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1. I n t r o d u c t i o n  

This note presents several results about Dirichlet series 

](s)= ~ ane -ans (s=a+it ) ,  (1) 
r t = l  

which are loosely connected by a common idea of proof, rather than by any 
formal dependence. Section 2 contains an elementary lemma, really a reformulation 
of the well-known formula expressing the abscissa of convergence of (1) in terms 
of the coefficients and exponents of the series. After this lemma, the sections 
can be read independently. 

Section 3 treats the convergence problem for Dirichlet series: to determine the 
abscissa of convergence from properties of the function ]. A famous and difficult 
theorem of Landau and Schnee gives su//icient conditions for (1) to converge in 
a region a > a 0. A restriction has to be put on the exponents 2n as well as on 
]. Without any restriction on the exponents beyond the fundamental one 

21 < 22 < ... ; 2,~---> ~ ,  (2) 

we shall show (within the half-plane a >0)  that  the series converges precisely as 
far to the left as ](a+ it)/(~r+ it) satisfies a uniform condition of growth, and 
as a ]unction o] t is the Fourier trans]orm o] a ]unction which is summable and boun- 
ded. This theorem is superficial, and it does not lead easily to new convergence 
theorems. In  particular, the new theorem does not obviously imply the theorem 
of Landau and Schnee. But the result shows why convergence theorems are dif- 
ficult to prove: they amount to showing that  functions with given properties 
are Fourier transforms, and simple criteria on which to decide do not exist. 

In Section 4 we reconsider the ]ormula o] Perron: 

~ 'an= lim 1 fa+~'~ etXSd s 
<~ ,o--,oo ~ j , ,_ ,o ,  T " 

(3) 

The stroke on the sign of summation means, here and hereafter, that  the final 
term is to be halved if the last 2= is x. The formula holds for a > a l ,  where 
(for the rest of the paper) a 1 denotes the abscissa of convergence ac if that  is 
positive, and 0 otherwise. 
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Ordinarily (3) is proved by means of Cauchy's Theorem. The content of this 
section is that  the formula, slightly rewritten, is at  first glance an instance of 
the simplest Fourier inversion formula. The inversion formula is not very easy 
to prove from first principles, so this proof of (3) is not in the end particularly 
simple, but  it is surely time to rescue this branch of Analysis from total  and 
unnecessary dependence on the methods of complex function theory. 

That  goal is pursued a little further in Section 6, where we give a simple 
proof of this theorem of Schnee: /or a > (~c, 

lim 1 ( ~  / ( a + i t ) e  i~tdt = a ~ e  -~n" or O, ( 4 )  

depending on whether 2 = 2n, or ~ is no ~n. 
The theorem is usually given in two forms: the relation (4) holds in the region 

of un i /orm convergence first; and then in the region of convergence under a 
supplementary hypothesis on the exponents. Carlson intimates [2, p. 10] tha t  he 
knows the full result, but  his remarks there do not substantiate the fact, and 
apparent ly no proof has been published. At any rate the proof given here is 
simple, and it shows that  this convergence theorem (like Perron's Theorem and 
the convergence theorems for trigonometric series) rests finally on the Riemann- 
Lebesgue Lemma. 

Section 5 contains the main new result of the paper. Perron's Theorem sug- 
gests tha t  the discrete sum analogous to the right side of (3) 

•/(a e~k~ (5) 
§ ik) 

- - N  a + i k  

might have a limit as ;V tends to infinity. Extended formally to infinity, (5) is 
the Fourier series of a function easily written down which has limits from left 
and right at  each point, but which generally is not of bounded variation. The 
convergence of (5) does not seem to follow from known theorems about  the con- 
vergence of Fourier series. We establish convergence in the region a > ~1, under 
a mild hypothesis bearing on the exponents. 

Only the most elementary results about  Dirichlet series have been used in the 
paper, but the references [1, 3, 5] will orient the reader who, like the author, 
is a newcomer to the subject. In  particular, the theorems treated here are related 
to Landau's  treatise [3] a t  pages 828, 782, 905, and 945. 

. 

To the series (1) we associate functions 

F(x) = Y '  an ,  F o ( x )  = Y_' a n e  - ~  �9 (6) 

Each one vanishes for x<21.  Evidently (1) converges for s = a  if and only if 
F~(x) has a limit as x tends to infinity. 

These functions are related by the formulas 
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f 
X 

Fo(x) =e-X~ + a e-~'~F(u) du 

f F(x) = e~"F~(x) - a eU~ 

(7) 

which are verified by means of an integration by parts  on the right side. At 
points of discontinuity (namely the points 2n) we have to add tha t  F and F ,  
have been defined to be averages of their left-hand and right-hand limits. 

Lemma 1. For a > 0 
(a) I / F , ( x )  converges as x tends to infinity,  then e -x~ F(x)  tends to zero; 
(b) J /  F(x) = O(eX~), then F~(x) = O(x) and Fa,(x) converges/or each a' > a; and con- 

sequently 
(c) I /  ~ is the in / imum o /numbers  fl such that F(x)  = O(eZ~), then ac ~ ~ provided 

either number is positive. 
These facts are easy to derive from (7). 

3. The  convergence  problem 

In  this section it will be convenient to assume that  ~t 1 ~> 0. We have defined 
al to be the maximum of ac and 0. By Lemma 1, e-~"F(x) is summable and 
tends to zero if a > a 1. Using this fact, an integration by  parts  shows tha t  

f ~ F(x)e-~Sdx =/(s-) ( a > a l ) ,  (8) 
S 

so tha t  /(s)/s,  as a /unction o/ t, is the Fourier trans/orm o/ a /unction which is 
bounded and summable, provided a > a 1. 

I f  e-X~F(x) is bounded and summable, then it is square-summable as well, so 
tha t  

1 
d t < ~  (9) 

for a > al. Moreover it is obvious tha t  the left side of (9) decreases as a increases 
(using the assumption tha t  21 i> 0), so that  the right side is uniformly smaller 
than a constant for a > a  l + s  (each e>0 ) .  

We wish to prove tha t  these properties characterize a 1, or, precisely, 

Theorem L ~1 is the in / imum o~ positive numbers fl with these properties: the right 
side o~ (9) is finite and uni/ormly bounded/or (~ > fl; and/((~ + i t ) / (a  + it) is the Fou- 
rier trans/orm o/ a /unction which is bounded and summable, /or each a > ft. 

We only have to prove that  if /3 is a positive number having the properties 
of the theorem, then F(x) =O(e x") for each a>/~.  For then, by  Lemma 1, we have 
al<~fl, and the inequality persists for the infimum of such ft. The opposite 
inequality has already been established. 

By hypothesis, there is for each a > fl a function Go which is summable and 
bounded, and for which 
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/(a+it) f ~  ~ - G,(x)e-'Xtdx. (I0) 

The assumption tha t  the right side of (9) is uniformly bounded for a > fl implies, 
by  a theorem of Paley and Wiener [4, p. 8], tha t  G, has the special form G(x)e -~, 
where G is a single function vanishing for negative values of x. But  for a > a~ 
the representation (8) is valid as well as (10), and the unicity theorem for Fourier 
transforms imples tha t  

G(x)e-X~=F(x)e -x~ (a > a0. (II) 

Hence G =F almost everywhere and so F(x)e - ~  is bounded and summable for 
a > ft. This concludes the proof of the theorem. 

Theorem 1 might be generalized in two directions. In  the proof it was as- 
sumed tha t  (1) possesses a region of convergence. I t  should be possible to prove 
this fact, as par t  of the theorem, on the weaker hypothesis tha t  (1) is summable 
in some region. 

Secondly, the same method ought to characterize the abscissa of summabil i ty 
for various methods. 

The calculations necessary to extend Theorefia 1 are of well-known kind but 
a good deal more complicated than those involved in Theorem 1. Since they have 
not been carried out to give definite results I shall not follow this line further. 

The s ta tement  of Theorem 1 would be more elegant if the hypothesis tha t  
the right side of (9) is uniformly bounded could be dropped. I t  can certainly 
be replaced by other growth conditions, whose purpose is to establish a con- 
nection between the functions Ga for various values of a. Apparent ly the con- 
dition may  be very weak, but must  bear uni/ormly on a. So for example it is 
clear from the other hypothesis of the theorem t h a t / ( a  + it) = o (t) for each a > fl, 
but not tha t  the condition holds uniformly, which would easily be enough to 
prove the theorem. 

4. Perron's Formula 

We write formula (3) in the equivalent form 

1 f~' /(a + it) eiXtdt e-~~ li_)m ~ . 1 _ . ,  ~ - ~ -  . (12) 

Evidently (12) expresses e-X"F(x) as the inverse transform of its Fourier trans- 
form. Now for a > a 1 this function is summable and has only simple discontinuities, 
where its value has been defined to be the average of its limits from the left 
and the right. So the validity of (12) is assured by a classical theorem on the 
inversion of Fourier integrals [6, Vol. I I ,  p. 242]. 

5. The discrete sum 

Define the periodic function 

H ( x ) = 2 ~  ~ e-(X+2~)~F(x+2~n) (a>al). (13) 
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(The sum over negative indices is really finite, because F ( x ) = 0  for x<A1). H is 
defined a t  every point, has limits from left and right, and is the average of 
these limits. Moreover H is summable and has Fourier series 

H(x) ~ ~ /(a + ik) e~ ~ _~ a + i k  (a > al)" (14) 

By analogy with Perron's Theorem we should expect H to be the sum of its 
Fourier series. This is probably not true generally, but  it can be proved under 
a mild hypothesis on the exponents ~tn: 

Theorem 2. Let r~ denote the number o/~j  satis/ying 

2zk ~< 2~ < 2g(/c + 1). 

Denote by ~ the in/ imum o/positive numbers ~ such that 

(15) 

e -2"k~ log + rk < ~o. (16) 
k 

Then H is the limit o/ the symmetric partial sums o/ its Fourier series provided that 
a > a x + ~ .  

In  the ease of ordinary Dirichlet series, where 2~=log n, (16)is true for each 
fl > 0, so the conclusion holds if merely a > a r 

I t  is true a t  any  rate tha t  H is the limit of the Fejdr means of its Fourier 
series a t  every point  [6, Vol. I ,  p. 89]. 'Therefore it will suffice to establish the 
convergence of the symmetric partial  sums of the series in (14), the limit being 
necessarily H (x). 

We shall need a new estimate for the Dirichlet kernels 

N e ~x = sin (N + ~) x (17) 
DN(x) = k--N~ sin ~ x ' 

which is given in the following lemma. The proof has been made both simpler 
and more convincing by  Professor J .-P.  Kahane. 

Lemma 2. For any positive integer r, and any numbers 

a 1 = 0 <  a2< ... < ~r+l = 2 ~  (18) 

DN(x) dx < A + B log r (19) 
]=1 J ~ j  

]or N = 1, 2 . . . . .  where A and B are absolute constants. 
In  the statement of the lemma we have trivially r in place of log r, because 

each term of the sum in (19) is at  most 27e. Also log r could be replaced by  
log N, which is the order of the left side of (19) if DN is replaced by its ab- 
solute value. For Theorem 2 we require a bound independent of N. I t  is sur- 
prising tha t  even the weakest such estimate, o(r) in place of the trivial O(r), is 
enough to prove Theorem 2 for the class of ordinary Dirichlet series. 
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The graph of D~r in the interval (0,2z~) consists of N + I  arcs above the axis 
separated by N arcs below. As we count from the left or right side towards the 
center, the areas enclosed by the arcs with the axis decrease. If  the points ~j 
(2 ~< j ~< r) lie on zeros of DN, namely the points 2~rk/(2N + 1) (k = 1, 2 . . . . .  2N), 
then the sum on the left side of (19) can be estimated precisely. We shall show 
first that  the lemma is true for these special systems of ~j, and afterwards that  
other systems can give no larger value to the left side of (19). 

Each summand in (19) is the algebraic sum of the areas of a certain number 
of adjacent regions lying alternately above and below the axis. This quantity is 
at most equal to the area of the largest of these regions, except possibly for a 
term where :q < ~r < ~j+l, which is certainly less than twice the area of its largest 
region. Hence the sum in (19) is less than twice the combined area of the r 
largest regions, or 

f~ 
r/(2N+l) 

4 ]DN(x)[dx. (20) 

A simple calculation shows that  this is less than A + B log r, where A and B are 
independent of N. 

Now suppose the ~j are  required only to satisfy (18). The upper bound of the 
left side of (19) over all such systems, N being fixed, is attained for some set 
of ~j which may, however, not all he distinct. We can omit redudant points, 
renumber the rest, and possibly reduce r thereby. 

Consider such an extremal system. If  successive integrals 

f ~j I a] + 1 DN(X ) dx, DN(X ) dx (21) 

have the same sign, we can replace these terms in (19) by the single one 

f ~+l DN(x) dx, 
r 

(22) 

without any effect except to reduce further the number r. If  any integrals vanish 
they can be amalgamated in the same way. We perform this operation until 
successive integrals (21) in (19) have alternating signs. 

Then the surviving points ~j lie at  zeros of DN, aside from the end-points of 
the interval. Indeed, if some ~j were not on a zero, a slight change of position 
would increase the modulus of both integrals (21) at the same time, because 
they have opposite signs. This would violate the extremal property of the aj. 

We have shown that the left side of (19) is less than a sum of the same 
type, perhaps with a smaller value of r, in which the ~ lie on the zeros of DN 
and the end-points of the interval; and that such a sum is less than A + B log r, 
where A and B are absolute constants. So the lemma is proved. 

We proceed with the proof of Theorem 2. For simplicity consider (14) first 
at x =0,  and make the definitions 

N l(a + ik)  
s~= 5 (23) 

k~-~ ~ + i k  ' 

506 



ARKIV F6R MATEMATIK. B d  4 nr 39  

An = a  1 + a2 + ... +an. (24) 

Then F ( x ) = A ,  for 2n<x<2n+l .  We have 

Z:7~ 1 f2g f ~  oo /" )ln + 1 S ~ = ~ - j 0  H ( x ) D N ( x ) d x =  e-Z"F(x)DN(x)dx  = ~. An | e -~~ (25) 
n =1 .]2 n 

The infinite series is convergent for each N, and we have to show S~ converges 
as N tends to infinity. 

Denote the integral in the last member of (25) by Q~(n). By the second mean- 
value theorem for integrals it can be written 

f~'r$ ~N(n) =e  -~na DN(x)dx  + e-~n+l ̀~ _2n+lDN(x)dx , (26) f 

where 2~ depends on N but satisfies ,~ln<~n~.]Ln+l. Setting sn =/~n+l--~n, ~N(n) 
takes the convenient form 

{f 2,, e -~n~ ~2,+1 } ~N(n) = e -~n" DN (x) dx + DN (x) dx . (27) 
2n J 2"n 

Suppose that  a >  a 1 + a (the constants in the statement of the theorem), and 
more precisely let a =~  +/3, where ~ > a 1 and /3> ~. Then from (25) 

Su= ~ (A.e-anr)e-2"r (28)  
n=l 

The factor A,~e -2n:" tends to zero with l / n ,  because .F(x)e -x:" tends to zero. Now 
the crucial step in the proof is to show that  

K ( N )  = ~ e-2n~e 2"~ ]~N(n)] < K (29) 
nffil 

for some constant K independent of N. Suppose this has been proved. Then 
the proof is easily finished. For QN(n) has a limit as N tends to infinity, for 
each n, in consequence of the localization principle of Fourier series. Therefore 
each partial sum of (25) converges; and the remainder is uniformly as small as 
we please, by (29) and the fact that  Ane -2nr tends to zero. 

Removing the assumption that  x = O  in (14) is not difficult. I t  is necessary 
to use the fact that  for each fixed real number u, the sequence {2n-  u} behaves 
exactly like {2n} with respect to the convergence of the sum in (16). 

So we are left with the kernel of the proof. In (29) consider together the terms 
for which 2~k~<2n<2~(k+l) ;  evidently 

K ( N )  ~< ~ e -e~k~ ~ I QN (n)[ ean", (30) 
k 

where the inner sum is taken over those n such that  2n lies in the interval 
mentioned. 

I t  follows from (27) that  
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' ~N(n) [ e~n'7 < l ~ DN(x)dx l'Xn +1 D N ( X )  dx. (31) 
+ ] .]r~ 

Now form the increasing sequence of points vl, T 2 . . . .  consisting of all the points 
~t~, ~t~, and if they are missing, also the points 2nk which are larger than ~ .  
We use (31) to increase the right side of (30), and then expand once more to 

K(iV) < : e-~k~:l I~+lDN(x)dxl .J~. (32) 

where the inner sum extends over n such tha t  2~k~<Tn< vn+l~<2~(k+l) .  Now 
Lemma 2 asserts tha t  each inner sum is at  most A + B  log + (2rk+2), taking ac- 
count of the fact tha t  there may  be as many  as 2rk+ 2 points T~ between 2gk 
and 2~(k+ 1). This estimate is uniform in N, even though some of the points 
Tn depend on h r. 

By  hypothesis, K = ~ e - ~  (A + B log + (2rk + 2)) (33) 
k 

is finite, and this concludes the proof of the" theorem. 
I t  may  be amusing to illustrate Theorem 2 by applying it to the function 

Cl(s) = ( 1 - 2 1 - s ) C ( s ) =  ~ ( -  1)~+ln -s, 
r t~ l  

(34) 

the series on the right being convergent for o >  0. We have immediately for any 
real number u and o > 0 tha t  

Ci (0 + iuk) 
k=-N 0 + iuk (35) 

converges as h r tends to infinity. By studying the associated function H i t  is 
possible to obtain results about  the growth of ~1 (0 + iuk) in an elementary way. 
These results are much less precise than the corresponding known facts about  
~1(o+it),  but some of them seem to be new. 

6. The Theorem of Sehnee 

Since the theorem was fully stated in the introduction, we proceed to the 
proof. Assume first tha t  a is positive as well as larger than (re. For fixed o the 
seriss (1) converges uniformly on each finite interval - e o < t < ~ o .  Therefore in 
(4) we can replace / by  its series to obtain 

if J~ ,=~  /(a+it)emdt = ~ ane -~n~ e ~(~-~n)tdt (36) 
- c o  n ~ l m 2 0 ) "  

Let k be the first integer such that  Xk> X. I t  is elementary to verify tha t  the 
partial  sum of order k on the right side of (36)has a limit, and gives the result 
of the theorem. Hence we may neglect those terms, and prove tha t  the com- 
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plementary  sum tends to zero as o~ tends to infinity. I t  comes to the same if 
we assume at  the outset  t ha t  ,~1 > ~, and prove t h a t  J~  tends to zero. 

By evaluat ing the integral on the r ight side of (36) we find 

j ~  = ~ a~e_~n, sin m ( i ~ - i )  (37) 

Wi th  the funct ion F defined by  (6) this can be wri t ten 

j ~  = f ~  e_ , , s in  o~(x- i )  dF x 

where actual ly the integrat ion terminates at  i l  on the lower side because F(x) =0 
for x < i 1. Now integrate by parts. The product  term 

F ( x )  e -~" sin eo(x - i) ( 3 9 )  
o J ( x - i )  

vanishes for X<ll; and F(x)e -~:~ tends to zero as x tends to infinity (because 
a > al), as does also the other  factor. Hence this te rm makes no contr ibut ion to J~. 

We have therefore 

( ~  __ . .  d [  _ , , s i n c o ( x - i ) ] ,  
J~  "~(Z)d-x]e co ( z - i )  jax .  (40) 

The derivative within the integral leads to several terms, more or less of the 
same type.  Each  one contain a factor  e - ~  which combines with F(x) to  give a 
summable function.  The terms, with one exception, have denominators  of order 
x or x 2, and containing the factor  ~o as well. These terms are trivially 0(~o -1) 
as oJ tends to infinity. The exceptional term arose from differentiating sin eo(x-  i) ,  
yielding eo in the numerator :  

f ~  e ~~ cos co(x- i) dx (41) 
- - ~ F ( x )  - ( x - i )  

This quan t i ty  tends to zero by  the Riemann-Lebesguc Lemma.  
I n  the proof we had to  assume tha t  a > 0, and  we wish to remove tha t  hypo- 

thesis. I f  ac < a ~< 0, consider g(s) =/(s - a), where a + a > 0. Then the relation 

i f  1 L lim 2ww /(a+it)e~tdt = lim ~ g(a+~+it)e~tdt=O (42) 

follows from what  has been shown, and the theorem is proved.  
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