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Multi-dimensional integral limit theorems 

By BF.~GT YON BAHR 

1. Introduction 

Let X = ( X  1 . . . . .  Xk) be a random vector (r.v.) in the k-dimensional Euclidean 
space Rk, k >  1, with zero mean and non-singular covariance matr ix  M. Further,  
let X (1) ... . .  X (n) be a sequence of independent r.v. 's in R k with the same distributions 
as X. Then the normed s u m  Yn=n-�89 is approximately  normally distributed 
with zero mean and eovarianee matr ix  M. BergstrSm [3] has shown tha t  if Fn(x), 
x E Rk, is the d.f. of Y~, and (I)(x) is the corresponding normal d.f. then, if the mo- 
ments of the third order are finite: 

IF,(x)-(D(x) I~<C n-~ (1) 

where C is a constant only depending on the moments  of X. Esseen [8] has studied 
F,~(A)=~a dF,~(x), where A is a closed sphere in Rk with its center in the origin: 
A ={x:  Ix] ~< a} (Ix[ =(x  �89 +. . .  +xk2) �89 in the case M = E  k (identity matr ix  of order 
k • k). His result is that ,  if the moments  of the fourth order are finite, then, 

[ Fn(A) - r <~ C n -k/(k+l) 

Under the same condition, R. R. Rao [7] has announced without proof the result 

[ F n ( B ) -  O(B)I ~< C n-X/2(log n)~ 

where f l = ( k - 1 ) / 2 ( k + l ) ,  valid uniformly for all convex Borel sets B c  Rk, and also 
the expansion of Fn(B) in powers of n -1/2 given in Theorem 4, but  with the remain- 
der te rm 0(n-(8-2)/~(log n)(k-1)/2). 

I f  the d.f. of X either has an absolutely continuous component or is of lattice 
type, it is possible to prove local limit theorems, tha t  is, limit theorems for the den- 
sity function of the absolutely continuous component of .Fn(x ) or for probabilities 
corresponding to the lattice points of Fn(x). By integrating (summing) the remainder 
terms in theorems of this type,  A. Bikjalis [4, 5] has obtained integral limit theorems 
for arbi trary Borel sets and for arbi trary subsets of the lattice set of Fn(x) respec- 
tively. 

In  the present paper, I shall prove two generalizations of (1) (Theorems 1 and 2) 
by  a method which is entirely different from the one used by  Bergstr6m, who con- 
siders an expansion of ( F , , ( x ) - r  (convolution), together with an esti- 
mation of Weierstrass's singular integral. Theorems 3 and 4 give, as mentioned 
above, estimates of F=(B) for arbi trary Borel sets and for convex Borel sets respec- 
tively, when the moments of order r, 2 < r  ~< 3, or of order s, s/> 3, are finite. 
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2. Convergence of characteristic functions 

The basic fact, upon which all my estimations are based, is the convergence of 
the characteristic function (ch.f.) of Yn towards that  of dP(x). 

If  F(x) ,  x E R k and fit), t E Rk are the d.f. and ch.f. of X, that  is 

l(t) = e~t'~)dF(z), (t, x ) =  ~ t jzj  
/: i = 1  

then In( t )=/n( t /gn)  is the ch.f. of Yn. Denoting the rth absolute moment of X by 
~ 2  ~ r12 f l r=E [xIr= E(X~ +... T . ~ ,  , we state the following lemma. 

Lemma 1. (a) I / f l ,  < oo /or some r, 2 < r <- 3, then 

l ib(t)-  ~-~('. M')I <- c.  n-('-~)'~ltl'e -~ l ' l '  

to, all t with I tl < / ~  ~;~- 

(b) I/ f18 < oo /or some integer s >1 3, then 

( t ) -  1+ ~ n  "12p,(it) e -ta'  <~C.d(n,t)n (s-~'"~ltlse - '"~' 
v = l  

for all t wi th  [t I ~ K ~n. 

By K, ~ and C we denote here and in what follows unspecified positive constants 
only depending on k, s and the moments of X .  d(n,t) is bounded by one for all n and t, 
and limn~o~ d(n,t)=limt_~ 0 d(n , t )=0 .  P~(it) are polynomials in it, the coefficients of 
which are independent of n and functions of the moments of X (cf. yon Bahr [1]). 

We shall also need estimates for the derivatives of/n(t). We define for each k-tuple 
of non-negative integers m = ( m  1 . . . . .  mk) the differential operator 

k 

Vm= ( Im, of order Iml= X m, 
t=1 \ ~ t ] ]  j = i  

Lemma 2 . / / / o r  s~me k-tuple o/ non-negative integers m = ( m  1 . . . . .  mk) , the m~ments  
E vrki ij=l,~jvtJ < oo /or all 1 = (11, . . . ,  l~) wi th 0 ~ lj <~ m s, 1 <~ i 4 k, then, /or all t wi th  

It] < .K~n ,  t h e / c l b w i n g  inequalit ies hcld. 

(a) I / / ~ <  c~, 2< r~<3  

I Vm( l . ( t ) -  e "'M')'~) I ~< en-('-~),~ltl('-,m,-e -~ . .  

(b) I / f18 < oo, s integer >~ 3 

8--2 

(x § = x when  x >~ 0 and = 0 when  x <<. 0). 
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In  order to prove this lemma, we use and expansion of O j~ ( t )  in terms of fit) and 
its derivatives. Putting ~'m n --t--r-tlmll,~i~',, ~ where each d~ is one of the operators O/Otj, 
we have 

Iml 

D j n ( t ) = l , ( t ) n  -I'l/~ ~ ml-~(t/~/n)T, 
V=I 

where n , = n ( n -  1) ... ( n - v +  1) and 

the sum being taken over all possible partitions I=(I~  .. . . .  I~) of the index set 
(1, 2 ... . .  t m I) into v non-empty subsets I~. Now we obtain 

Iml 
Omhn(t) = (gn(t) + hn(t))n -~ /~  ~ nJ-~( t /Vn)T,  -- O,~gn(t) 

v = l  

where h~(t)=/n(t)--gn(t). (g,(t) is defined by  (2), see below.) We now use Lemma 1 
for hn(t) and the usual Taylor expansions for ](t) and its derivatives. By integration 
and comparison with Lemma 1, we see tha t  Omg,(t) and certain parts  of the Taylor 
polynomials of n-lml/2~l,~-~n,]-~(t/~n)T~ multiplied by  gn(t) are identical and thus 
vanish. The rest of the expansion is easily estimated, and the lemma follows. 

In  the general case, it is not possible to approximate / , ( t )  by gn(t) for It I > K ~ .  
However, if /( t)  satisfies Cramdr's condition 

lim II(t) l < x (e) 
Itl-*~ 

then following lemma holds. 

Lemma 3. I /  /(t) satisfies the condition (C), and i/ fl~ < 
Lemma 1 b and Lemma 2 b  hvld /or all t with I t l < n  (~-1)/2, 
exp ( - ~lt]2/(~-])). 

oo, s integer >~ 3, then 
i/  e -~ltl~ is replaced by 

Proo/. The condition (C) implies tha t  there exists a constant ~ > 0  such tha t  

[/(t)l<e -2~ for I t l>K,  tha t  is ]/n(t)l<e -2~ for ] t l>gVn.  I f  K / n < l t l < n  (~-1,/2, 
then n > ]tl~/(~-l) and thus I]~(t)l < e - ~ e  -~itl2/(s-1). Similar inequalities hold for 
Oj~(t) ,  g~(t) and ~mg~(t), and the lemma follows. 

We shall use these three lemmas to estimate F~(A) by G~(A), where Gn(x), xERk 
is a function of bounded variation with the Fourier Stieltjes Transform (F.S.T.) 
g~(t), t ha t  is 

g~ (t) = JRi- et(t" ~)dG~ (x). 

Now, since the  F.S.T. of ~G~(x)/~xj is - i t jgn(t) ,  it follows tha t  if 

,) gn(t) = 1 + ~ n-'/2P~(it e -(t'MO/~ (2) 
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then Gn(x)= (l + i~i n-~/2P~(-D)) (~(x ) (3) 

where P v ( -  D) is the differential operator obtained from P~(it) by replacing itj by 
-~laxj. 

3. Main  f o r m u l a  

Let H(x) = F(x) - G(x), where F(x) is a d.f. and G(x) is of bounded variation in Rk, 
and take two positive integrable functions Q(x), x E R k and q(t), t E R~ such tha t  q(t) 
is the Fourier Transform (F.T.) of Q(x): 

= fRk e~(t" X)Q(x)dx" q(t) 

We then define function HT (X) for T > 0 by  

= fnk Q(y) S(x + y/T)dy Hr(x)  

and for every Borel set B 

, . ( B )  = L 

where B+y/T  is the translate of B by y/T. 
HT(X) is of bounded variation in Rk, its F.S.T. being 

h~(t) =q( - t/T) h(t) 

and thus HT(X ) is absolutely continuous with the "density function" 

= (2u) fa e ,,, X,q(_ t/T)h(t)dt. p~(x) 

I f  the indicator function of B 

1, xEB 
VB(x) = O, x~B 

is integrable, and its F.T. is vB (t), we obtain from Parseval 's  relation 

= f , ,  VB(X)pT(X)dx = (2~)-k fR, v , ( -  t)q( • t/T)h(t)dt. (5) HT(B) 

This formula is fundamental ,  and will be used to estimate H(B) out of h(t), when 
H(x) =H~(x)=  Fn(x ) -Gn(x ) and h(t)=h~(t). First, however, we must  produce a rela- 
tionship between HT(B), H(B) and T, and we shall do this in different ways when B 
is a "rectangle" with the sides parallel to the coordinate planes, and when B is an 
arbi t rary integrable Borel set. 
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4.  Rectangles :  pre l iminaries  

k k 

We put  Q(x) = YI Q1 (xj), q(t) = I~ ql (tj) 
j = l  t=1  

where Ql(X) and ql(t) are functions of one var iable  satisfying the  conditions 

Ql(x) >~ 0 

0 <~q~(t) ~ q l ( 0 )  = 1 

ql(t)=O when [ t l > l .  
W e  may ,  for instance,  t ake  

(6) 

QI(x) = (2z) -1 (2/x)~ sins x/2 

and  ql(t) = (1 - It I)+ 

Le t  ~ be the  class of bounded  rectangles  R c Rk with  the  sides parallel  to  the  coor- 
d ina te  planes  and  p u t  

= sup IH(R) t 
R e ~  

and  (~T = s u p  [H T (R)]. 
R e ~  

Then  the  following l e m m a  holds. 

L e m m a  4. I/  I grad G(x)[ < L, then 

(~ < 3 ~ r +  cL/T 

where c is a constant only depending on k. 

Proo/. For  every  ~' <~,  there  is a rectangle  R = (x :aj ~< xj ~< b~, 1 ~< ~" ~</c}, such t h a t  
IH(R)]>~'. I f  H ( R ) > 0 ,  we t ake  the  rectangle  Rl=(x:aj-a/T<--~xj<--.bj+a/T, 
1 ~< i ~< k}, where a is an  absolute  cons tant  to be de te rmined  later .  

F r o m  (4) we obta in  

HT(R1)=fR Q(Y)H(RI+y/T)dy=fK+ f K = I I + I ~  

where K is the  cube {y: lYJI ~< a, 1 ~<j~<k} and  K' is its complement .  I f  yEK, then  
R I+y/TD R, and thus  F(R 1 +y/T) >~ F(R). 

Fur ther ,  b y  simple calculat ions 

k 2a G(R 1 + y/T) <~ G(R) + 2 L ~ VIc 

and thus  H(R 1 + y/T)  >~ H(R) - eL/2T, yEK. 

We now choose a so t h a t  .~KQ(y)dy = ~, SK, Q(y)dy = �89 and obta in  

11 >~ ~ (H (R) - cL/2T) >~ ~ (~' - cL/2T). 
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I H(R, + y/T)[ <<. ~ for all y, and thus [12 [ < ~/3. We now get 

~r ~> [Hr (RI) ] >~ ~((~' - cL/2T) - ~/3 

for every 5' <~, that  is 
6 < 3(~T + cL/T. 

If H(R) <~0, we take R~ = {x:aj+a/T<~xj<~bj-a/T, 1 ~<j~<k} (which may be empty) 
and proceed in a similar way. 

5. Rectangles :  results  

We are now ready to prove the following two generalizations of BergstrSm's 
result (1). 

Theorem I. I] fir < ~ , 2 < r <~ 3, then 

IF.  (x) - r  I < C n  -(~-2)/2. 

Proo/. Since sup IH(x)l <~ sup [H(R)I, it suffices to show that  ~<~Cn -(~-2,/2 with 
H(x) =Fn(x ) -(I)(x). We take T = K ~ / ~ k ,  and thus by Lemma 4, it remains to show 
that  Jr ~< Cn-(r-2)/2. If R = {x : aj ~< xj ~< bj} 

then 
k e~qbj_ eitjaj 

V~ (t) = YI 
j=l itj 

and thus from (5) and (6) 

HT(R) = (2~)-k ~ ( ~[ e - u j % -  -uj~j ) jR~ ~j=, -it---j q~(-tj/T) h(t)dt. 

We now define projection operators Pj, 1 ~<?' ~< k, such that  Pit, t E Rk, is the projec- 
tion of t in the plane tj=O. ~re also define for every function a(t), tERk, Pja(t)= 
a(Pjt). The operators Pj evidently satisfy the following relations: 

P~Pja(t) =PjP, a(t) 

Ps(a(t)b(t) ) = (Pja(t) ) (Pjb(t) ) 

Psc(t) =c(t) if c(t) is independent of t s 

We now put 

k 

h(0 = Vi [(1 -e-~J'Pj)+e-=~J'Pj]h(t) = 5 H (i -e-=~,'P,) 1-I e-=~'P~h(t) 
t - 1  ( L  A )  ~ ' e I  ~ 2 c A  

(7) 

where the summation is taken over all different partitions (F,A) of the index set 
(1, 2, ..., k). We put II~ A PAt = t r  (the projection of t in the subspace Rr  spanned by 
tr, ~ E F). I t  suffices in (7) to sum over all non-empty F, for if F is empty, then tr = 0 
and h( t r )=0  according to Lemma 1 a. We thus get 
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Hr(R)=(2~)  -k ~ '  f ~  1~ e-ibxta-e-~aata 
(F. A) A ~ A  -- it~ ql( -- ta/T) -~d dtA 

• ql( - t r /T)  (1 - e- =t, Pr) h(tr)dtr. 
~r - itr 

The integral over Rr  is independent of t~, 2 E A, and the integral over RA is uniformly 
bounded, according to the inversion formula for d.f.'s. Because g l ( - t r / T )  =0  when 
I t~l > T, we get 

(r. A) [ I  It~l dtr. (8) 
ItTl<~ T 7e  F 
7 e F  

Now, for # E F 

(1 - e-~t'~P,)h(tr) = (1 - e -~t~) h(tr) + e-~t~(1 - P, )h( tr ) .  

From Lemma i a and Lemma 2 a with Om= ~/~t, we easily get 

I(1 - e ~t~p,)h(tr)] <~ Cn -(r 2)/~]t.]e-~rtrl~ for ]tr ]< T ~  

and thus with a new C 

7 e F  

Taking the geometrical mean over all # e F, finally get 

I 1-[ (1 - e-~'~P~)h(tr) l  < Cn -(~ 2)/~ YI It. lae -~''r'~ 

where fl >11/k. By using this estimation in (8), we immediately obtain the desired 
estimate of [Hr(R)I" The proof is ~oncluded. 

Putt ing 

H ( x ) = F ~ ( x ) -  1+  ~ n - ' / e P ~ ( - D )  r and T = n ( " - l ) / e / ~ ,  
v = l  

and using Lemma 3, we obtain in the same way the following theorem. 

Theorem 2. 1[ fls < oo, s integer >~ 3, and i / / ( t )  satis/ies the condition (C), then 

S - 2  

[ F n ( X ) - - ( l + ~ l n  " /2P~( -D) )dP(x )<~Cd(n)n  -(s-2)/2 

where d(n) <~ 1 and l i m = ~  d(n) = O. 

6 .  B o r e l  s e t s :  i n t r o d u c t i o n  

Fn(B ) is a positive measure, defined at least on the class B of Borel sets B c  Rk. 
I t  may be natural to expect that  the difference F n ( B ) -  (I)(B) tends to zero for all 
B E B when n -~ c~. This, however, is not the fact, as is shown by the following example. 
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Let X be purely discontinuous and let B be the denumerable set of all points x E Rk 
with F~({x)) >0, some n >~ 1. Then (I)(B) =0, but Fn(B) = 1 for all n ~> 1. Nevertheless, 
we shall now estimate the difference F,~(B)-(I)(B) for arbitrary Borel sets B, but 
convergence to zero will thus heavily depend on the set B. 

7. Parallel sets 

Let B E B and e > 0. We define the exterior parallel set B~ as 

Be= U (B+eu)  
~ E U  

where B + e u  is the translate of B by eu, and the union is taken over all uE U = t h e  
open unit sphere in R k. Now B~ can be written 

B~= U (~U +b) 
b e B  

and thus B~ is an open set. 
The interior parallel set B_~ is defined as 

B_~ = ((B')e)' = N (B + eu) 
~ev 

where B' is the complement of B. Clearly 

B_~c B ~  B~ and further 

(Be)_~= n u (B+eu+~v)~ fl ( B + e u - e u ) = B .  
u E U  V E U  UEU 

In  the same way (B_~)~: B and thus 

B_~c(B_~)~ B~(B~)_~=B~. 

From the definitions, it readily follows that  for e > 0, h > 0 

(Be)h = B~+h, (B-~)-h =B-(~+h)- 

We denote by ~B the set of boundary points of B and /~ by the closure of B. 
Then (/~)~ = B e and/~ = N ~>o Be. I t  is easy to show that  (~B)~ = B~ - B ~  and (~((~B)~) = 
(~(B~) U(~(B_~). For every non-empty set B =  Rk and every point x~B, the shortest 
distance d(x,B) from x to B is defined by d(x,B)=infbEB x-b],  and there exists at  
least one projection point p(x,B)E~B such that  x-p(x ,B)]= d(x,B). The following 
lemma gives a characterisation of the boundary points of a parallel set. 

Lemma 5. Let B c Rk, e > 0 and p E ~( B~). Then the set o/points x (~ B~ with pro~ection 
point p(x, BE) = p is either empty or a line segment with p as an end point, and/or every 
y in the interior o/this line segment, the pro]ection point p(y, Be) =p is unique. 

Proo/. Suppose there is a point x~B--~ with p(x,B~)=p. Then if y = 2 x + ( 1 - 2 ) p ,  
0 < ~ < l ,  y - p  =,~ x - p ,  and if plE(~(Be), p l # p  and ly-pli<~,~lx-pl,  then 
I x - p l i < i x - y  + Y-P1 <- x - p ,  which gives a contradiction. Thus p(y,B~)=p 
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uniquely.  I t  remains to  show that ,  for every point  x I outside the straight  line th rough  
x and p, p(xl,B~) ~= p. Now, there is a point  q e ~B such t h a t  [p - q l = e. I f  d = Ix - P I, 
t hen  Ix - q l = ~ + d, for otherwise Ix - q l = e + d - ~, some ~ > 0, t h a t  is x e B~+d_~/2 = 
(B~)d ,/2, and d(x, B~)<d,  which is false. Consequently x, p and q lie on a s traight  
line. I f  xx lies outside this line, P(Xl, B~) = p and lx ~ - P l = dl, then  I xl - q l < Ix1 - P [ +  
[ p - q l  = d 1 + e, t h a t  is d(xl, Be)<  dl, which is false. The lemma is proved. 

Corollary. It/ollgws that/or every projection point p E ~(B~), the poin~ q E ~B is uni- 
quely determined, and the line joining p and q is a normal to the sur/ace ~(B~),/or 
(~(B~) lies outside both the spheres {y:  [y - x I < d} and {y : lY - ql < ~}. 

8. Borel  sets: pre l iminar ies  

We now choose the two functions Q(x) and q(t) in (4) as follows (see yon  Bahr  [1]): 

Q(x) 

and q(t) =q (Itl) 

where Q2(r), r >~0, and q2(s), s >~0 are two functions satisfying 

Q2(r) ~>0 

0 < q2(s) ~< q2(0) = 1 

q2(s)=0 when s~>l 

Q2(r) = 0(e-VT) when r-+ ~ .  

According to the  inversion formula for F.T. 's ,  q(t) and  all its derivatives are continu- 
ous, and thus  vanish when I t l ~> 1. 

Now, if H(x)=F(x) -G(x) ,  x ERk, where F(x) is a d.f. and G(x) is of bounded 
variation,  and if HT(X) is given by  (4), we define for every Borel set B: 

a(B) = sup H(B + z) 
z~Rk 

-- b(B) = inf H(B + z) 
ZeRk 

dT(B)= sup IHT(B +z)I 
zfiRk 

a(B, e ) =  sup ~ IdG(x+z)l. 
ZeRk J (~B)$ 

The following lemma gives relationships between these quantities. 

Lemma 6. For every B e  B the ]ollgwing inequalities hold: 

a(B) <<. �89 -~ ~dT(Ba/T) ~- ~ (B ,  2a/T) (9) 

and  b(B) <~ �89 -b ~dT(B_a/T) "~- a(B, 2a/T) (10) 

where a is a constant only depending on k. 
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Proo/. W e  have  f rom (4) 

HT(Ba/T)= fR Q(Y)H(B~/T+y/T)dy= f,~,< + fI~,>~ =I1+12 

where the  cons tan t  a is chosen so t h a t  

f lyl<a Q(y)dy = ~, 

Now if l yl < a, t hen  Ba/T + y /T  = B and  

F u r t h e r  

and  thus  

f lyj>~a Q(y)dy = �89 

.~(Ba/T • y/T) >1 F(B). 

I G(Ba/T + y/T) - -  G(B) I < ~z(B, 2a/T) 

11 >1 ~ (H(B) - ~(B, 2 a / T ) )  

Since H(Ba/T + y/T) >~ -- b(Ba/r) , we get  

12/> - ~b(Ba/r) 
and  f ina l ly  

dT(B,/r) >~ HT(Ba/r) >1 ~ (H(B) - ~(B, 2 a / T ) )  - �89 

This re la t ion  holds even if H(B) is r ep laced  b y  H(B+z), zERk, and  (9) follows. 
(10) is p roved  in  a s imi lar  way,  s t a r t ing  f rom HT(B_a/T). 

We now define a sequence of Bore l  sets  B ' ,  v = 0 ,  _+ 1, + 2 ,  ... in the  following way:  
B ~ = B, and  for n ~> 0 

B 2 n + l  = (B2n)a/T , B 2n+2 = (B2n+l)_a/T 

B-2n-1  = (B-2n)_a/T, B -2n-2 = (B-2n 1)a/T. 

Using (9) for B 2n a n d  (10) for B 2n+1, we get  

a(B 2n) <~ �88 2"+2) + cr 2", 2a/T) + �89 2n+a, 2a/T) 

+ 3[�89 2~+1) + ldr(B2n+2)] n = 0 ,  1, 2, . . .  

and  thus  b y  induc t ion  
2 N - 1  2 N  

a(B) < 2  2 N a ( B  2N) + ~ 2 - = a ( B  n, 2a/T) + 3 ~ 2-=dT(B=). 
n =0 n •l 

Since a(B) is un i fo rmly  bounded ,  we obtain ,  b y  le t t ing  N--> ~ ,  

r162 

a(B) <~ ~. 2 - n a ( B  ~, 2a/T) + 3 ~ 2-ndT(Bn), 
n = O  n = 1  

I n  the  same w a y  we get  

b(B) < 2- o,(B 2a/T) + 3 
n = 0  n = 1  
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Now, from Section 7 we obtain the relations 

B - 1 c  B-  2n- l c B ~n ~ BO ~ B2~ = B ~  + I c B 1 

and thus BV2a/T ~ B _  3a/T and B~a/T ~ B3alT. 

Consequently, for every v 

~(1~', 2a/T) <~ ~(B, 3a/T) 

and finally 

a(B) <~ 2~(B, SalT) + 3 ~ 2-ndr(B ~) (11) 
r t = l  

r162 

and b(B) ~< 2~(B, 3a/T) + 3 ~ 2-~dr(B-~). (12) 
n - 1  

9. Estimation of  Qt(B, e): Borel sets 

The rest of this paper  is devoted to the estimation of ~(B, e) and dr(B~), when 
F(x) =Fn(x),  d.f. of the normed sum Y=, and G(x) is given by  (3), s~>2. In  this sec- 
tion we shall examine ~(B, e) for a subclass B1 of Borel sets B. In  Theorem 4 we need 
the condition 

lim ~(B, e )=  0 (13) 
8-+0 

to be able to show tha t  Fn(B)-+aP(B) when n-~oo. The following lemma gives a 
necessary and sufficient condition for (13). 

Lemma 7. I] G(x) is absolutely continuous and B is a bounded Borel set, then 
lim~_,0 ~(B, e )=  0 i /and  only i] V(dB)= S~BdX = O. 

Proo/: We write 

where ]dG(x)] = ~v(x)dx. 
K = {xw(x ) ~<M}, then 

a(B, e) = sup f (  ~(x) dx 
zcRk ~B)e+Z 

For every ~ >0,  there exists a constant M such that ,  if 

f K' ~v(x) dx < ~. 

Thus a(B, e) ~< SUpz f ~(x) dx + ~1 <~ M V((dB),) + 
KN(6B)~+z) 

Since 6B is closed, lim~_.0 (6B)~ =SB, and thus the "if" s ta tement  follows from the 
dominated convergence theorem. On the other hand, if V(5B)>0 then there is a 
zERk such tha t  S~B~v(x+z) dx=h>O, for otherwise we obtain a contradiction by 
integrating with respect to z and using Fubini 's theorem, and thus ~(B, e)>~h>0 
for all e. 
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Actually, we are chiefly interested in Borel sets B satisfying a(B, ~)= 0(~), when 
e ~0,  and our purpose is to express a(B, e) as e times a surface integral over (~(Bh) 
and ~(B_h). I therefore make the following assumptions. 

For every positive finite ~ and every h, 0<h~<e, those parts  of ~(Bh)and 5(B_h) 
which lie in the sphere ~U are a finite disjoint union of subsets S~, each of which is 
representable in a system of rectangular coordinates (Yl . . . .  Yk-1, w) by a relation 
w=/(y), such tha t  /(y) has bounded continuous derivatives of the first two orders 
for every y in the interior of P ~ - t h e  projection of S v in the hyperplane w =0,  and 
such tha t  the set of boundary points ~P~ of P~ is of (]c-1)-dimensional Lcbesque 
measure zero. 

The class of sets B satisfying the above conditions and for which V(SB)= 0 is 
denoted B1. 

Lemma 8. I/ BEB1 and IdG(x)] <~ y)(x)dx, where ~v(x) is continuous and bounded, 
then 

a(B, e) < e sup / y~(x) dS ( 14) 
ZGRk J 

0 < h ~ e  ~(Bh)U(~(B-- h) 

and ~(B, e) < C sup [S(Bh) § S(B-h)] 

where dS indicates sur/ace integral and S(B) = S~B dS. 

Proo/. Take Q > 0 and put  

t~(~, ~)= f yJ(x) dx 
Q Ufl(~B) e 

Let h > 0, v > 0, h § v ~ e and A - (~B)h. Then 

~(h + v, Q)- /~(h, ~) = f y~(x)dx. 
QUf'I(Av--A) 

I f  xE ~ U N ( A , -  A) and p(x) is the projection point of x on 5A, then Ip(x) l ~< p + h, 
and thus p(x) E (Q § h) U N ~A, where according to the assumptions, 

N 

( e+h)UN~A= • &. 
Y--1 

Let V~ = A' N(x  : p(x)ES~, I x -p I  <.h}. 

N 

Then ~ U f'l (A, - A) c [J V,, 

and thus ~(h + v, ~) -  #(h, Q) ~ ~.. ~o(x)dx. 
v = l .  r v 

For every point pES~, let q(p)EP~ be the projection point of p in the hyperplane 
w = 0  of the r th  coordinate system. Now the set of points xE Vv with q(p(x))EdP~ 
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is of k-dimensional Lebesque measure zero, because ~P~ is of (k-1)-dimensional 
Lebesque measure zero, and for every point q EP~ the set of points x with q(p(x))=q 
is a line segment of length at most h. Thus, if V~ is replaced by the set W, of points 
x E V, with q(p(x))EP~- ~P~, then the value of the vth integral remains unchanged. 
If q(p)EP~-(~P~, then the normal n(p) is defined, and thus for xE W,, x=p(x )§  
tn(p(x)), 0 <~t <~v. By changing variables from x to (p, t) in the vth integral, we obtain 

w ~(x) dx = f 
q(p) e Pv-(~Pv 

O~t~  v 

~p(p § tn(p))lJ( p, t) ldl~dt 

where J(p, t) is the Jacobian of the transformation. Both ~ and J are continuous, 
and since the latter is one when t = 0, we get 

I~(h+v'Q)-#(h'~)<~ ~ fs  F(p)dp+~ V(x)dS+~ 
v=l  v JOA 

The inequality gives an upper bound of the upper right derivative of/~(h, Q). Since 
#( +0,  ~)=0,  we obtain by letting ~ - ~  (cf. [7], p. 155) 

f(  ~p(x)dx<e sup f y~(x)dS. 
(}B)e O<h~e 

~(Bh)U(~(B- h) 

Now (14) follows by changing y~(x) to y~(x+z) and taking the supremum over all 
z E R k. The second inequality follows from (14) because ~(x) is bounded. 

I t  should be noted that  all BEB1 do not satisfy ~(B, e)=0(e). For example, if, 
in R2, B is given in polar coordinates (r, ~) by 

B=((xl ,  x~):l -fp-1 ~<r ~< 1 -(!p § -1, ~p~>l) 

then ~(B, e)=0(V~), e-~0. 

| 0 .  E s t i m a t i o n  o f  ~ ( B ,  e): c o n v e x  sets 

We also consider the class C of convex Borel sets in Rk. If BEC, then B~ and B ~  
are both convex, and for every h > 0 we can find a convex polyhedron P such that  
p c  B c p  h (cf. Valentine [10], p. 143) and thus ~(B, e) differs arbitrarily little from 
a(P, e) if ~(x) is continuous. The surface integral of a convex surface exists (Busemann 
[6], p. 7) and equals the limit of the surface integrals of approximating convex poly- 
hedral surfaces (~P. Thus, the change in the right-hand side of (14) is arbitrarily small 
if B is replaced by P and thus (14) holds for BEC. The following lemma gives a 
uniform upper bound of the integral in the righthand side of (14) for BEC. 

Lemma 9. I] ~fl(x) <~ Yh (r), when I xl = r, where ~Pl (r) is di//erentiable, ~fll (r) r k-1 --> O, 

co, and I r162 ]~fl; (r) lrk-ldr = L, w h e n  r 
. I o  
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then/or every convex set B E R k 

where eok = S(U) = 2~/2/[~(]c/2). 

fOB ~p(x)dS <~ eok" L 

Proof. We put  S(r) = SoBnrvdS, where rU = (ru : ue U). Because B N r U  is convex, 
S(r) <~ S(B N rU) <~ S(rU) = eokr k 1 and thus 

f~ y~(x)dS ~ ~ ;  ~i(r)dS(r) <~ f :  '~P~(r)[S(r)dr<'<o~k" L. 

From Lemma 8 we now obtain,  if B is convex, 

O<h<.e [Jd(Bh+z) 
zeBk 

and since S(B-a) < S(Ba) <~ S(B~), we also get  

a(B, e) <~ C. e" S(B~). (16) 

11. Es t ima t ion  o f  dT(B) 

I n  this section we shall give an  immediate  estimate of dy(B ) for a rb i t rary  Borel 
sets B with V(B)< ~ ,  when H(x)= F~(x)-G~(x). 

I f  fir < ~ ,  2 < r  ~< 3, we pu t  G~(x)= O(x) and use (5) and Lemma 1 a with T = K~nn. 
Observing tha t  q( -  t/T)= 0 when I tl > T and tha t  ]vB(-t)l<~ f Bdx = V(B), we easily 
obtain 

IHT(B) I < C" V(B)" n-(r-2)/2 

and this inequali ty evident ly  holds for dT(B) too: 

dr(B) <~ C" V(B)n -(r-2)/2. (17) 

If  fl~ < co, s integer >~3 and if/(t) satisfies the condition (C), we take Gn(x) according 
to (3) and obtain in the same way, using Lemma 1 b and Lemma 3, 

dT(B) <~CV(B)d(n)n -(s-2)/2 (18) 

where d(n)~< 1 and d(n)~0 when n - ~ .  

]2 .  Estimation of  dT(B) when there exists a weight polynomial 

The inequalities (17) and (18) have the qual i ty  t ha t  the quan t i ty  on the  right- 
hand  side is small when the volume of B is small. I shall use this fact  in a subsequent  
paper  for est imating the  probabilities of large deviations. For  large B, however, it 
would be more favourable  to use inequalities of the types  
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dr(B ) ~< Cn -(r-~)/2 (19) 
if fl~ < r and  

dr(B) <<- Cd(n) n -(~-2)/2 (20) 

if fls < 0% and i f / ( t )  satisfies the  condit ion (C). 
I n  Section 5 we obta ined  such results  for B E ~ b y  making  full use of the  explicit  

fo rm of the  F.T.  of the  indicator  funct ion of a rectangle.  
For  a rb i t r a ry  Borel sets B, we shall  ob ta in  (19) and (20) b y  imposing the  addi t ional  

condit ion t h a t  a n u m b e r  of m o m e n t s  of higher order exist. We  proceed as follows. 
We say t h a t  a po lynomia l  ~(z) =0(zl ,  ..., zk) is a weight  polynomial  of the  r .v.  X,  if 

r T k  mj and  if, for  every  t e rm ~=llj=lzj of Q(z I . . . .  , zk), the  momen t s  E1~=llXtl  l~ exist  for 
every  k-tuple of integers l = (l 1 . . . . .  lk) wi th  0 ~< lj < m i, 1 <~ j ~< b. 

If,  for example ,  E IX t I =~" < co where mj are posi t ive integers satisfying 

k k 
m i  1 < 1 ,  then  e(zl . . . . .  z k ) = l + ~ z ~  

t = 1  t = 1  

is a weight polynomial  of X. This is the  case if fl~ < oo, s > k. I f  the  components  Xr 
of X are independent ,  then  

k k 

E I-~ (I + X~) = I-I E(I + X~) < oo 
j 1 t - 1  

and thus  Q(z 1 . . . . .  zk) = 1-[~=1(1 +z~) is a weight  polynomial  of X.  
Assuming t h a t  X has a weight po lynomia l  O(z), we pu t  B =  U~[1B~, where B~ 

is the  intersect ion of B and the  vth " o c t a n t "  0~ of Rk, 1 ~<v~<2 ~. For  every  v, we 
define the  polynomia l  Q~(x), xERk b y  the  relat ion ~(x~ ..... . . . . .  Ix t) 
when xEO~, and  pu t  WB~(x)= Vs~(x)/Q~(x). Ws~(x) is integrable  on R k and  its F .T.  
ws~(t) is un i formly  bounded  ( independent  of B). The  der iva t ive  

Iffil t =1 

exists for every  1 with 0 ~< 1 t ~< mj, and  thus  the  der ivat ives  

and  
t=1  

where h, (t) =/n (t/[/n) - g~ (t), also exist. Fu r the r  

re, (x) I < (x) IdHT 
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and fe~ (x) I dHr (x) I < so 

and thus ~, (X)pT(X) is integrable in R~, its F.T. being e~ ( - i D ) { q ( -  t /T)h(t)}.  
Using t)arseval's relation, we now obtain 

HT(B:) 

I f  fir < c~, 2 < r ~ 3, we put  G(x) = (I)(x), and obtain from Lemma 2 a 

IHr(B:I<<.Cn -<r-2>+2, ~=1 ,  2 . . . . .  2 k. 

By summing over ~ from I to 2 k, we get 

dT( B ) <~ 2~Cn -( r-2)12 (21) 

If ~ < ~, s integer i> 3 and if/(t) satisfies the condition (C), we obtain in the same 
way with G(x)=G~(x) given by  (3) and using Lemma 2b and Lemma 3: 

dT(B) <~ Cd(n) n -(~-2~/~. (22) 

13. Results  

We sum up our results in the following theorems. 

Theorem 3 (a) I / f i r  < oo, 2 < r <. 3, then/or every Borel set B c Rk 

I Fn(B) - r I < 2a(B, c/Vn) + C" n -(r-2)/2 V(Bc/v~) (23) 

and i/there exists a weight pvIyncmiaI of X,  

I Fn(B) - (I)(B) I < 2~(B,  c/~n) + Cn -(r-2)/~. 

(b) I f  fls < so, s integer >~ 3 and i] /(t) satisfies the condition (C), then/or every 
Borel set B c Rk and with G~(x) given by (3) 

I Fn(B) -G~(B)]<2a(B,  3an -(s-1~/2) + Cd(n)n-(S-2)/2V(Ban-<,-1)l~) 

and i/there exists a weight polynomial of X 

I Fn(B) - Gn(B) I < 2 ~(B, 3an-<s-1>/2) + Cd(n)n -(~-~/~ 

~(B, e) is given by 

~(B, e ) = s u p  I Ida(x+z)l  
z e R k  J (<~B) e 

where G(x)= ~P(x) in a and G(x)= Gn(x ) in b, and satisfies the inequalities of Lemma 
8, i /BeB1. 
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Proo/. We start  from ( l l )  and (12), and put  T = KVn in a. Because V (B  v) <~ V (B  1) = 
V(B/v~  ) with c = a / K ,  and according to (17), both sums are less than CV(Bc/v~ ) 
n -(~-2)/2, and thus 

IH(B) l <~ max (a(B)), b(B)) <~ 2~(B, 3clan)  + 3CV(B  /v~)n-(T-2)/2. 

The remaining inequalities are proved in the same way, using (21), (18) and (22) 
respectively. 

Specializing to convex Borel sets B and using (15) and (16), we obtain in the 
same way the following theorem. 

Theorem 4. Let B be a convex Borel set. Then i/fi~ < c~, 2 < r <~ 3, 

I F .  (B) - (I)(B) I < C(n-iS(B/v~ ) + n-(~-2)/2V(Blr (24) 

and i / f l ,  < ~ ,  s integer >1 3 and/ ( t )  satis/ies the condition (C) 

IF,(B)  - G,(B) ] • C(n-(S-1)/2S(Ba, - (,-~)i2) + d(n)n -(s-2)/2 V(Ban-(,-a/2))) 

where Gn(x) is given by (3). Both S(Bc/v~ ) and S(Ban-(s-1)/e) may be replaced by 1, 
and [urthermore, i /  there exists a weight polynomial o/ X ,  even V(Bc/v~ ) and 
V(Ban-(~-1)1.2) may be replaced by 1. 

and 

and thus, because O ( B ) =  O, 

Coronary. I / f l s  < ~ ,  s integer > k > 1, then 

C 
[ F ~ ( B ) -  cI)(B)I 4 

uni/ormly /or all convex Borel sets B c R k. 

Application 1. We can use (24) to estimate the probability that Y~ /alls into a bounded 
Borel set E contained in an a/line mani/old L ~ R k o/ dimension h < k. Taking B 
equal to the convex hull o / E ,  we get 

S(Bc/~r~)  = O(n-(k- h +1)/2 ) 

V (Bc/v~ ) = O(n-(k- h)12 ) 

F.  (E) < F~ (B) = O(n- (~- h)/2 ). 

I t  is easy to show by an example tha t  this order of magnitude can actually be 
attained. 

Application 2. I /  B E B  1 is closed, then (~((~B)=OB and thus ~(OB, e )=a(B ,  e). I[  
fit < o o  2 < r ~< 3, then we obtain, because Gn (OB) = 0, 

Fn((~B) <~Cn-�89 sup [S(Bh)+ S(B-h)] 
O<h<<.c/V~ 
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and i / B  is convex and X has a weight polynomial 

F .  (OB) ~< Cn -(r-2)/2. 

Theorem 5. I /  fl~ < oo, r > 2, and i/ B is a Borel set such that V(OB)= 0, then 
limn_~ F~ (B) = (I)(B). 

Proo/. Let M -1 be the inverse matr ix  of M, and put  (x, M-lx)=Zi.~M~ixzxj, 
xER k. Then E(Yn, M-1Yn)=Ir and because (x, M-ix) is positive definite, the set  
K = (x: (x, M-ix) ~ b 2} is compact. From Chebyshev's inequality, we get 

k 
Fn(K') <~ ~ .  

I t  follows tha t  we can make b, independently of n, so large tha t  both Fn(BAK' )  
and ~P(B N K')  are arbitrari ly small. For each finite b, the set B N K is bounded, and 
thus by  Lemma 7 and (23) applied to B N K ,  we obtain 

lim ( F n ( B N K ) - r  

The theorem follows. 
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