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On a theorem of Hanner
By C. H. DowkEeRr

Oror HANNER (See reference [4]) has shown that a separable metric space is
an absolute neighborhood retract (ANR) for normal spaces if and only if it is
both an ANR for separable metric spaces and an absolute G5. Using an example
given in a recent paper of R. H. Bing [1] we show (theorem 1) that if a metric
space is an ANR for normal spaces it is separable, and that hence the hypoth-
esis of separability in Hanner’s theorem can be dropped. In the same paper
Bing defined a class of spaces more restricted than normal called collectionwise
normal. We show (theorem 2) that Hanner’s theorem extends to non-separable
metric spaces if normal is replaced by collectionwise normal. Moreover (corollary
1) this form of Hanner’s theorem characterizes collectionwise normal spaces in
the same way as Tietze’s extension theorem characterizes normal spaces.

1. Given a class v of spaces, a space Y belonging to 7 is called an ANR,
[respectively AR,] if Y €7 and if every map f of a closed set 4 of a space
X of class 7 into the space Y can be extended to a map f, of an open set
U, such that AcUcX, into Y [respectively, to a map f; of X into ¥Y]. In
particular ANR,, ANR.,, ANR,, and ANR,, will mean absolute neighborhood
retract for normal, collectionwise normal, metric and separable metric spaces
respectively. If a class o of spaces is contained in 7, if Y€o and if Y is ANR,
then clearly Y is also ANR,. (The above definition of ANR is equivalent in
all cases considered below to the usual definition terms of retraction (See for
example [4], theorem 3.2) but we make no use of this equivalence.)

Theorem 1. A metric space Y is ANR, [respectively AR,) if and only if it
ts ANR,, [respectively AR,), separable and absolute G;.

Proof. Sufficiency. If Y is separable and ANR,, it is ANR,,. If it is also
absolute G5 then, by [4] theorem 4.2, it is ANR,.

Necessity. Let Y be metric and ARN,. Suppose if poss1ble that Y is not
separable. Then there exists €>0 and a non-countable subset B of Y such
that each pair of points of B have distance €. Bing ([1], page 184, example G) has
shown that there exists a normal space X with a closed subset 4 of arbitrary
non-countable cardinal number such that the subspace 4 has the discrete
topology but no collection of mutually non-intersecting neighborhoods of the
points of A exists. Choose for 4 the cardinal number of B and let f be a 1-1
map of 4 on B. Then f: A—>Y is continuous and, since ¥ is ANR,, can be
extended to a map f,:U—Y of a neighborhood U of 4. The inverse images by
fi of the (€/2)- -neighborhoods of the points of B form .a collection of non-in-
tersecting neighborhoods in X of the points of 4, which is 1mp0s51ble Therefore
Y is separable.
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Since Y is metric and ANR,, it-is ANR,. Since Y is separable metric and
ANR,, by [4], theorem 4.2, it is absolute Gs.
The proof for absolute retracts is similar and is omitted.

2. A set which is the union of a countable number of closed sets is called
an F, set and its complement is called a G5 set. If X is a normal space, a
subset U of X is an open F, set if and only if there exists a continuous
real valued function f defined on X such that f(z)>0 for z€U and f(z)=0
for xe X—U. If 4 is a closed subset of a normal space and if U is an open
set containing A there exists an open F, set V with 4cVcU. A normal
space is called perfectly normal if every open set is an F, set.

A collection {A4,} of sets of X is called locally finite in X if every point
of X has a neighborhood meeting at most a finite number of the sets A4,
Clearly any subcollection of a locally finite collection is locally finite. The
closure of the union of a locally finite collection of sets is the union of the
closures;

U, A, = U, Ae.

The union of a locally finite collection of closed sets is closed, the union of
a locally finite collection of F, sets is an F, set and the union of a locally
finite collection of open F, sets is an open F, set.

A space is called collectionwise normal [1] if for every locally finite collection
{F,} of mutually non-intersecting closed sets there is a collection {G,} of mu-
tually non-intersecting open sets with F,c @, Metric spaces are collectionwise
normal and collectionwise normal spaces are normal. The collection {G,} of open sets
may be assumed to be locally finite. For, if it is not, let E be the set of points of X
every neighborhood of which meets an infinite number of the sets G,. Then E is
closed, no point of any @, is in £ and hence E and U, F, are non-intersecting
closed sets. Since X is normal there exist open sets U and V with

EcU U, F,cV

and UV=0. Let H,=G,V. Then {H,} is a collection of mutually non-inter-
secting open sets with F,cH, Every point of X —FE has a neighborhood
meeting at most a finite number of G, and hence at most a finite number
of H, Every point of E has a neighborhood, namely U, meeting none of the
sets H,. Hence {H,} is locally finite.

A covering of a space X is a collection {U,} of open sets whose union is
X. If the collection {U,} is locally finite it is called a locally finite covering.
For each locally finite covering {U,} of a normal space there exists ([6] page
26, proposition 33.4) a covering {V,} with V,c U,; hence there is a covering
{Wa} of X by open F, sets W, with Voc W.c U,.

Lemma 1. Let A be a closed subset of a collectionwise normal space X and let

{U,} be a locally finite covering of A. Then there exists a locally fimite covering
{V.} of X such that, for each «, VoA cU,. :

Proof. Since A4 is normal there is a covering {W,} of 4 by open F, sets
such that W,<U,. Assume the indices « well ordered and let

0a=Wa(A_ Uﬂ<aWﬁ);
308



ARKIV FOR MATEMATIK. Bd 2 nr 15

then C,, being the intersection of an F, set with a closed set in an F, set. Let
0a=UrCur, I'=]., 2,...,

where Cy is closed in 4 and hence also in X. The sets C, are mutually non-
intersecting and
u,C,= U, W, =4.

Since the collection {U,} is locally finite in the closed set 4 it is locally
finite in X. Hence, since

CocCocWoel,,

{Cx} for fixed r is a locally finite collection of mutually non-intersecting closed
sets of X. Hence, since X is collectionwise normal, there exists for each r a
locally finite collection {@,} of mutually non-intersecting open sets of X such
that C, cGy. There exists an open F, set H, containing C,; and contained
in the open set ’

Gor (X — (4~ Ul)).

Let H = U, rH,; then H is open and
Ac Uy, U.C,cH.
Hence there exists an open F, set H, such that
X—~HcHycX—A.

Adding H, to an arbitrary one of the sets H, we get a family {Lu} of
open F, sets with
Ua,rLar:X,

CwcLucX—(4-U.)

and, for each r, {L,} is locally finite. L = U, L,; then L. is an open F, set
and {L.} is a covering of X. For each L. there is a continuocus real function
¢r(7), 0<¢,(x)<1, such that ¢,(z)>0 if and only if z€L,. Let F,, be the
set of points # of X for which ¢, (z)>1/n, and let

V'r = Lr (X — User Fsr)-

'II‘/henL{V,} is a locally finite covering ([3] proof of proposition (e)) of X and
L,

Let Vo=L, V, and let Vo= U, V,,. Each point z of X is in some V, and
hence, since V,c U, L, in some L, and hence in L, V.=V, . Hence z is in
some V,. Since L, and V, are open,. ¥V, is open. Thus {V,} is a covering of
X. Each point of X has a neighborhood meeting only a finite number of the sets V;
and has a smaller neighborhood meeting at most a finite number of the sets Lo, for
each such 7. Thus there is a neighborhood meeting only a finite number of
Vo and hence only a finite number of V,. Thus {V,} is a locally finite covering
of X. Since
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Vic U Ly, X—(4-T,),
therefore

Vu‘,AC Ua.

This completes the proof of the lemma.

3. A covering B={V,} is called a refinement of a covering U= {Us} if each
V. is contained in some Ujz. A space X is called paracompact if every covering
of X has a refinement which is locally finite. A generalized Hilbert space (or
generalized Kuclidean space) is a space having all properties of Hilbert space
except separability. A generalized Hilbert space is paracompact ([3] lemma 2
or [7] corollary 1).

Lemma 2. Let A4 be a closed subset of a collectionwise normal space X
and let | be a map of A into a generalized Hilbert space H. Then | can be ex-
tended to a map g of X nto H.

Proof. It is sufficient to construct a sequence of maps g, : X—~H forn=1,2, ...,
such that (1) if » > 1, the distance

0 (9n (), gn-1(z)) < g-n+2

and (2) if z€4, _
e(gn (@), f(z)) <27™.

Then the Cauchy sequence {g,(z)} converges to a point g(x) of the complete
space H and, since the sequence {g,} is uniformly convergent, the limit function
g is continuous. For each z,

o(gx (2), 9(x)) < 9 "2
If z€4d,

0 (f (), 9(2)) <o (f(2), g () + 0 (gn (), g (x)) < 27" +27"+2 << 27"¥0

for each n; hence ¢ (f(z),g(x))=0 and g(z)=/(z). Thus ¢ is an extension of f.

We construct the sequence {g,} by recursion. Since H is paracompact the
covering of H by all open sets of diameter less than 27" has a locally finite
refinement U,. Then f'U,, the collection of inverse images of the open sets
of W,, is a locally finite covering of 4. Hence by lemma 1, there is a locally
finite covering B, of X such that, for each V€B,, VA4 is contained in some
element of f1,. When n>1 we assume that g,_;: X—H has already been
defined. Then g;%;U, is a locally finite covering of X. Let T, be a locally
finite common refinement of B, and gz'1U,. When n=1 let 3,=%9,.

Let K, be the nerve of %, -and let ¢, be a canonical map ([2] page 202)
of X into K,. For z€ X let o, (x) be the closed simplex of K, whose vertices
correspond to the open sets of W, containing z. Then ¢, ()€ on(z). Let wn:
K,—H be the linear map (linear on each simplex) of K, into H defined for the
vertices of K, as follows. Let W eI, and let w be the corresponding vertex
of K,. If WA=0 and n>1 choose a point y €W and let 'l/Jn(W)=Qn—l(y3- If
n=1 and WA=0 choose y:(w) arbitrarily in H. If W A0 choose ye WA
and let v, (w)=1(y). Let g, : X~ H be defined by g, () = y» ¢ (z); then g, is a con-
tinuous ([2] lemma 1.2) map of X into H.
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When n>1, if €W then, since y is also in W and since g,.: (W) has
diameter less than 277,

0(9n-1(@), gn_1(y)) << 27",
If WA#0,y€4 and hence '
e(gn1(y), f(y)) <27
(by the induction hypothesis) and, since v, (w)=/(y),
‘ 0 (gn-1(2), Y (w)) <277 427" <272
If WA=0, p,(w)=gx 1(y) and hence
0 (9n-1(2), ya (w)) <277 <272

Thus ., maps each vertex of ¢,(x) within a spherical neighborhood of
gn-1(x) of radius 27"*2, Hence v, maps &, (x) within this neighborhood and,
in particular,

0 (9n-1(2), Yn dn (z)) <27"7%
Thus

0 (gn-1(2), gn (z)) <272,

When z€4, if W contains z then WA>#0 and y,(w)=/(y) with y€ WA4.
Since z and y are both points of WA and since f(WA4) has diameter less than
27", o(f(x), f(y)) <27". Thus

o(f (@), yn(w)) <27™
Thus vy, maps o, (z) into the 27" neighborhood of f(z). Hence

o/ (), Yndu(x) <277;

o (f(x), gn(x)) <27™

Thus ¢, has the required properties (1) and (2). This completes the proof of
the lemma,

that is,

4. For non-separable Hilbert spaces our lemma 2 replaces the Tietze extension
theorem. Similarly, for non-separable metric spaces, Hanner’s theorem may be
replaced by the following:

Theorem 2. A metric space Y is ANR,, [respectively AR.,] if and only if
it is ANR,, [respectively AR, and absolute Gs.

Proof. Necessity. Let Y be metric and ANR.,. Let M be a metric space
with a subset ¥; homeomorphic to Y and let g: Y1 — Y be a homeomorphism.
Let the space X be defined thus: the points of X are the points of M and
a set U of X is open if it is the union of an open set of M and a subset
of M—Y;. Let h: X - M map each point of X on the same point of M ; then
h is continuous. Let A=A""Y;; then 4 is closed in X.
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Let {F,} be a locally finite set of disjoint closed sets of X. Then, if
B,=h(F,4), {B.} is a locally finite collection of closed sets of ¥:. Let G, be
the set of points of M which are nearer to B, than to Up.,Bs; then B,c@.,
G, is open and, if o« #~ f, G, Bg=0. Then the sets %! @, are mutually non-intersecting.
Since {F,} is locally finite, Us.oFjs is closed. Then the sets

Uy=Fot (" Ga— Upa Fy)

are open mutually non-intersecting sets and F,c U,. Hence X is collectionwise
normal. ‘

Let f:A—Y be defined by f(z)=gh(x). Then, since ¥ is ANR.,, there is
a neighborhood U of 4 in X and an extension f;: U—Y of f. For z€U let

(@) =o(k(@), 07 /i (@);

then ¢ is continuous and ¢(z)=0 if and only if € 4. Therefore 4 is a G,
set in U. Let A=n,U,, n=1,2,..., with U, open in U and hence open in X.
Then h(U,)=V.+Cn where V,is open in M and CncM—Y,. Then YicV,
and Y= N,(V,+C,); hence Y1=n,V, and Y1 is a G5 set in M. Hence Y is
an absolute Gs.

Since metric spaces are collectionwise normal, Y is ANRg.

Sufficiency. Let Y be ANR,, and absolute Gs. Replacing Y by a homeomorphic
space if necessary we may assume ([7] corollary 1 and [3] lemma 1) that ¥
is a subspace of a generalized Hilbert space H. Let X be a collectionwise
normal space, 4 a closed subset of X and f;4—Y a map of 4 into Y. By
lemma 2 there exists an extension fi: X—H of [. ' ‘

Since Y is an absolute G, there exist open sets W., n=1,2,. .., of H such
that ¥ = N, W,. Let %, be a real continuous function on X such thas 0 <k, (z)=<1,
ho(2)=0 if z€4 and A, (z)=1 if

z€X—fi' W,
and let :

“h(x)= i 27" by ().

Then % is continuous, h(z)=0 if z€Ad and h(z)>0 if fi(z) €H—Y. Let I
be the closed segment [0, 1] and let

fo: X—>HxI—(H-Y)x0

be defined by fo(z)=(fi(2),k(x)). Let g:Yx0—~>Y be the homeomorphism for
which g¢(y,0)=y. Since Y x0 is closed in the metric space HxI—(H-Y)x0
and since Y is ANR,, there is an extension gi: V—>Y of g to a neighborhood
V of ¥x0. Let U=/;'V; then U is a neighborhood of 4 in X and g1 fa: U-Y
is an extension of f. Hence Y is ANR.,. :

The proof for absolute retracts is similar and is omitted.

Gorolflary 1. 4 space X is collectionwise normal if and only f for each
closed set A of X, each map [ of A into a complete ANR,, can be extended over
a neighborhood of A in X. ‘ ' -
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Proof. Necessity follows immediately from theorem 2 and the fact that a
complete metric space an absolute @;.

Sufficiency. Let {F,} be a locally finite set of disjoint closed sets of X. Let
Y be a metric space whose points y, are in 1—1 correspondence with the sets
F, and let each pair of distinct points of Y have distance 1. Then Y is ANR,, and
complete. Let 4= U, F, and let /: 4—Y be defined by f(z)=y, for all z€ F,.
Then f is continuous and hence can be extended to a map g: U—>Y where
U is a neighborhood of 4 in X. Then the inverse images g *(yq) form a
_collection of mutually non-intersecting open sets of X with F,c g™ (y,). Hence
X is collectionwise normal.

Remark. The above space Y can be imbedded as a neighborhood retract
in a suitable generalized Hilbert space H. If each map of a closed set 4 of
X into a generalized Hilbert space H can be extended over X then each map
of 4 into Y ean be extended over a neighborhood of A and hence, as above,
X is collectionwise normal. This is the converse of lemma 2. It follows that
the converse of lemma 1 is also true.

Let ANR.,,» mean absolute neighborhood retract for collectionwise normal
perfectly normal spaces.

Corollary 2. 4 metric space Y s ANR.npn if and only if it is ANR,,.

Proof. Necessity follows from the fact that metric spaces are collectionwise
normal and perfectly normal.

Sufficiency. Let ¥ be ANR,. If 4 is a closed set of a perfectly normal
space X, there exists a continuous function % defined on X, 0 < k(z) <1,
such that %(2)=0 if and only if x€ 4. In the proof of sufficiency in theorem
2 above one may replace the function %4(z), whose existence depended on Y
being an absolute G5, by this function k(x). The details are omitted.
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