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Multi-dimensional integral limit theorems
By BeneT von BAHR

1. Introduction

Let X=(X,, ..., X) be a random vector (r.v.) in the k-dimensional Euclidean
space R, k>1, with zero mean and non-singular covariance matrix M. Further,
let XU, ..., X be a sequence of independent r.v.’s in R, with the same distributions
as X. Then the normed sum Y,=n"%>), is approximately normally distributed
with zero mean and covariance matrix M. Bergstrém [3] has shown that if F,(z),
2 € Ry, is the df. of Y, and ®(2) is the corresponding normal d f. then, if the mo-
ments of the third order are finite:

| Fo(2) = @) | <O nt (1)

where C is a constant only depending on the moments of X. Esseen [8] has studied
F(A)=[,dF,(x), where A is a closed sphere in R, with its center in the origin:
A={z:|z|<a} (|z|=(a? +... +x,2)?) in the case M =E, (identity matrix of order
k x k). His result is that, if the moments of the fourth order are finite, then,

| Fo(4) —®(4)| < C n/t+D
Under the same condition, R. R. Rao [7] has announced without proof the result
| Fo(B) — @(B)| <O n~"*(log n)#

where §=(k—1)/2(k+1), valid uniformly for all convex Borel sets B< R, and also
the expansion of F,(B) in powers of »~1/2 given in Theorem 4, but with the remain-
der term O(n—-22(log n)¥*-1/2),

If the d.f. of X either has an absolutely continuous component or is of lattice
type, it is possible to prove local limit theorems, that is, limit theorems for the den-
sity function of the absolutely continuous component of F,(x) or for probabilities
corresponding to the lattice points of F,(z). By integrating (summing) the remainder
terms in theorems of this type, A. Bikjalis [4, 5] has obtained integral limit theorems
for arbitrary Borel sets and for arbitrary subsets of the lattice set of F,(x) respec-
tively.

In the present paper, I shall prove two generalizations of (1) (Theorems 1 and 2)
by a method which is entirely different from the one used by Bergstrom, who con-
siders an expansion of (F,(z) —®(x)) * ®(x/e) (convolution), together with an esti-
mation of Weierstrass’s singular integral. Theorems 3 and 4 give, as mentioned
above, estimates of #,(B) for arbitrary Borel sets and for convex Borel sets respec-
tively, when the moments of order r, 2<r<3, or of order s, s >3, are finite.
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B. VON BAHR, Multi-dimensional integral limit theorems

2. Convergence of characteristic functions

The basic fact, upon which all my estimations are based, is the convergence of
the characteristic function (ch.f.) of ¥, towards that of ®(x).
If F(x), x€ R, and f(t), t€ R, are the d.f. and ch.f. of X, that is

f(t)=f " dF (z), (¢, x)=§t,~w}
R ji=1

then f,(¢) =f"(t/ l/;z) is the ch.f. of ¥,. Denoting the rth absolute moment of X by
B:.=FE |X|'=E(X}+...+ X3)"2, we state the following lemma.

Lemma 1. (a) If B, < oo for some r, 2<r<3, then
Ifn () — e ¥ Mt)l <0- n—(r42>/2|t|,e_“m,
for all ¢ with |t| <KVn.

(b) If B < oo for some integer s> 3, then

<C-d(n, tyn C 2|

Fult) (1 = n*”/?P,u't)) eh Mo
v=1

for all ¢ with [t| < KVn.

By K, x and C we denote here and in what follows unspecified positive constants
only depending on k, s and the moments of X. d(n,t) is bounded by one for alln and ¢,
and lim,_, ., d(n,t)=lim,,, d(n,t)=0. P,(it) are polynomials in ¢, the coefficients of
which are independent of n and functions of the moments of X (cf. von Bahr [1]).

We shall also need estimates for the derivatives of f,(t). We define for each k-tuple
of non-negative integers m = (m,, ..., m,) the differential operator

k o \mi k
D,.=11 (*) of order |m|= > m,.
j=1 \0%; i-1

Lemma 2. If for ssme k-tuple of non-negative integers m=(my, ..., my), the mements
E|[Ti-i Xl < oo for all 1=(1,, ..., 1) with O<l,;<m; 1 <j<k, then, for all ¢ with
|t| < KVn, the fcllowing inequalities held.

(8) If B,< o0, 2<r<3
| Dm(fn(t) _ e*(t.Mt)/2)| < On—(r-z)/2|tI(T‘ImD*e-“ltl’

(b) If Bs< oo, s integer =3

<C-d(n, tyn ¢ DR[g|CTImDTeoll?

‘Dm (fn ) - (1 + 3:2 n 2P, (@t)) e Mt)/z)

(x" =z when =0 and =0 when x<0).
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In order to prove this lemma, we use and expansion of D,,f,(t) in terms of f(¢) and
its derivatives. Putting D,,=[]!"}d,, where each d, is one of the operators 9/0t;,
we have

Doufn(t) =fut)n™1"2 '%' nf "t/ Vn)T,

y=1

where n,=n(n—1) ... (n—»+1) and

-3 ()9

the sum being taken over all possible partitions I=(I, ..., I,) of the index set
(1,2, ..., [m]) into » non-empty subsets [ 7 Now we obtain

Im]
Dol (6) = (g ) + B ()™ ™ 3 0/ V1) Ty = Dt

r=1
where h,(£) =F,(t) —g.(t). (g.(t) is defined by (2), see below.) We now use Lemma 1
for h,(t) and the usual Taylor expansions for f() and its derivatives. By integration
and comparison with Lemma 1, we see that D,g,(t) and certain parts of the Taylor
polynomials of #~"™"2 31" n, f~¥(t/Vn)T, multiplied by g,(f) are identical and thus
vanish, The rest of the expansion is easily estimated, and the lemma follows.

In the general case, it is not possible to approximate f,(f) by g.(t) for |¢|>K V.

However, if f(f) satisfies Cramér’s condition

lim |f(t)] <1 (©)

[t|—>o0

then following lemma holds.

Lemma 3. If f(f) satisfies the condition (O), and if B;< oo, s infeger >3, then
Lemma 1b and Lemma 2b hold for all t with |t|<n® 72, if e % is replaced by
exp (—a|t|?¢7D).

Proof. The condition (C) implies that there exists a constant «>0 such that
[(®)|<e ™ for |t]>K, that is |f,(t)|<e 2" for |t|>KVn. If KVn<|t|<nt-Dr2
then 2> |tf/-0 and thus |f,(t)|<e e """ Similar inequalities hold for
Dnf®), 9.8 and D,g,(f), and the lemma follows.

We shall use these three lemmas to estimate F,(4) by G,(A4), where G, (x), z€ R,
is a function of bounded variation with the Fourier Stieltjes Transform (F.S.T.)
gn(t), that is

0= [ o010,
Rk
Now, since the F.S.T. of 0G, (x)/0x; is —it;g,(t), it follows that if
s—2
gu(t) = (1 t2 n*”sz‘t)) et (@)
y=1
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B. vON BAHR, Multi-dimensional integral limit theorems

then G, () = (1 + siz n 2P, ( —D)) () (3)

v=1

where P,(— D) is the differential operator obtained from P,(it) by replacing it; by
—0/ox;.

3. Main formula

Let H(zx)= F(x) — G{(x), where F(x)is a d.f. and G(z) is of bounded variation in R,,
and take two positive integrable functions @Q(x), € R, and ¢(t), t€ B, such that g(¢)
is the Fourier Transform (F.T.) of Q(x):

o)~ f - 0Q(w) d.

We then define function H;(z) for 7 >0 by

Hp(x)= Lk Q) H(x+y/T)dy

and for every Borel set B
HT(B)=LdHT(W)=Lk Qy)H(B +y/T)dy ()

where B +y/T is the translate of B by y/T'.
H(x) is of bounded variation in R,, its F.S.T. being

hr(t) =q(—t|T) h(?)

and thus H,(z) is absolutely continuous with the “density function”

pe@)= @y * [ e ng(— /T
Ry
If the indicator function of B

VB(x)={1’ x€EB
0,z¢B

is integrable, and its F.T. is vz(f), we obtain from Parseval’s relation

1:8)= [ Va@peiardo=@n ™ | on(=0a(-y/mn0. (5)

This formula is fundamental, and will be used to estimate H(B) out of k(t), when
H(x)=H,(x)= F,(x) — G,(x) and h(t) =h,(t). First, however, we must produce a rela-
tionship between Hy(B), H(B) and T, and we shall do this in different ways when B
is a “rectangle” with the sides parallel to the coordinate planes, and when B is an
arbitrary integrable Borel set.
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4. Rectangles: preliminaries
We put Q(.’ZJ H Ql ;) q H % (t;) (6)

where Q;(x) and ¢,(t) are functions of one variable satisfying the conditions
Qy(x) =0
St <¢,(0)=1

¢,(()=0 when |[t|>1.
We may, for instance, take

Qu(z) = (2n)~1 (2f)? sin® 22
and @) =1 —{e)*
Let R be the class of bounded rectangles R< R, with the sides parallel to the coor-
dinate planes and put
o =sup |H(R)|

ReR
and d;=sup |Hy(BR)|.

ReRr
Then the following lemma holds.

Lemma 4. If | grad G(z)| < L, then
0<3d;+cL/T
where ¢ is a constant only depending on k.

Proof. For every §' <4, there is a rectangle R ={z:a;<x;<b, 1<j<Fk}, such that
|H(R)|>o. If H(R) >0, we take the rectangle R,={x:a;—a/T<x;<b;+alT,
1<§<k}, where a is an absolute constant to be determined later

From (4) we obtain

Hy(R,)= L Qy) H(B, +y/T)dy = fKJr fK,=11 +1

where K is the enbe {y:|y,|<a, 1<j<k} and K’ is its complement. If y€ K, then
R, +y/T> R, and thus F(R, +y/T)> F(R).
Further, by simple calculations

G(R,+y/T) < G(R) + 2L 2—T“ Vi

and thus H(R,+y/Ty>H(R)—cL/2T, ye€K.
We now choose a so that {¢Q(y)dy=1%, [ @Q(y)dy =} and obtain
I,>2(H(R)—cL/2T) > %(8' —cL/2T).
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B. VON BAHR, Multi-dimensional integral limit theorems

|H(R, +y/T)| <4 for all y, and thus |I,] <46/3. We now get
Or=>|Hy(Ry)|> %(6' —cL/2T)~6/3

for every &' <4, that is
8 <30, +cL|T.

If H(R) <0, we take R, = {#:a;,+a/T <z;<b;—a/T, 1 <j<k} (which may be empty)

and proceed in a similar way.

5. Rectangles: results

We are now ready to prove the following two generalizations of Bergstrom’s
result (1).

Theorem 1. If f, < oo, 2<r<3, then
|F, (z) — ®(x)| < On~ 272,

Proof. Since sup |H(z)| <sup |H(R)|, it suffices to show that § <On~—("~?/2 with

H(x)=F,(x) — D(x). We take T'=K Vn/k, and thus by Lemma 4, it remains to show
that 6, <COn~"-272 Tf R={x:a,<x,<b;}

k ett,'b,- _ eitfaj
then vr®) =] ———
=1 ¥

and thus from (5) and (6)

Hr(R)= (271)"‘f

( k e—-itjb;‘e_ —itj aj
Ri

7

0 (—t/T )) hit)dt.

We now define projection operators P;, 1<j <k, such that P,t, t€ R, is the projec-
tion of ¢ in the plane ¢{;=0. We also define for every function aft), t€ER,, P;a(t)=
a(P;£). The operators P; evidently satisfy the following relations:

P,P;a(t) =P;P,a(t)
P(a(t)b(t)) = (P,a(t)) (P;b(t))
P,c(t) =c(t) if c(t) is independent of ¢,

We now put

h(t) = ﬁ [(1—e™"P)+e " Plh(t)= > [] 1—e ' P,) AH e EPh(t)  (7)
i=1 eA

@O, A yel

where the summation is taken over all different partitions (I',A) of the index set
(1,2, ..., k). We put II;., Pst—tr (the projection of ¢ in the subspace Rr spanned by
t,, y €T). It suffices in (7) to sum over all non-empty I, for if I is empty, then ir =0
and A(tr) =0 according to Lemma 1a. We thus get

76



ARKIV FOR MATEMATIK. Bd 7 nr 6

Hy(R)=@2n)* 3’ I M (—t/T)‘“‘idt
: T A JBA ZeA —ity hi i A

e—zb ty e myty "
Xf (H ——ql(—t/T)) [T (1 —e™*¥ P)) h(tr)dtr.

EBp \yel’ —ly yel

The integral over Ry is independent of £;, A€ A, and the integral over R, is uniformly
bounded, according to the inversion formula for d.f.’s. Because ¢,(—t,/T)=0 when
[t,|>T, we get

IT Q—e*5P,)h(ir)

Hy(R)|<C Y f zel dty. 8
|Hp(R)| (EA) Ti%)] T (8)
Ityll\<[‘ yel
ye

Now, for uel’
(1— e P) h(tp) = (1 — e~ *#) h(ty) +e (1 — P,)h(tr) -

From Lemma 1a and Lemma 2 a with D,, =3/dt, we easily get

(1— e P,) htr)| < Cn~ ¢ D2t |0 for |on| <TVE
|2 "
and thus with a new C

[TT —e VP ) h(tr)| < On~ 22 ¢, |eirl,

vell

Taking the geometrical mean over all €T, finally get
ITT (1~ e %P, h(tr)| < On~ 22 [] |t [Petr"

where $>1/k. By using this estimation in (8), we immediately obtain the desired
estimate of | H,(R)|. The proof is “concluded.
Putting

H(x)=F,(x)— (1 -+ 32 n"2P,( —D)) D(x) and T = n(s_l)/z/l@,
v=1

and using Lemma 3, we obtain in the same way the following theorem.

Theorem 2. If ;< oo, s integer >3, and if f(t) satisfies the condition (C), then

< Cd(n)yn~ ¢ D2

P () - (1 LS (= D)) O(z)

where d(n) <1 and lim,_,, d(n) =

6. Borel sets: introduction

F,(B) is a positive measure, defined at least on the class B of Borel sets BC R,.
It may be natural to expect that the difference F,(B)—®(B) tends to zero for all
B€B when n —co. This, however, is not the fact, as is shown by the following example.
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B. VON BAHR, Multi-dimensional integral limit theorems

Let X be purely discontinuous and let B be the denumerable set of all points z€ R,
with F,({z}) >0, some n>1. Then ®(B) =0, but F,(B)=1 for all n>1. Nevertheless,
we shall now estimate the difference F,(B)—®(B) for arbitrary Borel sets B, but
convergence to zero will thus heavily depend on the set B.

7. Parallel sets
Let B€B and &>0. We define the exterior parallel set B, as

B.= U (B+eu)

uelU

where B -+eu is the translate of B by eu, and the union is taken over all u € U =the
open unit sphere in R,. Now B, can be written

B,= U (U +b)
beB

and thus B, is an open set.
The interior parallel set B_, is defined as

B_.= ((B’)e)’ ZuOU(B + eu)

where B’ is the complement of B. Clearly
B_.< B< B, and further
(B)e=N U (B+eutev)> N (Bteu—eu)=0B.
uel

uelU velU

In the same way (B_.).< B and thus
B_.c(B.).<B<(B.)-.<B..
From the definitions, it readily follows that for ¢>0, >0

(B)n=DBein, (B_e)-n=B-e:n-

We denote by 0B the set of boundary points of B and B by the closure of B.
Then (B), = B,and B =, B,. Itis easy toshow that (6B),= B, — B_, and §((6B),) =
&(B,)UI(B_,). For every non-empty set B< R, and every point x¢ B3, the shortest
distance d(x,B) from z to B is defined by d(x,B)=inf,z |x—b|, and there exists at
least one projection point p(x,B) €4 B such that |« —p(x,B)|=d(z,B). The following
lemma gives a characterisation of the boundary points of a parallel set.

Lemma 5. Let B< R,, ¢ >0 and p €3(B,). Then the set of points x ¢ B, with projection
point p(x, B.) = p is either empty or a line segment with p as an end point, and for every
y in the interior of this line segment, the projection point p(y, B:) =p is unique.

Proof. Suppose there is a point x¢ B, with p(z,B,)=p. Then if y=Az+(1—A)p,
0<i<l, |ly—p|=Ai|z—p|, and if p,€8(B.), p,+p and |y—p,|<i|x—p|, then
|z—p,| <|z—y|+|y—p| <|x—p|, which gives a contradiction. Thus p(y,B,)=p
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uniquely. It remains to show that, for every point x, outside the straight line through
z and p, p(x,,B,)+ p. Now, there is a point ¢ €4 B such that [p—q|=¢. If d=|z—p|,
then |x—g|=¢+d, for otherwise |z —g|=¢+d —7, some >0, that is x€B, 4 =
(Bg)a_yse» and d(x, B,)<d, which is false. Consequently z, p and ¢ lie on a straight
line. If «, lies outside thisline, p(z,, B,) = p and |z, — p| =d,, then |z, — ¢| <|z, — p| +
|p—gq|=d, ¢, that is d(,, B,) <d,, which is false. The lemma is proved.

Corollary. It follows that for every projection point pE€J(B,), the point €SB is uni-
quely determined, and the line joining p and q s a normal to the surface 8(B,), for
O(B.) lies outside both the spheres {y:|y —z|<d} and {y:|y—q|<e}.

8. Borel sets: preliminaries

We now choose the two functions Q(x) and ¢(t) in (4) as follows (see von Bahr [1]):

Q) =Qa(|])
and q2(®) =gx(]t))
where Q,(r), >0, and g,(s), >0 are two functions satisfying
Qz(r) >0

0<gy(s)<q5(0)=1
gs(8)=0 when s>1

Qo(r)=0(e¥") when r—>oo.

According to the inversion formula for F.T.’s, ¢(t) and all its derivatives are continu-
ous, and thus vanish when |t| =1.

Now, if H(x)= F(z)—G(x), € R,, where F(zx) is a d.f. and G(z) is of bounded
variation, and if Hy(x) is given by (4), we define for every Borel set B:

a(B) = sup H(B +2)

2€ERE

—b(B) = inf H(B+2z)

2€Rg

dr(B)= sup |Hy(B+2)|
2eR%

(B, £) = sup f |[dG(z + 2)].
@By,

2e R
The following lemma gives relationships between these quantities.
Lemma 6. For every BEB the following inequalities hold:
&(B) < 3b(Byr) + $dr(Byr) + (B, 2a/T) (9)
and b(B)<$a(B_qa/r) +3dr(B_qiz) + (B, 2a/T) (10)
where a is a constant only depending on k.
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Proof. We have from (4)
HT(BaIT)zf Q(?/)H(Ba/T+y/T)d.y:f +f =I,+1,
Ry lvl<a lviza

where the constant a is chosen so that

fmm Qly)dy =4, . Qy)dy =13
Now if |y|<a, then B, +y/T> B and
F(Byr+y/T)>F(B).
Further |G(Byr+y/T)— XB)| < «(B, 2a/T)
and thus 1,>%(H(B)—«(B, 2a/T))

Since H(B,r+y/T) = —b(B, 1), we get

I,> — 3b(Byr)
and finally

d2(Byr) = Hy(Byr) > § (H(B) — (B, 2a/T)) — $b(Byz)-

This relation holds even if H(B) is replaced by H(B+z), 2€R,, and (9) follows.
(10) is proved in a similar way, starting from H;(B_,,r).

We now define a sequence of Borel sets BY, v=0, +1, +2, ... in the following way:
B°=B, and for =0

B2n+1 —_ (B2n) T B2n+2 — (B2n+1)~alT
B2 = (B _p, BT P=(B¥ )y
Using (9) for B? and (10) for B>, we get
a(B*™) < }a(B™*2) + o B*", 2a/T) + $a(B***2, 20/T)
+ 3[4 dr (B> + }dp (B™?)] »=0,1,2,...
and thus by induction
2N-1 2N
a(B)<2 Na(BN)+ 3 27"a(B",20/T)+3 3 2 "dx(B").
n=0 n=

Since a(B) is uniformly bounded, we obtain, by letting N — oo,

a(B)< > 27 "a(B", 2a/T) +3 2, 2 "d(B").
n=0 n=1
In the same way we get

b(B) <7§:02—”oc(3_", 2a/T)+ 3n§:12—"dT(B—”).
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Now, from Section 7 we obtain the relations
BlcB ¥ 1lcB <R« Bire Bl Bl
and thus B’ ;)75 B_gq;p and Bs, r < By r.
Consequently, for every »
(B, 2a/T) < a(B, 3a/T)
and finally

a(B) <2x(B, 3a/T) +3 Elz-"dT(Bn) (11)
and b(B) <2«(B, 3a/T) + 3 §12‘"dT(B“"). (12)

9. Estimation of a(B, £): Borel sets

The rest of this paper is devoted to the estimation of a(B, &) and dr(B”), when
F(z)=F,(x), d.f. of the normed sum Y,, and G(z) is given by (3), s>2. In this sec-
tion we shall examine «(B, &) for a subclass B; of Borel sets B. In Theorem 4 we need
the condition

lim (B, &)=0 (13)

>0

to be able to show that F,(B)—>®(B) when n oo, The following lemma gives a
necessary and sufficient condition for (13).

Lemma 7. If G(x) is absolutely continuous and B is a bounded Borel set, then
lim, o a(B, ) =0 if and only if V(6B)= fspdx=0.

Proof: We write
o(B, £) =sup f p(x)dx
OBtz

2€Rr

where |dG(x)|=y(x)dzx. For every >0, there exists a constant M such that, if
K ={x:p(x) <M}, then

f plx)dr <.
-

Thus o(B, &) <sup yE)de +t <MV ((0B),)+n

EN@B)+2)

Since 8B is closed, lim, 4 (6 B),=0B, and thus the “if” statement follows from the
dominated convergence theorem. On the other hand, if V(6.B)>0 then there is a
2€R, such that [s;zp(x+2) dv=h>0, for otherwise we obtain a contradiction by
integrating with respect to z and using Fubini’s theorem, and thus a(B, &)=h>0
for all e.
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Actually, we are chiefly interested in Borel sets B satisfying «(B, ¢) =0(¢e), when
¢—0, and our purpose is to express a(B, &) as & times a surface integral over §(B))
and 6(B_,). I therefore make the following assumptions.

For every positive finite g and every h, 0<h<g, those parts of §(B,) and §(B_,)
which lie in the sphere pU are a finite disjoint union of subsets §,, each of which is
representable in a system of rectangular coordinates (y,, ... ¥x_;, w) by a relation
w=f(y), such that f(y) has bounded continuous derivatives of the first two orders
for every y in the interior of P,=the projection of §, in the hyperplane w =0, and
such that the set of boundary points 6P, of P, is of (k—1)-dimensional Lebesque
measure zero.

The class of sets B satisfying the above conditions and for which V(6B)=0 is
denoted B,.

Lemma 8. If BEB, and |dG(z)|<y(x)dwx, where y(x) is continuous and bounded,
then

a(B, ¢) < ¢ sup p(x)dS (14)
2eRi 0<h< e §(BrUS(B~R)

and (B, &) < C sup [S(Bh) + S(B-3)]
where dS indicates surface integral and S(B)= [55d8S.
Proof. Take ¢ >0 and put
wle, @) = f y(x)dw
eUN@B),
Let h>0,v>0, h-+v<gand 4= (0B),. Then

ph+v, 0)— plh, o) = f p(x)de.

oUn(4s,—4)

If z€pUN(A4,—A4) and p(z) is the projection point of 2 on 44, then |p(x)| <p+h,
and thus p(x)€(p +h)U N A, where according to the assumptions,

(o+h)UNSA= és

Let V,=A'N{z:px)€S,, |x—p|<h}.
N
Then oUNA,—4)= U V,,
v=1
N
and thus ulh+v, 0)— ulh, @) < 2 f p(x)de.
v=14JV,

For every point p€S,, let g(p)EP, be the projection point of p in the hyperplane
w=0 of the »th coordinate system. Now the set of points €V, with g(p(x)) €SP,
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is of k-dimensional Lebesque measure zero, because 6P, is of (k—1)-dimensional
Lebesque measure zero, and for every point ¢ €P, the set of points x with ¢(p(x)) =¢
is a line segment of length at most A. Thus, if V, is replaced by the set W, of points
x€V, with g(p(x))€EP,— dP,, then the value of the »th integral remains unchanged.
If ¢(p)€EP,—6P,, then the normal n(p) is defined, and thus for x€W,, z=p(z) -+
tn(p(x)), 0 <t <v. By changing variables from x to (p, t) in the »th integral, we obtain

f p(x)dz = f p(@ +tn(p)|J(p, 1)|dpdt
N el

where J(p, t) is the Jacobian of the transformation. Both y and J are continuous,
and since the latter is one when £ =0, we get

N

p(h+v,0) = uih, @) < 3 f W(p)dp +olv) <v f _pla)ds -+ o)

r=1

The inequality gives an upper bound of the upper right derivative of u(%, g). Since
u(+0, p) =0, we obtain by letting g oo (cf. [7], p. 155)

f(&g) p(x)dr < ¢ sup J p(x)dS.

0<h<e
S(BmUS(B—p)

Now (14) follows by changing (x) to y(x+2) and taking the supremum over all
z€ R,. The second inequality follows from (14) because y(z) is bounded.

It should be noted that all BEB; do not satisfy a(B, ¢)=0(¢). For example, if,
in R,, B is given in polar coordinates (r, ¢) by

B={(x,, z,):1 —p1<r<1—(p+n) L, ¢=1}

then a(B, &) =0(Vz), & 0.

10. Estimation of a(B, £): convex sets

We also consider the class C of convex Borel sets in R,. If BEC, then B, and B_,
are both convex, and for every >0 we can find a convex polyhedron P such that
Pc B< P, (cf. Valentine [10], p. 143) and thus «(B, &) differs arbitrarily little from
o(P, ) if y(x) is continuous. The surface integral of a convex surface exists (Busemann
[6], p. 7) and equals the limit of the surface integrals of approximating convex poly-
hedral surfaces 6P. Thus, the change in the right-hand side of (14) is arbitrarily small
if B is replaced by P and thus (14) holds for B€C. The following lemma gives a
uniform upper bound of the integral in the righthand side of (14) for BEC.

Lemma 9. If p(x) <y, (r), when |x|=r, where p, (r) is differentiable, p, (r)r* 1 —0,

when r— oo, and f l1 (r)| 7" dr = L,
0
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then for every convex set BER,
f p)dS<wy' L
o8

where w, = S(U) =27"2/T(k/2).

Proof. We put 8(r) = [spnrudS, where rU = {ru : u€ U}. Because BMrU is convex,
Sr)<SBNrU)<8(rU) = w,r** and thus

L w(x)dS<J zpl(r)dS(r)SJ.O |1 (r)| S(r)dr < e, - L.
B 0
From Lemma 8 we now obtain, if B is convex,

a(B, e) < ¢ sup {J p(x)dS + f 'q)(x)dS} < 2w, Le (15)
O<h<e 8(Bp+2) HB-n+2)
2€ Rk
and since S(B_,) < S8(B,) < 8(B.), we also get
B, )< C-e-8(B:). (16)

11. Estimation of dr(B)

In this section we shall give an immediate estimate of dy(B) for arbitrary Borel
sets B with V(B)< oo, when H(xz)=F (z)—G ().

If B, < oo, 2<r<3, we put G,(x) =D(x) and use (5) and Lemma la with T=KVn.
Observing that g(—¢/T)=0 when |t| > T' and that |v5( —t)| < [ sde = V(B), we easily
obtain

|Hy(B) | <O V(B) n-tr-»2

and this inequality evidently holds for d,(B) too:
dy(B)<C- V(B)n-t-22, (17)

If B, < oo, s integer >3 and if f(¢) satisfies the condition (C), we take G,(x) according
to (3) and obtain in the same way, using Lemma 1b and Lemma 3,

d(B) <CV(B)d(n)n—(s-2/2 (18)

where d(rn) <1 and d(n) >0 when n —»occ.

12. Estimation of dr(B) when there exists a weight polynomial

The inequalities (17) and (18) have the quality that the quantity on the right-
hand side is small when the volume of B is small. I shall use this fact in a subsequent
paper for estimating the probabilities of large deviations. For large B, however, it
would be more favourable to use inequalities of the types
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dp(B) <Cn—tr-212 (19)
if §,<oo, and
dr(B) <Cd(n)n—t-212 (20)

if f,<oo, and if f(t) satisfies the condition (C).

In Section 5 we obtained such results for BER by making full use of the explicit
form of the F.T. of the indicator function of a rectangle.

For arbitrary Borel sets B, we shall obtain (19) and (20) by imposing the additional
condition that a number of moments of higher order exist. We proceed as follows.

We say that a polynomial o(2) = (2, ..., z,) is a weight polynomial of the r.v. X, if

f dx <o
B Q(lel, cees |xk|)

and if, for every term C,[Tf-12/" of p(zy, ... , 2), the moments ET]¥.;|X,|" exist for
every k-tuple of integers I=(l,, ..., [,) w1th 0 <li<m;, 1<j<k.
If, for example, B|X | < oo where m; are positive integers satisfying

j;m,‘1< 1, then pfz,...,%)=1 +j;z}”i

is a weight polynomial of X. This is the case if g, < oo, s> k. If the components X,
of X are independent, then

k k
EfTA+X})=[1EQ+X})< o
i-1 i-1

and thus p(zy, ..., 2.} =][f-1(1 +27) is a weight polynomial of X.
Assuming that X has a weight polynomial g(z), we put B=U2 B,, where B,

is the intersection of B and the »th “octant” O, of R, 1<v<2* For every », we
define the polynomial g,(x), x€R, by the relation g,(x;, ..., %) = o(|%y]s ---» | %))
when x€0,, and put W (@) =V 3 (2)]0.(x). W5 (z)is integrable on R,c and 1ts F.T.
wp (f) is uniformly bounded (independent of B). The derivative

k P ] k
(- 4)" f -5 T xpe
oty i=1

=1

exists for every I with 0<<],<m,, and thus the derivatives

11 (=i.2) v

j=1 o

and H(—z~) e~/ )k (1)}

i-1
where h,, (t)=f,(t/Vn) — g, (t), also exist. Further
Jert@attz @) < =
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and fg, (x)|dH ()| < o0

and thus g, (¥)p,(x) is integrable in R,, its F.T. being g, (—iD){q(—t/T)h(})}.
Using Parseval’s relation, we now obtain

Hp(B) = f W, (@)@, (x) pr(2)dz = (2m) " f ws, (— 1) o, (—iD){g(—t/T)h(t)} dt.

%
If B, < o0, 2<r<3, we put G(zx) =D(x), and obtain from Lemma 2 a
|Hp(B,|<On 22 »=1,2,..., 2"
By summing over » from 1 to 2%, we get
dp(B) <2FCn-r-272 (21)

If B,< oo, s integer >3 and if f(t) satisfies the condition (C), we obtain in the same
way with G(z) =G, (z) given by (3) and using Lemma 2b and Lemma 3:

dp(B) < Cd(n)n—ts-272, (22)

13. Results

We sum up our results in the following theorems.
Theorem 3 (a) If B, < oo, 2 <r<3, then for every Borel set B< R,
| F(B) —®(B)| <2x(B, ¢/Vn) + C - n~"-22V(B,_ ) (23)
and if there exists a weight polyncmial of X,
| F.(B)—®(B)| <2a(B, ¢/Vn)+Cn-"-72,

(b) If B,< oo, s integer =3 and if f(t) satisfies the condition (C), then for every
Borel set B< R, and with G,(x) given by (3)

| F(B) —G(B)| <2a(B, 3an—-1/2) + Od(n) n—~—212V(B,,-c-vr)
and if there exists a weight polynomial of X
| F.(B) — G, (B)| <2a(B, 3an™“~72) + Cd(n)n—s-2/2
a(B, ¢) ts given by
o(B, &) =sup f |dG(z +z)]
@B),

2€Ry

where G(x)=O(x) in a and Q)= G,(x) in b, and satisfies the inequalities of Lemma
8, if BeB,.
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Proof. We startfrom (11)and (12), and put 7' = KVn in a. Because V(B)<V(BY)=
V(B,y;) with ¢=a/K, and according to (17), both sums are less than C V(B,ys)
=272 and thus

|H(B)| < max (a(B)), b(B)) < 2x(B, 3¢/Vn) + 3CV (B, m)n P2
The remaining inequalities are proved in the same way, using (21), (18) and (22)
respectively.

Specializing to convex Borel sets B and using (15) and (16), we obtain in the
same way the following theorem.

Theorem 4. Let B be a convex Borel set. Then if fr< oo, 2<r<3,

|F,(B)—®(B)| < O(n*%S(BC/V;) +p PR V(Bc”/;)) (24)

and if f,< oo, s integer >3 and f(t) satisfies the condition (O)

| Fo(B) — Go(B)| <C(n=-DR8(B,, - a-ni) +d(m) =2V ( Byy- 1))

where G, (x) is given by (3). Both S(Bcn/ﬁ) and S(Bg,- ¢-vi2) may be replaced by 1,
and furthermore, if there exists a weight polynomial of X, even V(B,) and
V(B,,~ e-v12) may be replaced by 1.

Corollary. If ;< oo, s integer >k>1, then

unsformly for all convex Borel sets B R,.

Application 1. We can use (24) to estimate the probability that Y, falls into a bounded
Borel set E contained in an affine manifold L < R* of dimension h<k. Taking B
equal to the convex hull of E, we get

S(Bc/ﬁ) — 0(,,,/—(k~h+1)/2)
and

V(BC/V;) =O(n~ P72
and thus, because ®(B) =0,

F,(B)<F,(B)=0(n %MZ)
It is easy to show by an example that this order of magnitude can actually be
attained.

Application 2. If BEB, is closed, then 8(0B)=0B and thus a(dB, &)= a(B, ¢). If
Br< o0, 2<r<3, then we obiain, because G, (8B)=0,

F,(0B)<On™ % sup [8(B,)+ 8(B-,)]

0<h<c/l/;l
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and if B is convex and X has a weight polynomial

F,(3B)<On D2,

Theorem 5. If B, < oo, r>2, and tf B is a Borel set such that V(6B)=0, then
lim,_,., F,(B)=®(B).

Proof. Let M-! be the inverse matrix of M, and put (v, M2)=3; ; M;;'x;z),
z€R,. Then E(Y,, M-1Y,)=k and because (x, M~'z) is positive definite, the set
K = {x:(x, M'x) <b%} is compact. From Chebyshev’s inequality, we get

.k
FoK') < 5.

It follows that we can make b, independently of =, so large that both F,(BNK')
and ®(BN K') are arbitrarily small. For each finite b, the set B K is bounded, and
thus by Lemma 7 and (23) applied to BN K, we obtain

lim (F (BN K)—®(BNK))—0.

The theorem follows.
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