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Remarks on potential theory!
By W. F. DoNocHUE, Jr.

Although some of the results of the present note hold for potential theories con-
structed with a variety of kernels, we are interested only in the applications to Bessel
potentials [2], Riesz potentials and the logarithmic potential. Accordingly we state
everything in the terminology of Bessel potentials on the space R", since the results
are then easily extended to other classes.

The kernel G, (x,y) is defined on R™ for all real & by G, (z,y) = G, (x ~ y), where
G (x) =[2"+*"P2 "% D()2)]|2|* ™ Kpu_gpe (|z|), the function K,(z) being
the modified Bessel function of the third kind. We remark that the kernel vanishes
identically when o is a non-positive even integer. In a neighborhood of the origin
G.(x) is equivalent to |#|* " if « < n, and equivalent to log(1/|z|) if « = n, while for
large values of |z| G.(x) is equivalent to |x|* " P e~ 1%!. The kernel diminishes
monotonically with increasing |z|, and for all real « and x =0 is an analytic function
for which (1 — A)G, = G,_,(x). Moreover, for positive « and § the composition law,
G %Gp =G, 5 is valid.

The Bessel potentials of order « > 0 form the space P of all functions which coin-
cide except for a set of 2«-capacity zero with convolutions of the form u = G *f,
where f is in L?; the integral exists, except, perhaps, for a set of the corresponding
capacity zero. The norm of % in P* equals the L2 norm of the corresponding f and P*
is a Hilbert space which also appears as the perfect functional completion of the space
of all (Bessel) potentials of order 2« of measures of finite 2« energy. In contradistine-
tion to Riesz potentials, the Bessel potentials are always L? functions, and we have
the following convenient formula for the norm in terms of the Fourier transform:

llulli=f(1+|5|2>“|«2<§)|“d§.

For 0 <2« <n the potentials coincide locally with the Riesz potentials of the same
order and have exactly the same exceptional sets; similarly, for 2 = n the potentials
are locally logarithmic potentials, and the sets of n-capacity zero are precisely those
of the usual logarithmic capacity zero. For 2« > n the potentials are continuous
functions, and only the empty set has capacity zero.

The exceptional sets for the functional space P* form the hereditary sigma-ring
0125, the sets of 2a-capacity zero. The capacity is defined as usual in potential theory,
first for compact sets, after which the inner capacity is defined for an arbitrary set 4
as the supremum of the capacities of all compacts contained in 4. The outer capacity
of 4 is taken as the infimum of the inner capacities of all open sets containing A.
A set is capacitable if the inner and outer capacities are equal, and a result of Choquet
[4] extended by Aronszajn and Smith [1] guarantees that all analytic sets are ca-
pacitable. By the 2a-capacity, denoted by y., we always understand the outer capacity.
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It is clear that this is an outer measure. We say that a property holds exc. ag, if it
holds everywhere, except, perhaps, for a set in the class ag,.

We first establish a uniqueness theorem for Bessel potentials, that is, we show that
different measures give rise to different potentials. Since the kernel decays expo-
nentially, the class of measures for which the potential is not identically infinite
contains measures which are not temperate distributions, hence the theorem cannot
be obtained from an argument using Fourier transforms of temperate distributions.
Our proof is a modification of that given by M. Riesz [7] for Riesz potentials. We
show next that when the capacity is regarded as an outer measure, the only sets
which are measurable are the sets of capacity zero and their complements. Finally,
following Carleson, we extend a theorem of Frostman’s concerning the relation of a
capacity to the corresponding Hausdorff measure.

Theorem 1. Let o be positive and p and v two positive Borel measures on R™ such
that the Bessel potentials G, u and G, v are neither identically infinite; then if those poten-
tials are equal almost everywhere (Lebesque) the measures u and v are the same.

Proof. Although we do not need it in the proof, we remark that the equality of the
potentials almost everywhere implies that they are equal everywhere, in view of the
Frostman mean value theorem [6], which holds for Bessel potentials as well as Riesz
potentials.

From the composition formula for the kernel, G,G3 = G, 5, it follows that it is
enough to prove the theorem for small values of «; in the sequel we shall take 0 < x <1.
Let ¢ be a C* function with compact support; from an easy argument with the
Fourier transforms we find that there exists a unique function 4 (y) which is C* and
vanishes rapidly at infinity such that G,b =¢@. Our theorem is then an immediate
consequence of the following computation, if the interchange of order of integration
is justified.

f¢(x)d#(x)=fGah(x)d/t(x)=f0au(y)h(y)dy=fG¢v(y)h(y)dy=

=f¢p(x)dv(x).

Thus the distributions x and » coincide and the measures are equal.

In view of the Fubini-Tonnelli theorem the change in the order of integration is
legitimate if the potential G, |%] is both u-integrable and y-integrable, and this will be
a consequence of the estimate G, |h|(z) < CG,(z) for large || and an appropriate
constant C. The remainder of our proof will consist in the setting up of such an
estimate.

Let =2 — o, from @ =G, h and the composition formula we have Ggzp = Gk,
whence kb = (1 — A)Ggp. Since, for any real §, (1 — A)Gs(x) = Gs_, (x) away from the
origin, we infer that h = G_,¢. Of course, potentials are not defined for negative values
of the index; here, however, we can either reason with the convolution of distribu-
tions, or, since we are interested in the behavior of the smooth A(y) only for large
values of |y|, we can easily justify the differentiation under the integral sign. It thus
becomes clear that for large |y|, |h(y)J is bounded by a constant multiple of G_,(y),
and this function is equivalent to |y|<* " "P2¢~1¥|. Thus setting g.(y) = |y|“ " "*
¢ '¥! we find the existence of a constant C such that for |y| > 1 both the inequalities
[h(y)| < Cy_o(y) and G.(y) < Cyg,(y) hold.
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If y is the characteristic function of the unit sphere, then
Go| B =Gy |h] = Gox (x| R]) + (3 Ga) % (1 = ) |R]) + (1 ~ ) Ga) > (1 — ) [R]).

The sum of the first two terms is obviously of the order of magnitude of &, at infinity,
while the third is bounded by C%g,%g_,; our argument is complete if we show the
existence of a constant O for which g, g_,(2) < CG,(z) for large |x|. We may write
the inequality to be shown in the form

|x_y|(a'—7l '71)’2|y](7m—n—1)z‘36 ~[|1~yl+|yl~|rl]d?/< Clxl(ar-n»l)/z
FALA

and observe that the contribution to the integral made by the integration over the
domain |y| > || surely satisfies an inequality of the required type. Since a similar
comment holds for the integration over |z —y| > ||, it is enough to consider the
integration over the domain D defined by the inequalities 1 < |y| <|z| and 1 < |2 — y]|
<|z|. This domain is symmetric relative to the origin and z, and the integrand is
larger on the half of the domain nearer the origin. Since, on that half, the inequality
|2 —y| > |=|/2 holds, the integral over D is bounded by

|x| @-n-1/2
2(7) J‘Iyl(va—n-l),/ze~l|$—yl+lyl—lrudy.

lzl>1

All that remains is to show that the integral above is bounded independently of z;
for n = 1 this is immediate, while for n > 2 we make use of the estimate

|z —y| +|y| - |z} = |y|sin?(6/2),

where § is the angle between the radius vectors to y and z. Introducing polar coordi-
nates and integrating over the surfaces on which the integrand is constant, we obtain

2 oo

2awn 1 f fr (ra=n-Di2p —7sin* 0 (p gin 6)"2r dr d b,

where w,,_, is the area of the surface of the unit sphere in R" . Since the order of
integration is immaterial, we integrate first with respect to 6 to obtain

ni% 1;2 o

fe~rs1n‘0/28inn—~20d0=2n—2fe—rtt(n—3)/2 (l_t)(n—3)/2 dt<2" J‘eurtt(n~3)l2dt=
0 0 i}
=Cr(l-n)/2

from which the finiteness of the integral follows immediately.

Theorem 2. The only sets measurable for the outer measure v, are the sets of capacity
zero and their complements.

Proof. We recall certain facts which are essentially contained ir. [2]. For any set of
finite 2a-capacity the set of all potentials » in P* for whiche#r) > 1 on A exc. 4y,
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forms a closed convex cone; the unique element u4 nearest the origin has the property
ll%all2=y24(4) and u, is in fact the 2a-potential of a measure v4, a support for which
is the closure of 4. If |»| denotes the total mass of the positive measure y, and 4 is
bounded, we have |u4] = y5.(4) and y,,(4) =inf|v| over all » of finite energy for
which G,.v(z) > 1 on 4 exc a,,. Thus we may speak of a capacitary potential and a
capacitary distribution for arbitrary sets of finite capacity, in particular for bounded
sets.

Suppose M is measurable for the 2a-capacity; then for any set S8 we must have
Vox(S) = V5u (M8) +7,,(S — MS). Take S as a sphere of radius B and let y; be the
capacitary distribution for MS, and u, that for § —~ MS. We suppose first that neither
measure is zero. Now y,,(8) = |p,| + |ua|, and w,(x) = Goupy(x) > 1 on MS, except
perhaps for a set of capacity zero, while the strictly positive u,(x) has a positive lower
bound on the compact S. Since a similar assertion holds for u, (x) = Gy, u, (), we find
that if 4 =y, + u,, there exists a positive & such that Gy, p(x) 21 + e on S, except for
a set of capacity zero, hence, in view of the Frostman mean value theorem, every-
where on S. Thus the measure (1 + )~ has total mass smaller than y,,(S) and a
potential > 1 on 8, a contradiction. It follows that either u, or u, is zero, and there-
fore that either MS or S — M S has capacity zero. Since R is arbitrary, the theorem is
proved.

For 0 < 2 < n there is associated with the capacity y,, & Hausdorff measure deter-
mined by the function A(t) =t"**if 2« <n and A(t) = — 1/log (t) when 2 ==n. For
|z] <1 the function A(|x|) is equivalent to the reciprocal of G,,(x). Frostman [6]
has proved that if a set has positive capacity the corresponding Hausdorff measure
cannot vanish, and Erdés and Gillis [5] have shown that in the logarithmic case the
Hausdorff measure must be infinite. An elegant demonstration of their result has
been given by Carleson [3], whose idea we follow here.

Theorem 3. If A has positive capacity the corresponding Hausdorff measure is
infinite.

Proof. We will suppose the Hausdorff measure finite and deduce a contradiction.
The Hausdorff measure is realized by a covering of 4 by a sequence of open sets, each
a covering of 4 by a countable family of spheres. For A we may therefore substitute
the intersection of this sequence of open sets to obtain a larger set which is (5 with
the same Hausdorff measure and possibly larger capacity. Since 4 may therefore be
supposed capacitable, there exists a non-trivial measure u of finite 2«-energy whose
compact support is contained in 4.

Let y,, () be defined on the real axis as the characteristic function of the interval
0 <t<27". The sequence of positive numbers

m,,=”x,,<|x—yl)Gh(x,y)du(x)dmy)

converges monotonically to 0, hence there exists an infinite subsequence m,, for which

> my, is finite. We set f(£) =1+ 3 x,, (#) to obtain a monotone decreasing func-
k=0 k=0

tion on the positive axis which converges to infinity as ¢ approaches 0 from the
right. Moreover f(t/2) <1 + f(t) < 2f(t). Now let K(|x —y|)=f(|z —y|)Gulz—¥)
and Ky (z) = [ K(|x — y|)du(y); from the construction we have Ku(x) u-integrable
and lower semi-continuous. ;
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For m >0 the set E,, upon which Ku(z) <m is closed, and with increasing m,
u{E,) converges to u(4), hence there exists a compact ¥ contained in 4, such that
if v is the restriction of u to F, then Kv(z) is bounded on F and »(F) =u(F) > 0.

It is easy to infer from the behavior of Gy, () near the origin that there exists a
constant (' such that Gy, (x/2) < CG,,(2), and in view of the fact that f() has a cor-
responding property it follows that K(|z —y|/2) <2CK(|z —y|). This inequality
is precisely what is required for the application of an argument of Frostman to show
that Ky(x) is bounded on the whole space. For the sake of completeness we carry out
that proof. If m is the bound for Kv on the set F and z is a point not in F, let z be
any nearest point of F to z. Now 2|z —y| > |z —y|, for yin F, whence K (|z —y})
<K(|z—y|/2) <2CK(]z —y|) holds for all yin the support of . Thus Kv(z) <2C.
Kv(z) <2Cm=M.

Let 8 = 8(x,7) be a sphere with center at  and radius r. We have M > Ky(z) >
!K(]x —y|)dv(y) =v(8) K(r), whence »(S)/M <1/K(r). If F is covered by a

family of spheres 8; = 8 (;,7:), wherer; <g < 1,thenX1/K(r,) = Zv(8,)/M > v(F)/M,
while, on the other hand, X1/K(r;) <[1/f(0)]1Z1/G,, (r ;). Since k (r) is equivalent to the
reciprocal of Gy, (r) for these small values of r, there exists a constant ¢ such that
Xkir)) = Cfe)v(F)/M,and since f(p) tends to infinity as p decreases, the Hausdorff
measure of F is infinite, and therefore also the Hausdorff measure of 4.

Using the notations and mechanics of the proof of Theorem 3, where 4 has a
positive inner capacity and S = S (x,0) we have

M= fK(Iw —ydv(y) = ff(lx = y|) Gl —y)dv(y) = f(0) sza(x —y)dv(y),

whence |Gy, (x —y)dv(y) < M/f(0), an estimate independent of z. If G (x —y) =
)

inf (Gy, (x — y), 1/p), this kernel is continuous and so also is its “potential” G2y (z).

As ¢ approaches 0, the functions Gy {x) converge monotonically to G,,v(z), and this

convergence is uniform, since Gy, ¥ () ~ GLy(z) < [ Gy, (x — y)dv(y) < M /f(g) and f (o)
S

converges to infinity. Thus G5, () is not only bounded but continuous, and since it
vanishes exponentially at infinity, it is uniformly continuous on R". Following
Carleson, we have therefore established

Theorem 4. If 4 is a set of positive inner capacity of order 2o, there exists a non-
trivial measure v of finite 2 x-energy concentrated on a compact subset of A for which the
potential Gy, v is uniformly continuous on R™.

We remark that the theorem is trivial if 2« > »; for smaller values of 2, however,
the hypothesis that the inner capacity be positive is essential, for a set of zero inner
capacity supports no mass of finite energy. Choquet [4] has shown the existence of a
wide class of non-capacitable sets for sub-additive capacities having the property that
the capacity of a point is zero; his theorem applies then to y,, when 20 <=. It is
interesting to note that this is not the case for 2« > n, as the following theorem shows.

Theorem 5. If 200> n every set is capacitable.

Proof. If a set A is not capacitable, its inner and outer capacities are different, and
there exists a sequence K, of compacts contained in 4 whose capacities converge to
the (necessarily finite) inner capacity of A. The union F of these compacts is a
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capacitable subset of 4 with capacity equal to the inner capacity of 4. Thus the
set A—F has positive outer capacity and zero inner capacity. Since a point is a com-
pact set of positive capacity when 2« > n, it follows that A equals F and therefore
that 4 is capacitable.
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