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Remarks on potential theory 

By W. F. DONOGHUE, JR. 

Although some of the results of the present note hold for potential  theories con- 
structed with a variety of kernels, we are interested only in the applications to  Bessel 
potentials [2], Riesz potentials and the logarithmic potential.  Accordingly we state 
everything in the terminology of Bessel potentials on the space R ~, since the results 
are then easily extended to  other classes. 

The kernel G~,(x,y) is defined on R" for all real a by  G~(x,y) = G~,(x- y), where 
G~(x) = [2 (=+~-z'j~ ~t n12 F(a/2)]- l ]xl  (~-n)~2 g(=_~)/2 ( Ix]) ,  the function K,(z) being 
the modified Bessel function of the third kind. We remark tha t  the kernel vanishes 
identically when a is a non-positive even integer. I n  a neighborhood of the origin 
G~(x) is equivalent to Ix ]~- = if a < n, and equivalent to log (1 / Ix  ]) if a = n, while for 
large values of Ix] G:,(x) is equivalent to ]xt(~-n-1)/~ e -I*1. The kernel diminishes 
monotonically with increasing ] x I, and for all real a and x # 0 is an analytic function 
for which (1 - A) G~ = G~_z (x). Moreover, for positive ~ and fl the composition law, 
G~-)eG,~ = G~+~ is valid. 

The Bessel potentials of order ~ > 0 form the space P~ of all functions which coin- 
cide except for a set of 2a-capaci ty zero with convolutions of the form u = G~,-)e/, 
where / is in L*; the integral exists, except, perhaps, for a set of the corresponding 
capaci ty zero. The norm of u in P~ equals the L 2 norm of the corresponding / and P" 
is a Hilbert space which also appears as the perfect functional completion of the space 
of all (Bessel) potentials of order 2:r of measures of finite 2a energy. In  contradistinc- 
t ion to Riesz potentials, the  Bessel potentials are always L 2 functions, and we have 
the following convenient formula for the norm in terms of the Fourier transform: 

For 0 < 2a < n the potentials coincide locally with the Riesz potentials of the same 
order and have exactly the same exceptional sets; similarly, for 2 a = n the potentials 
are locally logarithmic potentials, and the sets of n-capaci ty zero are precisely those 
of the usual logarithmic capacity zero. For  2 g > n the potentials are continuous 
functions, and only the empty  set has capacity zero. 

The exceptional sets for the functional space P~ form the hereditary sigma-ring 
a2~, the sets of 2a-capaci ty zero. The capaci ty is defined as usual in potential  theory,  
first for compact  sets, after which the inner capaci ty is defined for an arbi t rary  set A 
as the supremum of the capacities of all compacts contained in A. The outer capaci ty 
of A is taken as the infimum of the inner capacities of all open sets containing A. 
A set is capacitable if the inner and outer capacities are equal, and a result of Chequer 
[4] extended by  Aronszajn and Smith [1] guarantees t ha t  all analytic sets are ca- 
pacitable. By  the 2a-capacity, denoted by  7~  we always unders tand the  outer capacity.  
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I t  is clear tha t  this is an outer measure. We say tha t  a proper ty  holds exc. a2~ if it 
holds everywhere, except, perhaps, for a set in the class a2~. 

We first establish a uniqueness theorem for Bessel potentials, tha t  is, we show tha t  
different measures give rise to different potentials. Since the kernel decays expo- 
nentially, the class of measures for which the potential is not  identically infinite 
contains measures which are not  temperate distributions, hence the theorem cannot 
be obtained from an argument  using Fourier transforms of temperate  distributions. 
Our proof is a modification of t ha t  given by  M. Riesz [7] for Riesz potentials. We 
show next  tha t  when the capacity is regarded as an outer measure, the only sets 
which are measurable are the sets of capacity zero and their complements. Finally, 
following Carleson, we extend a theorem of Fros tman 's  concerning the relation of a 
capacity to the corresponding Hansdorff  measure. 

Theorem 1. Let ~ be positive and # and r two positive Borel measures on R ~ such 
that the Bessel potentials G~# and G~v are neither identically infinite; then i/those poten- 
tials are equal almost everywhere (Lebesgue) the measures # and v are the same. 

Proo/. Although we do not  need it in the proof, we remark tha t  the equali ty of the 
potentials almost everywhere implies tha t  they  are equal everywhere, in view of the 
Fros tman mean value theorem [6], which holds for Bessel potentials as well as Riesz 
potentials. 

From the composition formula for the kernel, G~G~ = G~+~, it follows tha t  it is 
enough to prove the theorem for small values of a; in the sequel we shall take 0 < ~ < 1. 
Let  r be a C ~ function with compact  support; from an easy argument  with the 
Fourier transforms we find tha t  there exists a unique function h (y) which is C ~ and 
vanishes rapidly at  infinity such tha t  G~h = of. Our theorem is then an immediate 
consequence of the following computation,  if the interchange of order of integration 
is justified. 

=fw(x)av(x). 
Thus the distributions # and v coincide and the measures are equal. 

I n  view of the Fubini-Tonnelli  theorem the change in the order of integration is 
legitimate if the potential G~ I h I is both/x-integrable and v-integrable, and this will he 
a consequence of the estimate G lhl (~)-< cG~(x) for large and an appropriate 
constant  C. The remainder of our proof will consist in the setting up of such an 
estimate. 

Let  fl = 2 -  a, from ~ = G~h and the composition formula we have Gpq = G2h, 
whence h = (1 - A)G~q. Since, for any  real fl, (1 - A)G~(x) = G~_~(x) away from the 
origin, we infer tha t  h = G ~ r  Of course, potentials are not  defined for negative values 
of the index; here, however, we can either reason with the convolution of distribu- 
tions, or, since we are interested in the behavior of the smooth h (y) only for large 
values of ] Y I, we can easily justify the differentiation under  the integral sign. I t  thus 
becomes clear tha t  for large y] ,  I h(y)[ is bounded by a constant  multiple of G~(y),  

. . . .  " ( - ~ - n - 1 ) 1 2  - l Y l  �9 __ ( ~ - n - 1 ) / 2  and this functmn is equivalent to  l Y e . Thus set tmg g~,(y) - l yl 
e- I ~ I we find the existence of a constant  C such tha t  for ] y ] ~> 1 both the inequalities 
Ih(y)l < vg_~(y) and G~(y)< Cg~(y) hold. 
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I f  Z is the  characterist ic function of the unit  sphere, then 

G ihl ]h i  = ( x l h l )  + - X ) l h [ )  + ((1 - ((1 --Z) lhl). 
The sum of the  first two te rms  is obviously of the order of magni tude  of G~ a t  infinity, 
while the  third is bounded b y  C'2g~g_~; our a rgument  is complete if we show the 
existence of a constant  C for which g~-)e g_~(x) 4 CG~(x) for large l xl .  We m a y  ~Tite 
the  inequal i ty  to be sllown in the form 

t y ) 1  
x - y  >~1 

and observe t ha t  the  contr ibut ion to the  integral made  by  the integrat ion over the 
domain  [y[ >~ Ix] surely satisfies an inequal i ty  of the  required type.  Since a similar 
comment  holds for the  integrat ion over  Ix - Y l >~ ] x I, it is enough to consider the 
integrat ion over  the  domain  D defined by  the inequalities 1 ~< [Yl ~ I x ] and 1 4 Ix - y] 
~< Ix I . This domain is symmetr ic  relat ive to the  origin and x, and the in tegrand is 

larger on the  half of the  domain  nearer  the origin. Since, on t h a t  half, the inequali ty 
Ix - y[ >t Ix I /2  holds, the integral  over  D is bounded by  

lYl~>l 

All t h a t  remains  is to show t h a t  the integral  above  is bounded independent ly  of x; 
for n = 1 this is immediate ,  while for n >~ 2 we make  use of the es t imate  

[ x -  Yl § IYl - I x l  ~> lylsin~(0/2),  

where 0 is the  angle between the  radius vectors  to y and x. In t roducing polar  coordi- 
nates  and  integrat ing over  the  surfaces on which the integrand is constant ,  we obtain 

~12 

260n_lf fr(-a-n-1)/2e-rsin'(o/2)(rsinO)n-2rdrdO, 
0 1 

where o),_ 1 is the  area of the  surface of the  uni t  sphere in R n-1  Since the order of 
integrat ion is immater ia l ,  we  in tegra te  first  w i th  respect  to 0 to obtain 

f 
o 0 o 

: C r ( 1 - n ) l  2, 

f rom which the finiteness of the  integral  follows immediate ly .  

Theorem 2. The only sets measurable ]or the outer measure ~ are the sets o~ capacity 
zero and their complements. 

Proo]. We recall certain facts  which are essentially contained ir~ [2]. For  any  set of 
finite 2~-caps the  set  of all potent ia ls  v in P~ for which,~(~) $: 1 on A e x c  a2~ 

463 



W. F. DONOGHUE, JR. ,  Remarks on potential theory 

forms a closed convex cone; the  unique e lement  uA nearest  the  origin has the  p roper ty  
II uA II ~ = 7 ~ ( A )  and uA is in fact  the  2:c-potential of a measure  vA, a suppor t  for which 
is the  closure of A. I f  v denotes the  to ta l  mass of the  pos i t ive  measure  7, and  A is 
bounded,  we have #A = 72~(A) and 72~(A) = inf v l over al l  v of f inite energy for 
which G2~v (x) ~ 1 on A exc a2~. Thus we m a y  speak of a capac i t a ry  po ten t ia l  and  a 
capac i t a ry  d is t r ibut ion  for a rb i t r a ry  sets of f inite capaci ty ,  in pa r t i cu la r  for bounded  
sets. 

Suppose M is measurabIe  for the  2a-capaci ty ;  then  for a n y  set S w e  mus t  have  
72~ (S) = 72~ (MS)  + 72~ (S - M S ) .  Take S as a sphere of radius  R and  let  ju 1 be the  
capac i ta ry  d is t r ibut ion  for M S ,  and/~2 t h a t  for S - M S .  We suppose first  t h a t  nei ther  
measure  is zero. Now 7~(S)  = I/~11 + I/~21, and  ul(x  ) = G ~ # l ( x  ) >~ 1 on M S ,  except  
perhaps  for a set of capac i ty  zero, while the  s t r ic t ly  posi t ive u~(x) has a posi t ive  lower 
bound  on the compact  S. Since a similar assert ion holds for u 2 (x) = G2~ ~u2 (x), we find 
t ha t  if # = #1 + #2, there  exists a posi t ive e such t ha t  G~ # (x) >~ 1 + e on S, except  for 
a set of capac i ty  zero, hence, in view of the  F r o s t m a n  mean  value theorem,  every- 
where on S. Thus the  measure  (1 + e ) - l#  has to ta l  mass  smaller  t h a  n 72~(S) and  a 
po ten t ia l  ~ 1 on S, a contradict ion.  I t  follows t ha t  ei ther  #~ or #2 is zero, and  there-  
fore tha t  ei ther M S  or S - M S  has capac i ty  zero. Since R is a rb i t r a ry ,  the  theorem is 
proved.  

Fo r  0 < 2 :c ~ n there  is associated wi th  the  capac i ty  72~ a Hausdorf f  measure deter-  
mined by  the  funct ion h (t) = t ~-2~ if 2 :c < n and  h (t) = - 1 / log (t) when 2 :c = n. F o r  
] xl ~<1 the function h (I x l )  is equivalent  to  the  reciprocal  of G2~ (x). F r o s t m a n  [6] 
has proved t h a t  if a set has posi t ive capac i ty  the  corresponding Hausdorf f  measure  
cannot  vanish, and  Erdhs  and  Gillis [5] have shown t h a t  in the  logar i thmic  case the  
Hausdorf f  measure  mus t  be infinite. An  elegant  demons t ra t ion  of thei r  resul t  has 
been given b y  Carleson [3], whose idea we follow here. 

Theorem 3. I /  A has positive capacity the corresponding Hausdor/ /  measure is 
in/inite. 

Proo/. We will suppose the  Hausdorf f  measure  finite and  deduce a contradict ion.  
The Hausdorf f  measure  is real ized b y  a covering of A b y  a sequence of open sets, each 
a covering of A by  a countable  fami ly  of spheres. Fo r  A we m a y  therefore  subs t i tu te  
the  intersect ion of th is  sequence of open sets to ob ta in  a larger  set which is G~ with  
the  same Hausdorf f  measure and possibly larger capaci ty .  Since A m a y  therefore be 
supposed capaci table ,  there  exists  a non- t r iv ia l  measure # of f inite 2 :c-energy whose 
compact  suppor t  is contained in A. 

Let  Z~ (l) be defined on the  real  axis as the  character is t ic  funct ion of the  in terva l  
0 ~< t 4 2 -~. The sequence of posi t ive numbers  

m. = f f z. ( ' x -Y l  ) G~.(x,y) d .  (x)d~ (Y) 

converges monotonical ly  to 0, hence there exists an infini te subsequence m~ k for which 

t ~ m , k  is finite. We set / (t) = 1 + ~ g ~  ( ) to  obta in  a monotone decreasing fune- 
k - 0  k~0 
t ion on the posi t ive axis which converges to  inf ini ty  as t approaches  0 from the  
r ight .  Moreover ] (t/2) ~< 1 + / (t) ~< 2/(t). Now let  K(I  x - y I ) :- / ( ] x - y] ) G2~ (x - y) 
and  K #  (x) = ~ K ( I x - y I ) d# (y); from the  construct ion we have K #  (x) ~u-integvable 
and lower semi-continuous.  
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For m > 0 the set E m upon which K#  (x) ~< m is closed, and with increasing m, 
#(Era) converges to ju(A), hence there exists a compact  F contained in A, such tha t  
if ~ is the restriction of/~ to F ,  then Kv(x)  is bounded on F and v(F)  = # ( F )  > 0. 

I t  is easy to infer from the behavior of G~ (x) near the origin tha t  there exists a 
constant  C such tha t  G2~(x/2 ) <~ CG2~(x), and in view of the fact t h a t / ( t )  has a cor- 
responding proper ty  it follows tha t  K ( I z - y ] / 2 )  < . 2 C K ( [ z - y ] ) .  This inequality 
is precisely what  is required for the application of an argument  of Fros tman  to show 
tha t  Kv (x) is bounded on the whole space. For  the  sake of completeness we carry out  
tha t  proof. I f  m is the bound for Kv  on the set F and x is a point  not  in F ,  let z be 
any  nearest point  of F to x. Now 21 x - Y l ~> I z - Y I, for y in F ,  whence K (I x - Y I) 
<~ K ( I z  - y I/2) ~< 2 C K ( I z  - Y I) holds for all y in the support  of ~. Thus K~ (x) ~< 2 C. 
K v  (z) <. 2 Cm = M.  

Let  S = S (x, r) be a sphere with center at  x and radius r. We have M >7 Kv (x) >~ 
] K ( I x - y ] ) d r ( y )  >~v(S)K(r),  whence v ( S ) / M  <~ 1/K(r) .  I f  F is covered by  a 
S 

family of spheres S~ = S (xt, ri), where r~ ~ ~ ~ 1, then F, 1 /K(r  i) >1 Z v (S ~)/M >~ ~ ( F ) / M ,  
while, on the other hand, Z1 /K( r , )  ~ [1//(~)]Z1/G2~ (r~). Since h (r) is equivalent to  the 
reciprocal of G2~ (r) for these small values of r, there exists a constant  C such tha t  
Z h (r ~) >1 C / (9) v ( F ) / M ,  and since / (~) tends to infinity as ~ decreases, the Hausdorff  
measure of F is infinite, and therefore also the Hausdorff  measure of A. 

Using the notat ions and mechanics of the proof of Theorem 3, where A has a 
positive inner capaci ty and S = S(x,~)  we have 

M >~ f K([x-y])d~(y) = f /(,x-y])G2~(x-y)d~(y) >~ /(e) f G2Ax-y)d~(y), 
S S S 

whence SG2~(x - y )dv(y)  <. M / / ( e ) ,  an estimate independent  of x. If  G ~ ( x  - y) = 
S 

inf (G2~ (x - y), l/Q), this kernel is continuous and so also is its "potent ia l"  G~)u (x). 
As ~ approaches 0, the functions G(2~v (x) converge monotonical ly to  G~v (x), and this 
convergence is uniform, since G2~v (x) - G(2~v (x) <. ] G2~ (x - y) d v (y) < M / / ( e )  and/ (e)  

S 

converges to infinity. Thus G2~v (x) is not  only bounded bu t  continuous, and since it 
vanishes exponentially at  infinity, it is uniformly continuous on R n. Following 
Carleson, we have therefore established 

T h e o r e m  4. I]  A is a set o/posi t ive inner capacity o/ order 2 a, there exists a non- 
trivial measure ~, o/ finite 2 ~-energy concentrated on a compact subset o / A / o r  which the 
potential G2~v is uni/ormly continuous on R L  

We remark tha t  the theorem is trivial if 2 ~ > n; for smaller values of 2 ~, however, 
the hypothesis t ha t  the inner capaci ty  be positive is essential, for a set of zero inner 
capaci ty  supports  no mass of finite energy. Chequer [4] has shown the  existence of a 
wide class of non-capaeitable sets for sub-additive capacities having the proper ty  tha t  
the capaci ty of a point  is zero; his theorem applies then to ~2~ when 2 a < n. I t  is 
interesting to note tha t  this is not  the case for 2 ~ > n, as the  following theorem shows. 

Theorem 5. I]  2 o~ > n every set is capacitable. 

Proo/. I f  a set A is not  capacitable, its inner and outer capacities are different, and 
there exists a sequence Kn of compacts  contained in A whose capacities converge to 
the (necessarily finite) inner capaci ty of A. The union F of these compacts  is a 
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capacitable subset of A with capacity equal to the inner capacity of A. Thus the 
set A - F  has positive outer capacity and zero inner capacity. Since a point is a com- 
pact set of positive capacity when 2~ > n, it follows that  A equals F and therefore 
that A is capacitable. 
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