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On the solvability of the Diophantine equation
azx’+by’ +cz'=0
in imaginary Euclidean quadratic fields

By Ove HEMER

§ 1. Introduction

LrGENDRE [1]! has given the first proof of the following theorem:
Let a, b and ¢ be three rational 1ntegers such that abc is square-free. Then
the equation

) ax® 4+ by? + ¢c22=0
is solvable in rational integers x, y, z not all zero if and only if —be, —ca,
and —ab are quadratic residues of a, b and ¢ respectively, and a, b and ¢

are not all of the same sign.

In Dimicurer, Zahlentheorie [2], and in most other text-books of number
theory, this theorem is proved by means of a method which we call the index
method. See also T. NaceLr, Introduction to Number Theory [3].

Then the following question arises: In which algebraic fields is it possible
to determine the necessary and sufficient conditions for the solvability of (1)
by the index method ? ,

An algebraic field is called simple when the number of ideal classes is =1.
A simple field is said to be Huclidean when there is a Euclidean algorithm
between every two integers a and 8 in the field, § % 0. See HARDY-WRIGHT:
The Theory of Numbers [4].

The index method can only be applied to Euclidean fields, because it is
based on an algorithm. In this paper we shall only consider the case of an
imaginary Euclidean quadratic field. There are five such fields, namely
K(V—-1, E(V—2), K(V—3), K (V1) and K (V—11).

In an imaginary field the condl‘o}on ‘a, b and ¢ not all of the same sign”
has no meaning. We shall examine whether the other conditions are sufficient
or not in these fields. TH. SKorem [5] has shown that they are in K (' —1)
and K (V— 3) but his method is rather different and we shall treat these fields

too by means of the index method.

* Figures in [ ] refer to the Bibliography at the end of this paper.
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§ 2. Lemma from the theory of quadratic fields

We need some elementary results from the theory of quadratic fields. Let
K (Vm) be a quadratic field, m being a square-free rational integer. If & is a
number in K (Vm), we denote by & its conjugate and by N (&)=£&¢& its norm.
In an imaginary field the norm is always positive (provided that &==0) since
& =|&P. If & is any integer in K (Vm) the number of residue classes modulo
§is =|N(&)] , . .

In the following we suppose that the field is a Euclidean imaginary field.
Since these fields are simple, their arithmetic is analogous to that of the
rational field. A prime = is of degree 1 if N(n)=p and of degree 2 if
N (n)=p% where p is associated with a rational prime’ Hence primes of degree
2 are rational. N

Let o and & be two relatively prime integers in K (Vm). Then a is called
a quadratic residue of the integer & if the congruence

x2

a (mod §)

;s solvable in K (Vm). Otherwise a is a quadratic non-residue of £.

If 7 is a prime in K (Vm) which does not divide 2, a is a quadratic residue
or a quadratic non-residue of 7 according as

at¥@-D =1 (mod n)
or
A F@-D=_1 (mod 7).

There are 3(N(m)— 1) incongruent residues and as many incongruent non-
residues modulo s. Further, if = is a divisor of 2, all integers prime to =
are quadratic residues of m. See SomMER: Vorlesungen iiber Zahlentheorie [6].

The integer & in K (V'm) is said to be square-free if it is not divisible by

the square of any prime in K (Vm). If & is.a square-free integer in K (Vm),
we conclude, exactly in the same manner as in the rational field, that a is a
residue of & if and only if a is a residue of all the prime factors of &.

We prove the following

Lemma. Let & be a square-free integer in K (Vm) and let D be a rational
integer which is prime to £. Then D is a quadratic non-residue of & if and only
if £ contains a prime factor m of degree 1 such that D is a quadratic non-residue
of N (n) in the rational field.

Proof. Let = be a prime divisor of & such that D is a non-residue of z.
Then, according to a remark above, 7 cannot be a divisor of 2. 7 can neither
be a rational prime, for in this case m > 2 gives

D@ @D = D=1 — (D=1} x+D =1 (mod 7).
If = is of degree 1, and if N(n)=p is a rational prime > 2, we have
DI@-D=Dt®-D=—1 (mod #). - -
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Since D is rational, this implies
D¢V =—1 (mod p).

Hence D is a non-residue of p in the rational field. Inversely the last con-
gruence immediately shows that if D is a non-residue of p in the rational
field, it must also be a non-residue of z in K (Vm). This proves the lemma.

Hence every rational integer is a quadratic residue of each square-free in-
teger which contains no prime factors of degree 1 except divisors of 2.

It can be decided by the lemma, whether an arbitrary integer a is a residue
or not of a prime m of degree 1, since there is always a rational integer D
such that a=D (mod ).

Example:
1+V—2=1—16V—2=25=8 (mod 3 + 2V —2).

Hence 1 + V—2 is a residue of 3 + 2V —2 in the field K (V—2).

For the investigation in this paper we only need this lemma.

If the integer « is not rational and p is an odd prime of degree 2, the
lemma is not applicable to decide, whether a is a residue or not of p, for
then we have no complete system of incongruent residues modulo p containing
only rational integers. However, it is always easy to determine a complete
system of residues and then examine, whether a is a residue or not of p.

Example:

/1
2

' v‘

2+5V—7 :—1—V— =1

(mod 3).

A complete system of incongfuent residues modulo 3 in K(V—17) is

0, +1, il_—{__%___ ]_—7’ ?_Uzl/:,,, e=1 or —1.

None of these integers is a solution of the congruence

2= lj_gi{ (mod 3)

and hence 2+ 5V —7 is a non-residue of 3 in the field K (V—7).

The field K (Vm) is Euclidean when the following proposition is true: If
and B are given Integers in K(Vﬁ), B==0, then there is an integer x in
K (Vm) such that

a=x-f+y
[N <IN @I

and

We shall now try to sharpen this inequality in imaginary fields.
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If z, is a solation of the congruence
(2) 2% = a (mod &),

then every integer z=x, + x-£, where » is an arbitrary integer in K (Vm), is
a solution of (2). To find an upper bound of the norm of the least solution
xy of (2) we distinguish the cases m =1 (mod 4) and m=1 (mod 4).

I. m=1 (mod 4).

Then the integers are the numbers # - v Vm, where  and v are arbitrary
rational integers. The point-lattice corresponding to these integers shows easily
that the lattice point of one integer x must fall inside of or on the boundary
of a given rectangle for each & whatever z, is. We get immediately that

V] + 1
|2 | < I__I_ulé, |+ 1

(3) 1.e.
Ny ="

II. m=1 (mod 4).

. . 1+ Vm .
Then we can write the integers v + vw, where 0="""5"" or what is the

. u + ’LV’;L
same thmg — 2

, u=wv (mod 2). It is always possible to determine

%=1, + v;  such that the lattice point of one integer z falls inside of or on the
boundary of a given hexagon for each £, whatever x; 1s. This hexagon can
be inscribed in a circle with its centre in the origin and we have

m 1
Iftol = Iil IV:H
(4) i.e. "
N (zy) = % - N (&).
We can also easily see that the points in the plane _W}lﬂ lie as far as
possible from the nearest lattice point have the distance V| m2|+—1 and %%

from this point in the cases I and II resp. This gives the same result.

§ 3. Our problem and the index method.

Let a, b and ¢ be integers in the imaginary Euclidean quadratic field
K (Vm) such that "

(5) abe is square-free.
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Then it is necessary for the solvability of the equation
(6) ax® + by® + ¢22=0
in integers in K (Vm), not all zero, that

(7) —be, —ca and —ab are quadratic residues of a, b and ¢ respectively.

A solution [&, %, (] of (6) is said to be proper, if (£, 9, {)=1. It is clear
that (6) either has proper solutions or has only the trivial solution [0, 0, 0].
If there are proper solutions of (6) we call the equation solvable.

It follows in exactly the same way as in the rational field that the postulate
(5) is no limitation of the general case and that the conditions (7) are necessary.

Our problem is to decide, whether the conditions (7) are sufficient or not
for the solvability of (6) in the imaginary Euclidean quadratic fields.

Range the terms in (6) so that

N(a) = N(b) =< N (o).

Analogous to the proof of Legendre’s theorem in the rational field we then
define the index I of the equation (6) as

I=N(a)N(c)=N(ac).

We shall prove the following proposition.

Theorem. If the index I of (6) is greater than a certain number and if the
conditions (7) are satisfied, then it ts always possible to derive a new equation

(8) AX>+BY?*+CZ%=0

where, analogous to (5) and (7), ABC is square-free and — BC, —CA and
— A B are quadratic residues of A, B and C respectively, where the index is less
than I and where (6) and (8) are solvable or mot at the same time.

" The notions in the proof are the same as in [3]. The congruence

2?=—ab (mod c)

has solutions by (7). Let = vbe a solution of this congruence. Since (a, ¢)=1,
we can always find an integer y such that z=ay (mod ¢). Hence we have

ey =—10b (mod ¢).
Thus we can always find integers r and Q such that

9) art +b=cQ.
Then
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el =¥+

and according to (3) and (4) we get in imaginary Euclidean quadratic fields

if m=1 (mod 4)
Q| < |¢ch]~|1?——'»4£+—1 +1<|ac|=VI

(10)
if |ac.]>3—_l~m
and if m=1 (mod 4)
01 =lac] dmLEE w1 <jact -2
. it [ac]> 16:|m]
16|m|—(|m| + 1)

Hence we can determine r so that N (Q)<CI if I is great enough. Of course
it is not necessary that N (r) << N(c), if we only get N(@)<<I.

@=0 gives ar® + b=0 and (6) has the solution [r, 1, 0].

According to (5) a, b and r are units. o
If @ =0 the derived equation (8) is determined by the following definitions.

A=(ar? b, cQ)

where by the postulate (5) 4 is square-free and r and @ are divisible by 4.
Pus
r=Aa, b=Ap, Q=A4C,

where C is square-free. Substitution in (9) gives

(12) aAda®+ B=cCy?

where the three terms are relatively prime in pairs. Finally we put
af=B |

which gives AB ab. Hence B is square-free and (4, B)=1. According to (12)
we have

(0, adBf)=(C, AB)=1

Thus 4 BC is square-free.

It follows from (12) that —adf=—A4B is a quadratic residue of C' and
further that BcC is a residue of 4. Since —ac is a residue of b and there-
fore of 4 we have that

(—ac)(BcC)=—aBfcC=—BCA
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is a residue of 4. Hence — BC is a residue of 4. Turther (12) gives that
adAcC is a residue of f and from —ac a residue of § follows — AC a residue
of B. (12) also gives BcC a residue of a¢ and, since —bc is a residue of a,

(—be) (BeC)=—bBE0=—AC (Be)

is a residue of . Thus — AC is a residue of @ and of § and, since (a, 8) =1,
this gives that — A C is a residue of afi=B.
Hitherto we have made almost no alterations of the proof in the rational

field. It is, however, not immediately possible in K (Vm) to infer that the
index of (8) will be less than the index I of (6) if N(Q)<<I. The analogous
conclusion in the rational field is based upon the observation that

bl <le| #I>1
but in K (Vm) we must take the eventuality |
. N@®B)=N()
nto consideration, because b and ¢ may be conjugates. If I > 1 we can suppose
N (@) < N () |

for if N(a)=N(c) we have c=ca’, where ¢ is a unit and @’ is the conjugate
of a. But then, against (5), we cannot have at the same time (e, b)=1 and
(b, e)=1.
Suppose
N (a) <N (b)=N (o).

Then N(AB)=1 and N(AC) < N(Q)<I give
N(C)< N (B).

Moreover AB=ab, N()>1 and c=¢b’ imply N (4) == N(B) and hence the
two greatest norms of the coefficients in (8) are different. '

If N(4) > N(C) the index of (8) is less than I.

If N(4)<N(C) we get the same index I in (8) but a repeated procedure
by the same method on (8) gives certainly a new equation with less index, if
I exceeds the given number.

To prove the last part of the theorem we make the same substitution in (6)
as in the proof in the rational field.

_ z=AaX—pY
(13) y=X +aaY
2=CyZ

and this gives, according to (9) and (12),'
az® + by + c22=cCy* (4 X% + BY? + CZ%.
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If [X, Y, Z] is a proper solution of (8), then (6) has a proper solution, for
otherwise )
B+ Aaa®) Y=cC0y*Y=0

as follows from (13) by elimination of X, and ¢Cy®>==0. Hence z=y=2=0
implies X=Y=Z=0.

If (8) has no proper solutions, i.e. X=Y =Z=0, then the same applies to
(6), for as

Adg —
© Pl ey +o
1 aa
we get from (13) '
_aaz + Py _
X_chyz 0
_——x+Aay=0
cCy*?
z
Z=- =
Cy 0

Hence, by elimination of z,
B+ada®)y=0

and we can only have z=y=2=0.
Then all parts of the theorem are proved.

According to (13) we can always find a solution of (6) if we know a solu-
tion of (8).

By this theorem all equations (6) in the rational field correspond to either
the equation 2%+ y>—22=0 or to the equation z® + y® + 22=0. The condi-
tions (7) are not sufficient in the rational field, because no equations (6) cor-
responding to % -+ y% + 22=0 have proper solutions. It is easy to see that
this restriction and the more practical “a, b and ¢ not of the same sign’ are
equivalent.

In §§ 4-8 we shall decide if the conditions (7) are sufficient or not in the
five imaginary Kuclidean fields by examining the equations with less index
than the number given by (10) or (11). Then it is clear that the two con-
jugated equations

az? +by*+ cz2=0
and
a2+ byt +c2t=0

have or have not solutions at the same time, for if one of them has the solu-
tion [£, n, ], then the other one has the solution [&', %, {'].
§ 4. The field K (V/—1).

Since m =1 (mod 4) the integers are the numbers u + vi. where u and v
are rational integers.
The units are =1 and =+ 4.
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The integers en, where £ is a unit, are associates.

The primes are 1+ ¢, all rational primes =—1 (mod 4) and the conjugated
factors of all rational primes =1 (mod 4) and the associates of all these
integers.

From (10) follows that .
N@Q<I if I>4

Then, by the theorem, all equations (6) which satisfy (5) and (7) can be sub-
stituted by equations (8) with I <4 and for the rest with the same properties.
We then only have to examine the solvability of these equations.

It is enough to consider 7=1 and 2, for I=3 is impossible, because I is
the norm of the integer ac. Since N(a)<<N(c), I=4 implies N (¢)=4 and
c=¢e-2, but 2=—1 (L + 4)® is divisible by a square against the postulates in (5).
Since —1 is a square, we have to find the solutions of a few number of
equations.

I=1.
(14) 2+ g+ e22=0.
has the solution [1, ¢, 0].

I=2,
(15) - 4y +e(l+4)22=0

has the solution [1, 4, 0] and
(16) 22+ iy? + (1 +14)22=0

has the solution [1, 1, ¢]. L
Hence the conditions (7) are sufficient in the field K (V—1).

§ 5. The field K (V— 2).

The integers are the numbers u + vV — 2, where w and v are rational in-
tegers.

The units are + 1. ) .

The primes are V—2, all rational primes =5 or 7 (mod 8) and the con-
jugated factors of all rational primes =1 or 3 (mod 8) and the associates of
these integers. ‘ :

(10) gives

N@<I if I>16.

Then v;re have to examine the equations (6) with I < 16, but for each I we
can determine a number y such that

N@Q<I if N@®)<y-N(ec)
From (9) we obtain the sharpened inequality
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and hence, according to (10), we get y in K (V—2) from
VI +Vy=VI

1.e. ’}{=E'

Thus we only need consider the equations where
N@®) = L N (c).
16

According to (5) and since I is a norm, we only have to examine
I=1,2, 36,9 and 11.

I=1.
amn x® + y? + 22=0. Solution [1, 1, V—2].
(18) 22— %+ 22=0. Solution [1, 1, 0].
I=2.
(19) 2+ y*+eV—222=0. Solution [1+eV—21,¢V—2].
(20) Syt +eV—2:2=0. Solution [1, 1, 0].
I=3,

a=1, c=+ (1 +eV—2). N(®)=1,2 or 3.
1) N(B)=1. b=+1.

—1 is a non-residue of 1+ eV—2 in K(V—29) by the lemma, since —1
is a non-residue of 3 in the rational field. ’

Then we only have
(21) Ryt et=0
with the solution [1, 1,0].
2) N@p)=2, b=+V—2.
eV—2=—1 (mod 1+ ¢V —2) and hence a non-residue.
The remaining equations are |
(22) 2+eV—242+0 faV:_2)z2=0
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with the solution [1—¢V—2, 1, 1], and

(23) @+eV—2y2—(1+eV—2)22=0

with the solution [1, 1, 1].

3) N®)=3. b=+ (1—V—2). ¢==% (1 +V—2).

1—eV—2=2=—1 (mod 1+ ¢V —2) and hence a non-residue.

Then we only have

(24) B+ (1—V=2)2+ (1 +V—2)2%=0

with the solution [V —2, 1, 1].

I=6.

1) N(@)=1. N{c)=6. y-N(c)=—GT§>2.

‘Thus we need consider N (b) = 3 and then only

N(b)=3 is possible, i.c. a=1, b=+ (1 + ¢V —2) and
c=+V—2(0—eV—2)=+ (2 +eV—2).

1+¢eV—2 is a non-residue of 1 —e¥V — 2 and hence of 2 + eV—2.

—24+eV=2)=—1 (mod 1+¢V—2) and thus a non-residue.

‘Then we only have
(25) 2+ (1+eV—22— 2 +eV—2)2=0.
with the solution [1, 1, 1].

2) N(a)=2, N(c)=3 and hence N (b)=3.
a=V=2 b=+ (1—V—-2), c=+(1+V—2).
As —(2+ eV —2) is-a non-residue of 1 + &V — 2, we only have

(26) V=222—(1—=V=2)y2+ (1 + V—-2)22=0

‘with the solution [V::i 1,11
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I=9

N (a) <N (c), hence N(a)=1, N(c)=09.
y-N (c)=9‘? > 5. Thus, N(b)=6 or 9, but both these values contradict the

postulate (5).

I=11.
11-11
N{a)=1, N(ce)=1], y‘N(c)=T>7 N@®)=9 or 11.

1) N®)=9. b=+ 3. c=+( +eV—2).

+3+V =2 =¢:V—32=—1 (mod 1 +8V 2} and then a non-residue of 3
in K(V'—2) by the lemma.

Hence no equations satisfy the conditions (7).
2) Np)=11. b=+ (3—V—2), c=% 3+ V—2).

3—eV—2=16 (mod 3+ eV —2) are non-residues by the lemma. Then only
one equation remains.

@7) P+ BV + (3+V—222=0

has the solution [V—2, 1+ V—2, 1—V—2].
Hence the conditions (7) are sufficient in the field K (V—2)

§ 6. The field K () —3).

The integers are all the numbers _%_—_1)_2_1/_3, where u=ov (mod 2) and u
and v are rational integers.
. —1+V—3
The units are + 1, + p and =+ g% where =g "

The primes are V_:g, all rational primes =2 (mod 3) and the conjugated
factors of all rational primes =1 (mod 3) and the associates of these integers.
(11) gives
NQ<I if I>2.

Since 2 is a prime in K (V' —3), we only need consider I=1.
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I=1.
Since ¢® and p=(p%? are squares, we only have
(28) 2 — gy +22=0. Solution [1, 1, 0].
{(29) 2%+ + 22=0, Solution [1, g, 0%].

Hence the conditions (7) are sufficient in the field K (V' — 3).

§ 7. The field K (V—7).

The integers are all the numbers L—%, where % ==v (mod 2) and w«

and v are rational integers.
The units are + 1.

1+eV—1
2

and the conjugated factors of all rational primes =1, 9, 11 (mod 14) and the
associates of these integers.

The primes are V::*7 —, all rational primes =3, 5, 13 (mod 14)

—_— 1 + —_—
We can also write the integers % + vw, where w——-é}f—f or another
of the four numbers with the norm 2.
(11) gives
N@Q<I if I>5.
4}7/1 + Vy VI gives y—%, analogous to the determination in § 5. As 3
. . 97
and 5 are primes, we only need consider =1, 2 and 4 and N (b) = 99 N (c).
I=-1. _
(30) 22—+ 22=0. Solution [1, 1; 0].
The remaining equation
(31) 2 +yi+22=0
has no solutions but the trivial [0, 0, 0], for suppose that we have the proper
: —1+ V-1
solution [u; + vy @, uy + vy, uy + v30], where w= —

Then substitution in (31) gives

3 3 3

(a) S>ud— > upv;— %zv 0
=1 i=1 i=1
3 3

(b) Elu1 vi—3 > v} =0.
i= =1
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3
We get > vi =0 (mod 2) and hence
<1

This gives u; = 4y =u3=0 (mod 2).
But then, according to (b)

3 .
2¢i=0 (mod 4) and v; =10, =v;=0 (mod 2).

=1

This contradicts the postulate that the solution is proper and hence (31) is
insolvable.

I1=2,
N(@=1, N()=2, N(B)=1 or 2.
1) N@)=1.
(32) 22—yt +ct=0
has the solution [1, 1, 0].
(33) 2 1_18_;_*_722:0

has the solution [1 — 8;/~7 1]-

The remaining equations

(34) z? + yz—L—tizV——/lz2~0
correspond to (31) and hence they are insolvable by the theorem This follows,

£V7

if we don’t take the least solution r=1 but the greater r~ Y Q=1

of (9). Then A= (as?% b, ¢@Q)=1, B=1 and C=1.
The insolvability of (34) can also easily be shown by congruences.

2) N(@b)=2.

(35) : 2% — v — A=0

has the solution [I, 1, 1].

The three remaining equations are all insolvable in K (V=7), because they
correspond to (31).

(36) 22 +

1—V—=1, 1+V=17,
5 VT T
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L=VoTy, 14V—T,
2

gives the derived equation X?* + Y2 — e 5 Z%=0, one of the
. . . 1+V—1

equations (37), if we take the solution r=1, Q=~—~——¥—7 of (9).

(37) JEN Eé],/,flyz . 17,—'92le2=0

can be substituted by (34), if we take the solution r=1, =1 of (9), and
(34) are insolvable. '

I=4.

N (b)=3 is impossible and N (b)=4 is against the postulate (5).

The conditions (7) are not sufficient in the field K (V' — 7). As in K( )
must make the restriction that all the equations correspondlng to 2 + ¢ + 2= O
are insolvable.

The following 28 equations W1th I < 22 satisfy the conditions in the problem
but are insolvable, because they correspond to z? + 32 + 22=0.

2+ 2+ 22=0

/
xz_l_yz_l—%—el/——_z 2_¢
2
2 1-——8V~7y2__1+£1/ 7 -0
2 2

2 + 5 el 5 Tr=0
22+ 2+ 222=0

72— w PtV —T22=

_ 2

PR—2P+eV—T2=0

22— 242 + 322=0

2t — 292 —322=0

2+ 292+ 322=0

2+ y2—322=0

a? — 1—+8~2V——7y—(2+el/ T 22=0
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2+ 2P — 2+ eV—122=0

—7 . =7
o LlteV 7y2+7+£V

2:
9 9 2¢=0

2—2+eV—174+ =0

7—@1/1:7_722
2
34V,

2 =0

2+ oyt +
3(L+eV—=1)

7 22=0

2+ eV—T42 +
1:%/11962 + liyyz_*_ 3:2=0

e=1or —1.

Then each equation (6) which by reduction with the index method to I <22
gives one of these 28 equations, is insolvable. This we also can say immediately
about every equation with rational coefficients all of the same sign which
satisfies the conditions (7) in the rational field, for K(V—17) contains K (1)
and hence such an equation corresponds to z* + ¢®+22=0. However, all
equations with rational coefficients of the same sign are not insolvable. For

' V=T 14V —7
instance, z? + 4% + 322=0 has the solution 1 12/ , LI 5 7, 1], but

then the conditions (7) are not satisfied in the rational field.

§ 8. The field K (V—11).

The integers are all the numbers ke +_v;/— 11, where u =9 (mod 2) and w

and v are rational integers.

The units are + 1.

The primes are V— 11, 2, all the rational primes = 7, 13, 17, 19, 21 (mod 22)
and the conjugated factors of all the rational primes =1, 3, 5, 9, 15 (mod 22)
and the associates of these integers.

(11) gives

N@<I if I>30."

As in K(V—2) and K(V—1) we get

47

9 — —
—l—l—Vi + V‘}JHVI and ’)/-—EI

! The inequalities in [4] § 14.7 give only N (Q) < I if I> 256.
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According to the postulate (5) we then have to examine

I=1,3,4,5 9 11, 12, 15, 20, 23 and 25 and N (b) = %-N(o).
I=1.
(38) 2®—y? 4+ 22=0. Solution [I, 1, 0].
(39) 2t + g+ 2=0. Solﬁtion [1, 3 VZ;IE, 3t VQL*H] .
1=3.
N(@)=1, N{¢)=3, N(®)=1 or 3
1) Np)=1, b=+ 1, c= il—”;/:ﬁ
— 1 is a non-residue of %ﬁi by the lemma. Then we only have
(40) 22—y + ¢22=0

with the solution [I, 1, 0].

n 1—V—11 c=+1+V—11_

2 ? - 2
1—eV—1 -
— ~—8‘21{~——1 = — (mod 1—+8—12/—£) and hence non-residues.
(1) x2_1~V—11y2_1+V—1_122=O
2 2
has the solution [1, 1, 1].
I=4
N(a)=1, N(c)=4, N(b)=1 or 3.
1) NG)=1, b=+ 1, ¢c=+ 2.
(42) 22 —y? + 2:.2=0. Solution [1, 1, 0].
(43) o+ P —222=0. Solution [1, 1, 1].
(44) 2 + o + 222=0. Solution [3, V—11, 1].
9) N()=3, b=+ I—ing:-l—l c=+2.
1+eV—11

2E—1(1110d 3

) 18 a non-residue.
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1+eV=11

(45) 2® + 5 ¥+ 220,
has the solution [1—_8—12/—_3, 1, 1].

. l+eV—11
z~——2—~

1+eV—11 1-8V1_1'1]
2 ’ 2

(46) ¥+ 222=0

has the solution [1,
I=5.
N()=1, N(c)=5. N(®)=1,3,4 or 5.
3reV—11
2
(47) a*—y? + c22=0

1) Nd)=1. b=+1. c=+

has the solution [1, 1, 0].
o BHelV—11 ,

(48) 2+ y 5 -0
has the solution [1, 1—8;/—_12, 1]
—11
(49) x2+y2_-3+85 1, ,
has the solution [2, 1——%:—1%, 1]
— 11
2) N(b)=3. bzi!iLg_L
3+eV—11 1+eV—11
————=—1 |mod ——7——
2 2
3—eV—-11_,_ _, (mod 1+eV=1 )
2 . 2
1+eV—11_ 3—¢V—11
LTy (g 90T
and _l_i%/jﬂg__2 (mod 3—8]2/"— 11)
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are all non-residues by the lemma. Then only two types remain

., l+eV—11 2_3+el/—11Z2

(50) z* + 3 Yy 5 =0
with the solution [, 1, 1].
(51) w2_1+eV—11y2_3+8V——11z2=0
2 2
with the solution 3=V~ 11, 1, 1—eV— 11] .
2 2
3) N{d)=4. b=+ 2.
+ 2 are non-residues of 3—+ilz/—_£ by the lemma, and hence no equations.

satisfy the conditions (7).

3—V—11 3+ V—11
,C=+ °

4) N()=5. b=+

2 - 2
+ 3—#25 +3 (mod %1—1) are non-residues by the lemma, and
no equations satisfy the conditions (7).
I=9.
N(@)=1, N(c)=9, y-N(c)=%>2.

We only have to determine N (b)=4 and 5.

1) N(p)=4. b==%72, c=+ 3.

2 is a non-residue of 3.

Further we have

(52) 2t + 297 — 32%2=0. Solution [1, 1, 1].
(53) 2® + 292 + 322=0. Solution [5, 2, V—111.
2) N(b)=5. b=+ ?%KT_E
3+ :V—11

+ 3 are non-residues of

and no equations satisfy the conditions (7).
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I=11
N(a)=1, N()=11, y-N(c)=4. .
N(()=4, 5 and 9 must be examined.
1) Np)=4, b=+2, c=+ V—I1L
2 is a non-residue of ¥—11 by the lemma.
(54) 2+ 28+ eV —1122=0

1+eV—_11]'
2

5+eV—11

1
2 H ’

has the solution [

.=+ V—11.

9) N(b)=5. b=+ 3+8ZJ~E

3+8V—£)
2

3—6‘ij~1)
g .

eV—11=—3 (mod

and eV—11=3 (mod

They are all non-residues by the lemma and no equations satisfy the condi-
tions (7).

3) N(b)=9. b=+3, ¢c=+ V—11.

eV—11=—1 (mod L‘EZ_E), and hence non-residues of 3 by the lemma.

No equations satisfy the conditions (7).

I=12

I N(a)=1, N()=12, y-z\r(c)=4'144

o1 > 4.

N (b)=5 and 11 must be examined.

3x¥V—1

3 =+ (1+V—11).

1) N()=5. b=+

+(1+eV—11)=TF2 (mod g’——flz/—_—il—) and hence non-residues by the lemma.

éll//—-l—l =2 (mod 1—+£12—/:—11) and then a non-residue of 1 + ¢V —11
by the lemma.
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Thus we only have

(55) x2+3—+—’%_£y2+(1—eV—11)z2:0
with the solution [1 + Elz/jﬂ, 1, 1]-
{56) a? -+ 3—1‘3;“3 P — (1—eV—11)22=0

with the solution [3;—8—];:*1}, 1, 1]-

2) N(b)=11. b=+ V—11, ¢=+ (1 + V—11).
eV—11=—1 (mod 1+ ¢V—11)
and — (1 + szfl) =—1 (mod V—11)
are non-residues by the lemma. Then we only have
(57) eV —1192— (1 +eV—11)22=0
with the solution [1, 1, 1].
II. N(a)=3, N(c)=4 and hence N (b)=3.

1—V—11 ,_ , 1+V—11
e bk

I
-
|

el

a , c=2.
1—eV—11

1+e}/~1152 (mod 5

equation remains

) and hence a non-residue. Only one

8) 1—V—11x2+1+V~ 2,009
2 2
with the solution [1, %——1, 2]-
Ié15.
I. N(@)=1, N(c)=15, y~N(c)=%lg§>7.
N(@®)=11, 12 or 15.
— S + V=11
1) No)=11, b=+ V—11, ¢c=+ 2+ V—11) or '=i%—-
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eV—11=-—2 (mod 2+ ¢eV—11)
eV—11=2 (mod 2—eV—11)

7+ sz—ll)
2

eV—11=—1 (mod
eV _1l=7 (mod LZ;L—J})
and hence a non-residue of all these numbers by the lemma, because + 2
and + 7 are non-residues of 5 in the rational field. Then no equations satisfy
the conditions (7).
2) N(d)=12. b=+ (1 + V—11).
1+eV—11=—1 (mod 2 + eV —11)
—(@2+eV—11)=—1 (mod 1+ ¢&V—11)

7—6V——E)

i(l+eV——11)Ei8(mod 5

and they are all non-residues by the lemma.

1+ eV —11 and 2— ¢V — 11 have a common divisor and so have 1 + ¢V — 11

and ﬁ%_ﬁ Then only the following pair remains
(59) 2+ 14+eV—11)2— Q2 +eV—11)22=0

with the solution [1, 1, 1].

3) N(B)=15. b=+ (2—V—11), e=+ (2 + V—11)

—(2—eV—11)=—4 (mod 2+ eV —11)

+ 7-—612/—£Ei 7 (mod 7+612/——_11) |

are non-residues by the lemma.
(60) 2—@2—V—=1Dg*— (2 +V—11)22=0
has the solution [2, 1, 1].
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II. N(a)=3, N(c)=5, N(b)=3, 4 or 5.
1) N(b)=3.

+V—11 —11
Then ab=+ 3 and ¢~ £ ?’—_Z—H, but =+ 3 are non-residues of 3+8‘12/ =
and hence no equations satisfy the conditions (7).
+ V- +V—-11
2) N(@)=4, a:l;LE, b=+2 c—+ i"‘"g“*
T(1+eV—11)=7F2 (mod 5 812/11-1)
— — 11
—@B—eV—1)=—4=—1 (mod L+ %V——)
and hence non-residues. Two pairs of conjugated equations remain
(61) LheV—1l , o 3=eV—1l, /
2 2
with the solution [1, 1, 1] and
(62) LbeV—ll 5,00 3—eV 11,
2 2
with the solution [?)—J'_ 812/——11, , 1_;8]2/?_1_1]
+tV— —V= —11
3) N (b)=5, a=1:z_1_1, b=+ %l{, o=+ 3+¥V—11,
11 3—eV—11 - 11
ige}z/ 11 3 a;V n_, 7+£]2/ _ (mod 3::312/ 1)

and hence non-residues by the lemma. No equations satisfy the conditions (7).

I=20.
4- 400

I. N(@)=1, N{(¢)=20, V'N(c)=ﬁ->13,
It is only necessary to examine N (b)=15. Then, according to the pos-

R TANET) —11
tulate (5) we can suppose a=1, b=+ (2+eV—11) or iw”ﬂ ! ang

c=+(3+eV—11).
—B+eV—=11)=—1 (mod 2 +eV—11)
+7+6‘le1 3+6V:_E)

]

- 2 2

are all non-residues by the lemma.

+ 2 (mod

79



0. HEMER, On the solvability of a Diophantine equation
The following equations remain

(63) 2+ @2 +elV =112 — (3 +eV—11)22=0
with the solution [1, 1, 1] and

(64) 22— 2 +eV—11) 2 — (8 +e¢ lel) 2=

with the solution [V—~ 11, L, 1reb- SV“ 11]

II. N(@)=4, N(c)=5, N(b)=

a=2, b=+ 3~:l/2———~11, c=+ :i%—_}_l,
(63) gary 3TV=IL L BHVIL,
2 2
has the solution [1 l—t—V‘i_H L‘l:ﬂ]
2 2
—V_11 T
(66) 9g2_ 3 V2 11y2_3+g n,
has the solution [1_]/_ 11’ 1, 1+ V— 11]_
2 2
(67) gpr 3TV 5 BheV—1l,

2 2

has the solution [2’ 1‘-}-:6_1/:_11, M_E:I .

2 2
1-=23.
N@)=1, N©)=23, y N (0)="100 > 16,
- +V-11

1) N()=20, b=+ (3+V—11), c=i?;l/2#£.

i&ﬁzr_ﬂzig (mod 3ﬁ+_8<V—_i1)
2 2

—@B4+eV—-11)=—12 (m d 12/—11)

and hence they are non-residues by the lemma. Two pairs of equations remain
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(68) x2—<3+eV——n)y2—9T£Z g

with the solution [V:——li, 1, l-tfg/:ﬁ] ar.ld

(69) xz——(3+el/:—ﬁ)y2+9—~'}%:iz2”=0

with the solution [M‘%V,:E) 11 + 2 V—11, }—&5%3_1]
9) N(b)-23, b— + Q—Zi, " _"LZ_—TJ

9—e§:ﬂ _ (mod gi%ﬂ)

and hence a non-residue by the lemma. Only one equation remains.

2 9-V—IL, 9+V—1 ,

(70) 9 Yy 5 =0
has the solution [3, 1, 1}.
I=25,
N@=1. N(c)=25. y-N(c)=%§§>20.
+ V-
Then we only need consider N (b)=23, b=+ 9—_—}2—1—1, c=*+5.
N 9+812V—i12i3 (mod 3+8;/*—£)

and hence non-residues of 5 by the lemma.
Then the conditions (7) are sufficient in the field K (V—11).

SUMMARY |

In four of the five imaginary Euclidean quadratic fields, K (le), KWV—2),

K(V—3) and K(V—11), this paper gives the following result:
If @, b and c¢ are square-free integers, relatively prime in pairs and not
zero or, simpler expressed, if abc is square-free, then the equation

ar® +by? +c22=0

has proper integral solutions if and only if —be, —ca and — ab are quadratic
residues of @, b and ¢ respectiveély.
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In the remaining field K (V—7) we must, as in the rational field, make
the restriction that all the equations which by the index method correspond
to the equation z* + y* + 22=0 are insolvable. All the equations of this type
with I less than 22 are given in § 7.

Remark 1. It is possible to replace this restriction by a congruence
condition. In fact, the necessary and sufficient conditions for the solvability

of the equation axz®+ by®+cz2—0 in a quadratic field K (V) is that the
congruence
ax® +by* +c¢z2=0 (mod N)

is solvable for every integral ideal modulus N in K (Vm) in integers z, ¥, z
such that (z, y, 2, N)=1.
In the rational field the completing condition can be written

ax? +by? +¢c22 =0 (mod 8)

and in the field K (J/—7) we have the condition

ax? +by? +c¢z2=0 (mod 7°) -
: . . . + V=7 :
where 7 is one of the prime divisors of 2, for instance ~. This fol-
lows quite analogously to [3] pp. 222—225, because a®’=1 (mod #*) and

a+ =0 (mod =), if a and B are integers not divistble by .

Remark 2. It is possible to reduce all the equations (14)—(70) with I>1
to equations with less index by the index method, even if we in some cases
must take great solutions of the corresponding equation (9), for instance

5+3eV—11 T—eV—T1\"
=*—L—41Wl—, Q=— (Li]/__li) to reduce (46) to (40). Hence every

7
2 2 .

equation (6), which satisfies the conditions (7), corresponds to an equation
with =1,

By examination of only few equations more we can further prove that if
N{@=<N@GB) =N() and N(c)>1 and if —ab is a quadratic residue of c,
then we can find N(4AC)<N(ac) except in (36), and hence otherwise, ac-
cording to (9), at least one of the Diophantine equations

el +k-conpP=—0
where k is an integer and N (k) << N (ac¢), is solvable.
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