of LC⊕C on C∞(T, A∞
θ′ )), and we have extended τθ′

to End(F ′
C∞(T,A∞

θ′ )
) as in the paragraph before Lemma 5.4. This determines the Chern

character ch: Λ(Zn)=K0(Aθ′)⊕K1(Aθ′)=K0(C∞(T, A∞
θ′ ))!Λ((LC)∗) as a group homo-

morphism. The Chern character K0(C∞(T, A∞
θ ))!Λ((LC)∗) is defined similarly.

Now let us consider the finitely generated right C∞(T, A∞
θ )-module

F :=F ′⊗C∞(T,A∞
θ′ )E.

To get a connection of FC∞(T,A∞
θ ) from that of F ′

C∞(T,A∞
θ′ )

, let us extend ϕ to

LC⊕C−!LC⊕C

as simply being the identity map on C, and also extend ∇ to

LC⊕C−!HomC(C∞(T, E))

in such a way that the action of LC on C∞(T, E) is fibrewise the original ∇, and
the action of the canonical unit vector of C on C∞(T, E) is the differentiation with
respect to the anticlockwise unit vector field on T. Then ∇X is a connection for both
(C∞(T, E)C∞(T,A∞

θ ), δX) and (C∞(T,A∞
θ′ )C

∞(T, E), δϕ(X)) for every X∈LC⊕C, and fur-
thermore ∇ has constant curvature

πi

n∑
j,k=1

Φjkaj∧ak
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in End(C∞(T, E)C∞(T,A∞
θ ))⊗Λ2((LC⊕C)∗).

For any connection ∇′
ϕ(X) of (F ′

C∞(T,A∞
θ′ )

, δϕ(X)), one checks readily that

∇′
ϕ(X)⊗id+id⊗∇X

is a connection of (FC∞(T,A∞
θ ), δX). If we choose the connections of (FC∞(T,A∞

θ ), δ) in
this way, then the curvature Ω is calculated by

Ω = ϕ∗(Ω′)+πi

n∑
j,k=1

Φjkaj∧ak, (10)

where ϕ∗ denotes the linear isomorphism Λ((LC⊕C)∗)!Λ((LC⊕C)∗) induced by ϕ,
and we identify End(F ′

C∞(T,A∞
θ′ )

) with a subalgebra of End(FC∞(T,A∞
θ )) via identifying

T∈End(F ′
C∞(T,A∞

θ′ )
) with T⊗id. Let λ be the constant in Lemma 5.5. Since τθ′ (resp. τθ)

was extended to C∞(T, A∞
θ′ ) (resp. C∞(T, A∞

θ )) via tensoring with the Lebesgue integral
on T, the conclusion of Lemma 5.5 actually holds on

C∞(T, A∞
θ′ ) = End(C∞(T, E)C∞(T,A∞

θ )).

Thus τθ(a)=λτθ′(a) for all a∈End(F ′
C∞(T,A∞

θ′ )
). Therefore, we have

ch F = τ(eΩ/2πi) = τ
(
e(

∑n
j,k=1 Φjkaj∧ak)/2ϕ(eΩ′/2πi)

)
= λe(

∑n
j,k=1 Φjkajak)/2ϕ∗(chF ′).

(11)
Denote by μ(F ′) the equivalence class of F ′ in K0(C∞(T, A∞

θ′ ))=Λ(Zn). By Theo-
rem 4.2 of [16] (the sign there must be reversed; see [15, p. 137]), we have

ch F ′ = e−(
∑n

j,k=1 θ′
jkbjbk)/2μ(F ′). (12)

Combining equations (9), (11) and (12) together, we see that the map ψ is the restriction
of the linear operator V :=V1V2V3V4∈HomC(F∗) on Λ(Zn), where

V1f = e(
∑n

j,k=1 θjkbjbk)/2f,

V2f = λe(
∑n

j,k=1 Φjkajak)/2f,

V3f = ϕ∗(f),

V4f = e−(
∑n

j,k=1 θ′
jkbjbk)/2f,

for f∈F∗.
Each linear operator Vk is a linear canonical transformation in the sense that

Vk(�b,�a)V −1
k = (�b,�a)gk
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for some gk∈M2n(C). In fact, a simple calculation yields

g1 =
(

I θ

0 I

)
, g2 =

(
I 0
Φ I

)
, g3 =

(
A −1 0

0 A t

)
and g4 =

(
I −θ′

0 I

)
.

Set g=g1g2g3g4. Then equations (6) and (7) hold.

Notice that each gk belongs to SO(n, n|C), i.e. it satisfies equations (1) and has
determinant 1. Hence so also does g.

Since V extends the automorphism ψ of Λ(Zn), g is easily seen to be in M2n(Z) by
applying (7) to the canonical vectors 1 and aj , 1�j�n, in the Fock space F∗. Therefore,
g belongs to SO(n, n|Z).

Remark 5.8. Let us indicate briefly how the proof of Theorem 1.1 (2) leads to a new
proof of the main result of [13], namely, if θ′ and θ are in T ′

n∩T �
n and the algebras A∞

θ′

and A∞
θ are isomorphic, then the bicharacters �θ′ and �θ of Zn are isomorphic. On using

the given isomorphism A∞
θ′!A∞

θ , the vector space E=A∞
θ becomes a Morita equivalence

bimodule for A∞
θ′ and A∞

θ in a natural way. The Chern character [8] of the free module
EA∞

θ
(=A∞

θ A∞
θ

) is 1. Therefore, the constant curvature connection of Theorem 5.3 has in
fact curvature zero. It follows that we have N=0 in (6). Since g∈SO(n, n|Z), the block
entry S must belong to GL(n,Z). A simple calculation (which is trivial in the case that
also R is equal to zero) shows that the bicharacters associated with θ′ and θ=gθ′ are
isomorphic (by means of the automorphism S of Zn).
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[8] Connes, A., C∗ algèbres et géométrie différentielle. C. R. Acad. Sci. Paris Sér. A-B, 290
(1980), A599–A604.

[9] — Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math., 62 (1985),
257–360.

[10] — Noncommutative Geometry. Academic Press, San Diego, CA, 1994.
[11] Connes, A., Douglas, M.R. & Schwarz, A., Noncommutative geometry and matrix

theory: compactification on tori. J. High Energy Phys., 1998:2 (1998), Paper 3, 35 pp.
[12] Connes, A. & Moscovici, H., Cyclic cohomology, the Novikov conjecture and hyperbolic

groups. Topology, 29 (1990), 345–388.
[13] Cuntz, J., Elliott, G.A., Goodman, F.M. & Jorgensen, P. E.T., On the classi-

fication of noncommutative tori. II. C. R. Math. Rep. Acad. Sci. Canada, 7 (1985),
189–194.

[14] Davidson, K.R., C∗-Algebras by Example. Fields Institute Monographs, 6. Amer. Math.
Soc., Providence, RI, 1996.

[15] Disney, S., Elliott, G.A., Kumjian, A. & Raeburn, I., On the classification of non-
commutative tori. C. R. Math. Rep. Acad. Sci. Canada, 7 (1985), 137–141.

[16] Elliott, G.A., On the K-theory of the C∗-algebra generated by a projective representa-
tion of a torsion-free discrete abelian group, in Operator Algebras and Group Represen-
tations, Vol. I (Neptun, 1980), Monogr. Stud. Math., 17, pp. 157–184. Pitman, Boston,
MA, 1984.

[17] Elliott, G.A. & Li, H., Strong Morita equivalence of higher-dimensional noncommuta-
tive tori. II. Preprint, 2005. arXiv:math.OA/0501030.

[18] Gardner, L.T., On isomorphisms of C∗-algebras. Amer. J. Math., 87 (1965), 384–396.
[19] Hadfield, T., The noncommutative geometry of the discrete Heisenberg group. Houston

J. Math., 29 (2003), 453–481.
[20] Ji, R., Smooth dense subalgebras of reduced group C∗-algebras, Schwartz cohomology of

groups, and cyclic cohomology. J. Funct. Anal., 107 (1992), 1–33.
[21] Jolissaint, P., Rapidly decreasing functions in reduced C∗-algebras of groups. Trans.

Amer. Math. Soc., 317 (1990), 167–196.
[22] Kissin, E. & Shul′man, V. S., Dense Q-subalgebras of Banach and C∗-algebras and

unbounded derivations of Banach and C∗-algebras. Proc. Edinburgh Math. Soc., 36
(1993), 261–276.

[23] Konechny, A. & Schwarz, A., Introduction to M(atrix) theory and noncommutative
geometry. Phys. Rep., 360 (2002), 353–465.

[24] Li, H., Strong Morita equivalence of higher-dimensional noncommutative tori. J. Reine
Angew. Math., 576 (2004), 167–180.

[25] Lin, Q., Cut-down method in the inductive limit decomposition of non-commutative tori.
III. A complete answer in 3-dimension. Comm. Math. Phys., 179 (1996), 555–575.

[26] Loday, J.-L., Cyclic Homology. Grundlehren der Mathematischen Wissenschaften, 301.
Springer, Berlin–Heidelberg, 1998.

[27] Longo, R., Automatic relative boundedness of derivations in C∗-algebras. J. Funct. Anal.,
34 (1979), 21–28.

[28] Nest, R., Cyclic cohomology of noncommutative tori. Canad. J. Math., 40 (1988), 1046–
1057.

[29] Phillips, N.C., Every simple higher dimensional noncommutative torus is an AT algebra.
Preprint, 2006. arXiv:math.OA/0609783.

[30] Pimsner, M. & Voiculescu, D., Imbedding the irrational rotation C∗-algebra into an
AF-algebra. J. Operator Theory, 4 (1980), 201–210.



morita equivalence of smooth noncommutative tori 27

[31] Rieffel, M.A., Induced representations of C∗-algebras. Adv. Math., 13 (1974), 176–257.
[32] — C∗-algebras associated with irrational rotations. Pacific J. Math., 93 (1981), 415–429.
[33] — Morita equivalence for operator algebras, in Operator Algebras and Applications, Part I

(Kingston, Ont., 1980), Proc. Sympos. Pure Math., 38, pp. 285–298. Amer. Math. Soc.,
Providence, RI, 1982.

[34] — Noncommutative tori—a case study of noncommutative differentiable manifolds, in
Geometric and Topological Invariants of Elliptic Operators (Brunswick, ME, 1988),
Contemp. Math., 105, pp. 191–211. Amer. Math. Soc., Providence, RI, 1990.

[35] Rieffel, M.A. & Schwarz, A., Morita equivalence of multidimensional noncommutative
tori. Internat. J. Math., 10 (1999), 289–299.

[36] Schwarz, A., Morita equivalence and duality. Nuclear Phys. B, 534 (1998), 720–738.
[37] Schweitzer, L. B., A short proof that Mn(A) is local if A is local and Fréchet. Internat.
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