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On the solvabi l i ty  o f  the  D i o p h a n t i n e  equat ion  

a x ~ + by=' + c z 2 = 0 

in imag inary  Euc l idean  quadrat ic  fields 

By OVE HEMER 

w ]. Introduction 

LEGENDRE [1] 1 has given the first proof of the following theorem: 
Let a, b and c be three rational integers such that  a bc is square-free. Then 

the equation 

(1) a x  2 ~- by  2 + cz2=O 

is solvable in rational integers x, g, z not all zero if and only if - -bc ,  - - c a ,  
and - - a b  are quadratic residues of a, b and c respectively, and a, b and c 
are not all of the same sign. 

In DIRICHLET, Zahlentheorie [2], and in most other text-books of number 
theory, this theorem is proved by means of a method which we call the index 
method. See also T. NAGELL, Introduction to Number Theory [3]. 

Then the following question arises: In which algebraic fields is it possible 
to determine the necessary and sufficient conditions for the solvability of (1) 
by the index method ? 

An algebraic field is called simple when the number of ideal classes is = 1. 
A simple field is said to be Euclidean when there is a Euclidean algorithm 
between every two integers a and fi ill the field, fl # 0. See HARDY-WRIGHT: 
The Theory of Numbers [4]. 

The index method can only be applied to Euclidean fields, because it is 
based on an algorithm. In this paper we shall only consider the case of an 
imaginary Euclidean quadratic field. There are five such fields, namely 
K ( V ~ ) ,  K ( V ~ 2 ) ,  K ( V - - 3 ) ,  K ( V - - 7 ) a n d  K (V - -1 1 ) .  

In an imaginary field the condition "a, b and c not all o f ' the  same sign" 
has no meaning. We shall examine whether the other conditions are sufficient 
or not in these fields. TH. SKOLEM [5] has shown that  they are in K ( V 2 - ~ I )  

and K (V~33) but  his method is rather different and we shall treat these fields 
too by means of the index method. 

1 Figures in [ ] refer to the Bibliography at the end of th i s  paper.  
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w 2. Lemma from the theory of quadratic fields 

We need some elementary results from the theory of quadratic fields. Let 
K (l/m) be a quadratic field, m being a square-free rational integer. If  ~ is a 
number in K (l/m), we denote by $' its conjugate and by N ( $ ) =  ~$'  its norm. 
In an imaginary field the norm is always positive (provided that  ~ # 0) since 
~ ' = [ $  p. If  ~ is any integer in K( l /m)  the number of residue classes modulo 

is = I N ( ~ ) [ .  
In  the following we suppose t ha t  the field is a Euclidean imaginary field. 

Since these fields are simple, their arithmetic is analogous to that  of the 
rational field. A prime ~ is of degree 1 if N(z~)=p and of degree 2 if 
N(:~) =p2, where p is associated with a rational prime" Hence primes of degree 
2 are rational. 

Let  a and ~ be two relatively prime integers in K (l/m). Then a is called 
a quadratic residue of the integer ~ if the congruence 

x 2 ~ a (rood $) 

is solvable in K (Vm). Otherwise a is a quadratic non-residue of $. 
If  :~ is a prime in K (l/m) which does not divide 2, a is a quadratic residue 

or a quadratic non-residue of :~ according as 

a �89 1 (rood ~r) 
o r  

a t (.v (~)-1) =_ _ 1 (rood ~r). 

There are �89 incongruent residues and as many incongruent non- 
residues modulo ~r. Further, if ~r is a divisor of 2, all integers prime to 
are quadratic residues of ~r. See SOMMER: Vorlesungen fiber Zahlentheorie [6]. 

The integer ~ in K (Vm) is said to be square-free if it is not divisible by 
the square of any prime in K (l/m). If  8 i s .a  square-free integer in K ( V m ) ,  
we conclude, exactly in the same manner as in the rational field, tha t  a is a 
residue of 8 if and only if a is a residue of all the prime factors of 8. 

We prove the following 

L e m m a .  Let ~ be a square-/tee integer in K (Vm) and let D be a rational 
integer which is prime to ~. Then D is a quadratic non-residue o~ ~ i] and only 
i/ ~ contains a prime /actor zt o/ degree 1 such that D is a quadratic non-residue 
o/ N (~r) in the rational /ield. 

Proof.  Let  ~r be a prime divisor of 8 such tha t  D is a non-residue of zt. 
Then, according to a remark above, ~r cannot be a divisor of 2. z can neither 
be a rational prime, for in this case zt > 2 gives 

D�89189 ( D ~ - I )  �89 ~--- 1 (mod ~r). 

I f  z is of degree 1, and if N( :~ )=p  is a rational prime > 2, we have 

D~(zc(~)-I)=D�89 - 1 (mod ze}. ( 
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Since D is rational, this implies ' 

D+ <p-l) ~ _ 1 (mod p). 

Hence D is a non-residue of p in the rational field. Inversely the last corn 
gruence immediately shows tha t  if D is a non-residue of p in the rational 
field, it must also be a non-residue of ~ in K (V~n). This proves the lemma. 

Hence every rational integer is a quadratic residue of each square-free in- 
teger which contains no prime factors of degree ] except divisors of 2. 

I t  can be decided by the lemma, whether an arbitrary integer a is a residue 
or not of a prime ~ of degree !, since there is always a rational integer D 
such that  a ~ D (rood ~). 

E x a m p l e :  

I + V -  2 ~ 1 - 1 6 V - - : 2 - = 2 5 ~ 8  (rood 3 + 2 V ~ 2 ) .  

Hence 1 + V ~ 2 is a residue of 3 + 2 V  ~'2 in the field K ( ] / ~ ) .  
For the investigation in this paper we only need this lemma. 
I f  the integer a is not rational and p is an odd prime of degree 2, the 

lemma is not applicable to decide, whether a is a residue or not of p, for 
then we have no complete system of incongruent" residues modulo p containing 
only rational integers. However, it is always easy to determine a complete 
system of residues and then examine,  whether a is a residue or not of p. 

E x a m p l e :  

2 + 5V--7 - - - - 1 - V : - ~ - =  1 + V : 7  2 (rood 3). 

A complete system of incongruent residues modulo 3 in K(V-Z7) is 

l + e V - - ~  3+eVZ-7 
0, _ 1 ,  _ , , s = l  or - - 1 .  

2 2 

None of these integers is a solution of the congruence 

1+V-Z7 
x ~ ~ (rood 3) 

2 

and hence 2 + 5 V ~ 7  is a non-residue of 3 in the field K ( V ~ 7 ) .  
The field K (Vm) is Euclidean when the following proposition is t rue:  If  a 

and fl are given integers in K(Vm),  f l ~ 0 ,  then there is an integer ~ in 
K (l/m) such- tha t  

a = u . / ~  § y 
and 

I N (y) I < [ N (fl) I. 

We shall now t ry  to sharpen this inequality in imaginary fields. 
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If  xl is a solution of the congruence 

(2) x ~ ---- a (rood ~), 

then every intege~ x = x  1 "~-U" ~, where z is an arbi t rary  integer in K (Vm), is 
a solution of (2). To find an upper bound of the norm of the least solution 
x 0 of (2) we distinguish the cases m ~-1 (rood 4) and m ~ 1 (mod 4). 

I. m ~  1 (mod 4). 

Then the integers are the numbers ~ = v V m ,  where u and v are arbi t rary 
rational integers. The point-lattice corresponding to these integers shows easily 
tha t  the lattice point  of one integer x must  fall inside of or on the boundary  
of a given rectangle for each ~, whatever  x 1 is. We get immediately t h a t  

(3) i.e. 

Ixol l lVim + 1  
2 

I I .  m--= 1 (mod 4). 

N (Zo) -< . . . .  
]m] + 1 

4 
N(~) 

1 + VV~ 
, or what  is the 

2 
Then we can write the integers u + v e o, where e o -  

u + vV~n 
same thing 2 , u ~ v  (mod 2). I t  is always possible to  determine 

= ul  + vx co such tha t  the lattice point of one integer x falls inside of or on the 
boundary  of a given hexagon for each ~, whatever  xl is. This hexagon can 
be inscribed in a circle with its centre in the origin and we have 

(4) i.e. 

Iml + 1 

N(xo) < ( ] m l  + 1) 2 
- 16 I. l 

We can also easily see tha t  the points in the plane which lie as far as 

possible from the nearest ]attice point  have the distance ]/[ m l + 1 and I ml  + 1 
2 4V l 

from this point in the cases I and I I  resp. This gives the same result. 

w 3. Our problem and the index method. 

Let  a, b and c be integers in the imaginary Euclidean quadrat ic  field 

K (Vm) such tha t  

(5) a b c  is square-free. 
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Then it is necessary for the solvability of the equation 

(6) ax  2 + by2 + c z2=O 

in integers in K (Vm), not all zero, that  

(7) - -bc ,  - - c a  and - - a b  are quadratic residues of a, b and c respectively. 

A solution [ ~ , ~ , ~ ]  of (6) is said to be proper, if ( ~ , ~ , ~ ) = 1 .  I t  is clear 
that  (6) either has proper solutions or has only the trivial solution [0, 0, 0]. 
If there are proper solutions of (6) we call the equation solvable: 

I t  follows in exactly the same way as in the rational field that  the postulate 
(5) is no limitation of the general case and that the conditions (7) are necessary. 

Our problem is to decide, whether the conditions (7) are sufficient or not 
for the solvability of (6) in the imaginary Euclidean quadratic fields. 

Range the terms in (6) so that  

N (a) ~ N (b) ~ N (c). 

Analogous to the proof of Legendre's theorem in the rational field we then 
define the index I of the equation (6) as 

I = N ( a )  N ( c ) = N ( a c ) .  

We shall prove the following proposition. 

Theorem.  / /  the index I o/ (6) is greater than a certain number and i] the 
conditions (7) are saris]led, then it is always possible to derive a new equation 

(s) A X  2 + B y2 + CZ  2=0 

where, analogous to (5) and (7), A B C  is square-/tee a n d - - B C , - - C A  and 
- - A B  are quadratic residues o/ A,  B and C respectively, where the index is less 
than I and where (6) and (8) are solvable or not at the same time. 

The notions in the proof are the same as in [3]. The congruence 

x 2 --=- - -  a b (mod c) 

has solutions by (7). 
we can always find an integer y such that  x - - a y  (mod c). 

a y~ ~ - -  b (mod c). 

Thus we can always find integers r and Q such that  

(9) a r  ~ + b = c Q .  

Th~n 

Let x be a solution of this congruence. Since (a, c)= 1, 
Hence we have 
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IQl-~la-~ + 1 

and according to (3) and (4) we get in imaginary Euclidean quadratic fields 

if m ~ l  (rood 4) 

[Q[ < [ac]. ]m[ 
i f + 1 

- 4 + 1 <  l a c l : l / I  

(10) 
4 

if lacl>g=lm~ I 
and if m - - 1  (rood 4) 

lQf < l a c l  .(Iml 
i m 

+ 1) ~ 
- 1 6 - l m l  + l < l a c l = V i  

(]1) 
if [ a c [ >  1 6 l m l  

161m]-(a~l  + 1) ~ 

Hence we can determine r so that  N ( Q ) <  I if I is great enough. 
it is not necessary that  N ( r ) <  N(c), if we only get N (Q )<  I.  

Q = 0 gives ar 2 + b = 0 and (6) has the solution [r, 1, 0]. 

Of course 

According to (5) a, b and r are units. 
If Q =4 = 0 the derived equation (8) is determined by the following definitions. 

A = (a r s, b, c Q) 

where by th~ postulate (5) A is square-free and r and Q are divisible by A. 
Put  

r = A a ,  b=Af l ,  Q = A C y  ~, 

where C is square-free. Substitution in (9) gives 

(12) a A  a 2 + f l = c C ~  ~ 

where the three terms are relatively prime in pairs. Finally we put  

afl= B 

which gives A B = a b .  Hence B is square-free and (A, B )=  1. According to (12) 
we have 

(C, aAf l )=(C,  A B ) = I .  

Thus A B C  is square-free. 
I t  follows from (12) that  - - a A f l = - - A B  is a quadratic residue of C and 

further that  f lcC is a residue of A. Since - - a c  is a residue of b and there- 
fore of A we have that  

( - -  ac) (t~cC) = - -  at~cg"C = - -  B C c  2 
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is a residue of A. Hence - - B C  is a residue of A.  Further (12) gives that  
a A c C  is a residue of fl and from - -  ac  a residue of fl follows - - A C  a residue 
of ft. (12) also gives flcC a residue of a and, since - -bc  is a residue of a, 

(-- bc) (flcC)= -- b flc2C= -- A C (flc) 2 

is a residue of a. Thus - - A C  is a residue of a and o f f l a n d ,  since(a,  f l ) = l ,  
this ~ives tha t  - - A C  is a residue of afl=B. 

Hitherto we have made almost no alterations of the proof in the rational 
field. I t  is, however, not immediately possible in K ( V m ) t o  infer tha t  the 
index of (8) will be less than the index I of (6) if N ( Q ) ~ I .  The analogous 
conclusion in the rational field is based upon the observation that  

I b l < l c l  if I > 1  

but in K (Vm) we must  take the eventuality 

N (b) = N (c) 

into consideration, because b and c may be conjugates. I f  I > 1 we can suppose 

.AT (a) < N (c) 

for if N(a)=N(c)  we have c=ea' ,  where e is a unit and a' is the coniugate 
of a. But  then, agains~ (5), we cannot have at the same t ime  (a, b ) = l  and 
(b, c )=  1. 

Suppose 
N (a) < N (b) = N (c). 

Then N ( A B ) = I  and N ( A C ) < - - N ( Q ) < I  give 

N (C) < N (B). 

Moreover A B = a b ,  N ( b ) >  1 and c=eb'  imply N(A)=4= N(B)  and hence the 
two greatest norms of the Coefficients in (8) are different. 

I f  N ( A ) >  N(C) the index of (8) is less than I .  
I f  N (A) <-- N (C) we get the same index I in (8) but a repeated procedure 

by the same method on (8) gives certainly a new equation with less index, if 
I exceeds the given number. 

To prove the last part  of the theorem we make the same substitution in (6) 
as in the proof in the rational field. 

x = A a X - - f l  Y 

(13) y = X  + a a Y  

z=C~,Z 

and this gives, according to (9) and' (12),' 

ax 2 + by ~ + cz2=cC~,2(AX ~ + B Y  2 + CZ2). 
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I f  iX, Y,  Z] is a proper solution of (8), then (6 )ha s  a proper solution, for 
otherwise 

(fl + A a a  e) Y = c C ~  ,~ Y=O 

as follows from (13) by elimination of X, and c C ~ e # O .  Hence x = y = z = O  
implies X = Y = Z = O. 

I f  (8) has no proper solutions, i.e. X =  Y = Z = O ,  then the same applies to 
(6), for as 

Ala a :  = c C r 2 # O  

we get from (13) 

X = a a x  +~flY 0 
cC~  ~ 

- - x  + A n y  
Y =  0 cC~  2 

Z 

Z = C ~ = 0 .  

Hence, by elimination of x, 
(fl + a A ae) y = O 

and we can only have x = y  =z  = O. 
Then all parts  of the theorem are proved. 

According to (13) we can always find a solution of (6) if we know a solu- 
tion ~ of (8). 

By this theorem all equations (6) in the rational field correspond to either 
the equation x 2 + y 2  z2=O or to the equation x 2 + y2 § z2=O. The condi- 
tions (7) are not sufficient in the rational field, because no equations (6) cor- 
responding to x 2 §  y e +  z2=0  have proper solutions. I t  is easy to see tha t  
this restriction and the more practical "a, b and c not of the  same sign" are 
equivalent. 

In  w167 4-8 we shall decide if the conditions (7) are sufficient or not in the 
five imaginary Euclidean fields by examining the equations with less index 
than the number ~iven by (10) or (11). Then it is clear tha t  the two con- 
jugated equations 

ax  e + bye + cze=O 
and 

a' x e + b' y 2 § c' z2=O 

have or have not solutions at  the same time, for if one of them has the solu- 
tion [~, ~], ~], then the other one has the solution [~', ~', ~']. 

w 4. The field K ( V Z l l ) .  

Since m ~  1 (mod 4) the integers are the numbers u + v i. where u and v 
are rational integers. 

The units are + 1 and + i .  
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The integers s n, where s is a unit, are associates. 
The primes are 1 + i, all rational primes ~ - -  1 (mod 4) and the conjugated 

factors of all rational primes -~ 1 (rood 4) and the associates of all these 
integers. 

From (10) follows that  
N ( Q ) < I  if 1 > 4 .  

Then, by the theorem, all equations (6) which satisfy (5) and (7) can be sub- 
stituted by equations (8) with I ~ 4 and for the rest with the same properties. 
We then only have to examine the solvability of these equations. 

I t  is enough Go consider I =  1 and 2, for I = 3  is impossible, because I is 
the norm of the integer ac. Since N ( a ) ~ N ( c ) ,  I = 4  implies N ( c ) = 4  and 
c = e- 2, but 2 = - -  i (1 + i)2 is divisible by a square against the postulates in (5). 
Since - - 1  is a square, we have to find the solutions of a few number of 
equations. 

(14) x ~ + y2 + ez2=0.  

has the solution [1, i, 0]. 

I = 2 .  

(15) - x 2 + y 2 + e ( l + i )  z 2 = 0  

has the solution [1, i, 0] and 

(16) x 2 + i y  2 + (1 + i) z 2=0  

has the solution [1, 1, i]. 

Hence the conditions (7) are sufficient in the field K ( V ~ I ) .  

w 5. The field K ( V ~ 2 ) .  

The integers are the numbers u + v V : 2 ,  where u and v are rational in- 
tegers. ' 

The units are + 1. 
The primes are V : 2 ,  all rational primes ~ 5 or 7 (mod 8) and the con- 

jugated factors of all rational primes ~ 1 or 3 (rood 8) and the associates of 
these integers. 

(10) gives 
N ( Q ) < I  if I > 1 6 .  

Then we have to examine the equations (6) with I - <  16, but for each I we 
can determine a number ~ such that  

N ( Q ) < I  if N ( b ) , < r - N ( c ) .  

From (9) we obtain the sharpened inequality 
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IQI la l l r~ l  Ibl 
-< |ci  + Ic~' 

and hence, according to (10), we get ~ in K (V~22) from 

3 V1 + V~ = V1 
4 

I 
i.e. 9 / = ~ "  

Thus we only need consider the  equations where 

N (b) >-- / N (c). 

According to (5) and since I is a norm, 
I = 1 , 2 , 3 , 6 , 9  and 11. 

I = 1 .  

(17) x 2 + y2 + z e = 0. Solution [1, 1, V -  2]. 

(18) x 2 - y~ + z ~ = 0. Solution [1, 1, 0] .  

(19) 

(20) 

1 = 2 .  

I = 3 .  

x ~ + y 2 + e V ~ 2 z ~ = O .  

x ~ -  y~ + e V  Z 2 z ~=0. 

we only have  to examine 

Solution [1 + e V~22, 1, e V -  2]. 

Solution [1, 1, 0]. 

1) N ( b ) = l .  

- - 1  is a non-residue of l + e V ~  in K ( ~ ) b y  the lemma,  s i n c e - - 1  
is a non-residue of 3 in the rat ional  field. 

Then we only have  

(21) x ~ _  y2 + cz~=O 

with the solution [1, 1, 0] .  

2) N ( b ) = 2 ,  b = •  ~ 2 .  

e V - -  2 ~ - -  1 (rood 1 + e V ~ 2) and ~ hence a non-residue. 

The remaining equations are 

(22) x ~ + e V ~ y  ~ + (.1 + e V -  2)z~=O 
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with the solution [ 1 - ~ V  ~ 2, 1, 1], and 

.(23) x 2 §  e v e r y 2 _ _ ( 1  § ~] /~-2)  z 2=0  

with the solution [1, 1, 1]. 

3) N (b) = 3. b = _+ (1 - -  V - 2 ) .  c = + (1 + V -  2). 

1 - -  e l / Z 2  ~ 2 ~ - -  1 (rood 1 + e V - -  2) and hence a non-residue. 

Then we only have 

(24) x ~ + ( 1 - - V ~ 2 ) y  2 + (1 + ] / ~ 2 ) z ~ = 0  

with the solution [ l / ~ 2 ,  ], 1]. 

I=6. 
6 .6  

1) N ( a ) = l .  N(c )=6 .  y . N ( c ) = - ~ 6 - > 2 .  

Thus we need consider N ( b ) ~  3 and then only 

N ( b ) = 3  is possible, i.e. a = l ,  b = +  ( I + e V ' 2 )  and 

c= +_ V ~  2 ( 1 -  e V ~  2) = ++ (2 + e V~22). 

1 + t V - ~ 2  is a non-residue of 1 - - e l / - -  2 and hence of 2 + e ~ / Z  2. 

- - ( 2  + e l / - - - 2 ) ~ - - 1  (mod 1 + e V - 2 )  and thus a non-residue. 

'Then we only have 

(25) x 2 § (1 § e V ~ 2 ) y ~ , - ( 2  § eV ~ 2 )  z 2=0. 

with the solution [1, 1, 1]. 

2) N ( a ) = 2 ,  N ( c ) = 3  a n d  hence N ( b ) = 3 .  

a=]/~2, b=+__ (1 - -V  ~ 2 ) ,  c=___ (1 + ] /=2) .  

As - - ( 2  + t ] / ~  2) is a non-residue of 1 + e V ~ ,  we only have 

(26) | / ~ 2 2 x  ~ -  ( 1 - - V - - - 2 ) y ~ +  (1 + V ~ 2 ) z 2 = O  

-with the solution [V~-2, 1, 1]. 
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I = 9 .  

N (a) < N (c), hence N (a) = 1, N (c) = 9. 

9.-9 
> 5. 

postulate (5). 

I = 1 1 .  
11.11 

N ( a ) = l ,  N ( c ) = l l ,  y . N ( c ) =  ] 6  > 7 "  

Thus, N (b)= 6 or 9, but both these values contradict the 

N(b )=9  or 11. 

1) N(b)=9.  b = + 3 .  c = •  ( 3 + s ] / ~ ) .  

-4- (3 • V ~ 2) ~ ~ V~-2 ~ - 1 (rood 1 + e V--- 2) and then a non-residue of 
in K ( l / ~  2) by the lemma. 

Hence no equations satisfy the conditions (7). 

2) N ( b ) = ] l .  b = +  ( 3 - - V  Z 2 ) ,  c = • 2 4 7  

3 - - e  V ~ 2  ~ 6 (mod 3 + e 1/~-2) are non-residues by the lemma. Then only 
one equation remains. 

(27) x z +  ( 3 - V : 2 )  y~+ (3+  V ~ 2 )  z 2=0 

has the solution [V Z 2, 1 + V ~ 2 ,  1 -  ~ ] .  
Hence the conditions (7) are sufficient in the field K (1/%-2). 

w The acid K 

The integers are all the numbers u + v V - - 3 ,  where u ~ v (mod 2) and 
2 

and v are rational integers. 

- 1  + 
The units are + 1, + e  and •  , where 0 2 

The primes are V - 3 ,  all rational primes ~ 2 (mod 3) and the conjugated 
factors of all rational primes ~ 1 (rood 3) and the associates of these integers. 

(11) gives 
N ( Q ) < I  if I > 2 .  

Since 2 is a prime in K (V~-3), we only need consider I = 1. 
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1 = 1 .  

Since ~2 and C)= (~)2)2 are squares, we only have 

(28) x 2 _  y2 + z2= 0. Solution [1, 1, 0]. 

(29) x 2 + y2 + z2= 0. Solution [1, Q, Q2]. 

Hence the conditions (7) are sufficient in the field K ( V ~ 3 ) .  

w 7. The field K ( V - - ~ 7 ) .  

The integers are all the numbers - - ,  where u ~: v (mod 2) and u 
2 

and v are rational integers. 
The units are + 1. 

The primes are V ~ ,  1 + e V Z 7 all rational primes --= 3, 5, 13 (rood 14) 
2 ' 

and the conjugated factors of all rational primes -~ 1, 9, 11 (rood 14) and the 
associates of these integers. 

- 1  + 
We can also write the integers u + wo, where co= or another 

2 
of the four numbers with the norm 2. 

(11) gives 
N ( Q ) < I  if I > 5 .  

4 V I  9 I  
T + V~ = V~r gives y = ~ ,  anak)gous to the determination in w 5. As 3 

9 I  
and 5 are primes, we only need consider I =  1, 2 and 4 and N(b) ~> ~ . N ( c ) .  

I = l .  

(30) x 2  y2 + z2= O. Solution [1, 1, 0]. 

The remaining equation 

(31) x ~ + y2 + Z 2 = 0 

has no solutions but the trivial [0, 0, 0], for suppose that we have the proper 
- - 1 + V - - 7  

solution [Ul + Vl co, u2 + v~ r u3 + v3 r where eo 
2 

Then substitution in (31) gives 

3 3 3 

- E = o 
i = l  i=1 i ~ l  

3 8 

(b)  i~=lUiVi - �89 ~ v ~ = O .  
i=1 
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We get 
3 

~v~ ~ 0 (rood 2) and hence 
i = 1  

3 ~ 
~ ~ = 2 ~ v i = 0  (rood 4). 

i = l  i = l  

This gives ul ~- us ~ u3 ~ 0 (rood 2). 
But then, according to (b) 

3 

v~ ~ 0 (mod 4) and vl ~ v ~  v3-- 0 (rood 2). 
i = 1  

This contradicts the postulate that the solution is proper and hence (31)is 
insolvable. 

N (a) = 1, N (c) = 2, N (b) = 1 or 2. 

1) N(b)=l. 
(32) 

has the solution [1, 1, 0]. 

(33) 

x 2 _ y2 + c z 2 = 0 

x 2 + y2 + 1 + e l / : Z 7 z 2 = 0  
2 

1 - ~ V ~ - /  1].  has the solution 1, 2 ' 

The remaining equations 
1 + e l / w 7  (34) x2 + y2 

2 
z 2 = 0 

correspond to (31) and hence they are insolvable by the theorem. This follows, 
1 - ~ V ~ 7  

if we don't take the least solution r =  1 but t h e  greater r 2 ' Q = 1 

of (9). Then A ~ ( a r  2 , b , c Q ) = l ,  B = I  and C = I .  
The insolvabi]ity of (34) can also easily be shown by congruences. 

2) N (6) = 2. 
(35) x2 ] - - V ~ 7 y 2 _ l  + V ~ T z  ~=0 

2 2 

has the solution [1, 1, 1]. 
The three remaining equations are all insolvable in K ( V  ~ 7), because they  

correspond to (31). 

(36) x2 + 1 --  ]/--~2 y~ + 01 + V ~ 2  7 z2= 0 
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gives the derived equation X 2 +  y 2  1 + ] / ~ 7 Z 2 = 0  ' one of the 
1 - - V ' 7  

2 2 
l + V - 7  

equations (37), if we take the solution r =  1, Q= of (9). 
2 

(37) x2 - 1 + s l / - - 7 y  2 + 1 - - e l / - -  7z2=0 
2 2 

can be substituted by (34), 
(34) are insolvable. 

1 = 4 .  

N ( a ) = l ,  N(c)=4,  y .N(c )  

if we take the solution r = l ,  Q = I  of (9), and 

9 . 4 . 4  
~ 2 .  

49 

N(b)  = 3 is impossible and N ( b ) =  4 is against the postulate (5). 

The conditions (7) are not sufficient in the field K ( V ~ 7 ) .  As in K(1) we 
must make the restriction that  all the equations correspor~ding to x ~ + y~ + z 2= 0 
are insolvable. 

The following 28 equations with I ~ 22 satisfy the conditions in the problem 
but are insolvable, because they correspond to x2+ y~+ z 2= 0. 

x 2 + yU + z2=  0 

1 +  s W - - 7  x2 + y2 z 2 =  o 
2 

x2 + 1 - - s V ~ 7 y 2  1 + s V  ~ 7 z 2 = 0  
2 2 

x2 + 1 - V  ~ 7 y 2  1 +  V- - 7 z 2 = O 
2 + 2 

x i + y2 + 2 z 2=  0 

l + s ~  
x 2 y2 + s V _ 7 z 2 = O  

2 

x ~ _  2 y  2 + s ] / ~ 7 z 2 = O  

x 2 - 2 y 2 +  3z  2 = 0  

x 2 -  2 y 2 -  3z  u = 0  

x ~ +  2 y 2 + 3 z  t = 0  

x z + Y2 - 3 z z = 0 

1 + ~ V ~ 7  
x2 y2 _ (2 + ~ V ~ 7) z 2 = 0 

2 
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X 2 ~- 2 y 2 - -  (2 + ~ V  ~ 7 )  z 2 = 0  

I + s V - - 7  7 + S V ~ z 2  x 2 y2 + = 0  
2 2 

7 - - s V  ~ 7 x 2 - -  (2 + s l / ~  7) y2 + _ Z 2 = 0 
2 

3(1 + V- 7) x 2 + y2 + z 2= 0 
2 

x 2 + s V ~ T y  2 + 3(1 + s 1 / - -7 )  z2= 0 
2 

s = l  or - - 1 .  

1 - -  V ~ 7 x2 + 1 + V ~  y2 + 3 Z 2 = 0 
2 2 

Then each equation (6) which by reduction with the index method to I < 22 
gives one of these 28 equations, is insolvable. This we also can say immediately 
about every equation with rational Coefficients all of the same sign which 
satisfies the conditions (7) in the rational field, for K ( V - - 7 )  contains K(1)  
and hence such an equation corresponds to x 2 +  y 2 +  z2=0. However, all 
equations with rational coefficients of the same sign are not insolvable. For 

[ ] instance, x 2 + y 2 + 3 z  2 = 0  has the solution 1 - - V ~ 7  1 + g ~ 7 7  1 but  
2 ' 2 ' ' 

then the conditions (7) are not satisfied in the rational field. 

w 8. The field K ( V - - H ) .  

u + v V ~ l l  
The integers are all the numbers 2 , where u------v (mod 2) and u 

and v are rational integers. 
The units are _+ 1. 
The primes .are V - -  l l ,  2, all the rational primes ~- 7, 13, 17, 19, 21 (mod 22) 

and the conjugated factors of all the rational primes ~ 1, 3, 5, 9 ,15  (mod 22) 
and the associates of these integers. 

(11) gives 
N ( Q ) < I  if I > 3 0 . 1  

As in K ( V ~ 2 )  and K ( V  7 7 )  we get 

__ 4 1 .  
9 + = V i  and r = 121 
11 

1 The inequalities in [4] w 14.7 give only N ( Q ) < I  if I > 2 5 6 .  
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According to the postulate (5) we then have to examine 

4 I  
I =  1, 3, 4, 5, 9, 11, 12, 15, 20, 23 and 25 and N(b) --> ]21-'N(c)" 

I = 1 .  

(38) x ~ _  y2 + z2= 0. Solution [1, 1, 0]. 

(39) x 2 § y2 + Z2= 0. Solution 1, ~ - - - - ,  - -  �9 

I = 3 .  

N ( a ) = l ,  N(c)=3,  N ( b ) = l  or 3. 

1) N ( b ) = l ,  b = •  c = +  
1 + ~ V ~ l l  

- -1  is a non-residue of 
1 + e V - - 1 1  

by the lemma. 

(40) 

with the solution [1, 1, 0]. 

X 2 __ y2 § C Z 2 = 0 

1 - V ~ l l  1 +  V ~ l l  
2) N(b)=3 ,  b = +  - - ,  c = •  - .  

- 2 2 

Then we only have 

( - -  2 -- -- 1 rood 1 + s = and hence non-residues. 

(41) x2 _ 1 - -  V ~ l l  y2 

2 
has the solution [1, 1, 1]. 

I = 4 .  

N ( a ) = l ,  N(c)=4,  N ( b ) = l  or 3. 

1) N ( b ) = l ,  b = + l ,  c = + 2 .  

(42) x 2 __ y2 • 2 Z 2 = 0. 

(43) x 2 + y2 __ 2 z 2 = 0. 

(44) x 2 + y 2 + 2 z  2=0. 

I §  
Z 2 = 0  

2 

Solution [1, 1, 0]. 

Solution [1, 1, 1]. 

Solution [3, V ~ l l ,  1]. 

1 + s V ~ l l  
2) N(b)=3,  b = •  2 , c = + 2 .  

2 ~ - - l ( m o d  1 +  s V ~ I - 1 ) i s  a non-residue. 
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1 + e V - - l i  
(45) x2 + 2 y2 + 2z 2 = 0 .  

has the solution [ 1 - - e 2 V - ~ l l  1, 1]  * 

l + e V - 1 1  
(46) x 2 y 2 + 2 z  ~ = 0  

2 

has the solution 1, 2 ' 

I = 5 .  

N (a) = 1, N (c) = 5. N (b) = 1, 3, 4 or 5. 

1) N ( b ) = l .  b = _ l .  c = •  

(47) 

has the solution [1, 1, 0]. 

(48) x 2 + y2 + 

3 + e V - 1 1  
2 

x 2 _ y2 + c z 2 = 0 

3 + e V - 1 1  
z 2 = 0 

1-~V-~ 1]. has the solution 1, 2 ' 

+ e V - - 1 1  
(49) x2 + y 2 _  3 2 z 2 = 0 

l+~V--~i 1] has the solution 2, 2 ' 

2) N ( b ) = 3 .  b=_+  
1 + e ] / - - l l  

and  

3 + e V ~ 2  - 1 (mod l+e[  ~---~)- 

3--~V~-2---2 - --1 ( m~ I+~V~-~) 

1 ~ ~ -  ~ ~ (mod ~ - ~ I  - 
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are all non-residues by the lemma. Then only two types remain 

1 + e V - 1 1  3 + ~ V ~ l l  y2 _ z 2 = 0 (50) x2 + 2 2 

with the solution [1, 1, 1]. 

I + r  3 + e V - 1 1  (51) x 2 y~ z 2 = 0 
2 2 

~ 1~ ~ 

3) N(b )=4 .  b=_+ 2. 

+ 2 are non-residues of 

satisfy the conditions (7). 

by the lemma, and hence no equations 

3 - -  V ~ l l  3 + V ~ 1 1  
4) N ( b ) = 5 .  b = +  , c = +  

2 - 2 

+ 3 - - V - - - - - H _ + 3 _  (mod 3 +  _ V ~ )  

no equations satisfy the conditions (7). 

are non-residues by the lemma, and 

1 ~ 9 .  

N ( a ) = l ,  N(c )= 9 ,  ~,.N(c)=41'2811 > 2. 

We only have to determine N (b)= 4 and 5. 

1) N(b )=4 .  b = + 2 ,  c = _ + 3 .  

2 is a non-residue of 3. 

Further we have 

(52) 

(53) 

x ~+  2 y 2 - - 3 z  ~=0.  

x ~ + 2 y ~ +  3z 2=0.  

Solution [1, 1, 1]. 

Solution [5, 2, I / ~  11]. 

2) N(b )=5 .  b=_+ 
3 + eV--11  

+ 3 are non-residues of 
3 +  e V ~ l l l  

and no equations satisfy the conditions (7). 
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I = 1 1 .  

N(a)=l ,  N(c)=l l ,  y.N(c)=4. 

N(b )=4 ,  5 and 9 must be examined. 

1) N(b)=4, b = •  c = _ l / - - l l .  

2 is a non-residue of V--11 by the lemma. 

(54) x e + 2y  2 + s V - 1 1 z 2 = O  

has the s~176 [ 5+sV=l12  , 1, l + s ~  11]. 

2) N(b)=5. b = +  3 + e V ~ l l  
- 2 . c = _ +  1 / ~ H .  

s V - 1 1 ~ _ - 3  (mod 3 + ~ V ~ )  

and e ] / ~ l l ~ 3  (mod 3 - - s ~  ~ )  - -  ~ 

They are all non-residues by the lemma and no equations satisfy the condi- 
tions (7). 

3) N(b)=9. b = _ 3 ,  c = •  V ~ l l .  

e V - 1 ]  ~ - 1  (mod 1 + e 2 V ~ ) ,  and hence non-residues of 3 by the lemma. 

No equations satisfy the conditions (7). 

1=12. 
4. 144 

I. N (a) = 1, N (c) = 12, ~,. N (c) 121 = - - > 4 .  

N(b)=5 and 11 must be examined. 

1) N(b)=5. b = +  3 + V Z ~ I  - 2 , e = • 1 7 7  Z l l ) .  

( [ )  • (1 + e V Z l l )  ~ T- 2 mod 3 + s _ ~  and hence non-residues by the lemma. 

by the lemma. 
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Thus we only have 

3 + s ] / - - l l  
(55) x 2 + _ y2+  ( 1 - - s ] / -  l l ) z ~ = 0  

2 

w i t h t h e  s~176 [ I + s V ~ 2  , 1, 11. 

(56) x2 § 3 + ~ ] / ~  y2 __ ( I _ _ s V Z  ] l ) z 2 = 0  
2 

with the solution [3- -e2V-~l l -  , 1, 1]-  

2) N ( b ) = l l .  b = •  c =  _+ (1_+ V--11) .  

s ] / - - l l - - - - 1  (mod l + s V - 1 1 )  

and - - (1  + s V  1 1 ) ~ - 1  (mod g ~ l l )  

are non-residues by the lemma. Then we only have 

(57) x ~ +. s ]/~1111 y2 _ (1 + s V ~ 11) z = = 0 

with the solution [1, 1, 1]. 

II. N (a) = 3, N (c) = 4 and hence N (b) = 3. 

1 -  V -  11 1 + V - 1 1  
a=_+ , b=_+ , c=2 .  

2 2 

( I + s V ~ l l l ~ 2  mod 1 - - s  and hence a non-residue. 

equation remains 

(58) 1 - - V ~ l l x 2  + 1:~ V ~ l ly~  + 2z2= 0 
2 2 

3+ V--11 ] 
with the solution 1, 2 , 2 �9 

I = 1 5 .  
4. 225 

I. N ( a ) = l ,  N(c)=15 ,  ~ .N(c )  121 

N ( b ) = t l ,  12 or 15. 

= - - ~ 7 .  

1) N ( b ) = l l ,  b = +  V--11 ,  c = +  ( 2 + V ~ )  or 
7 _ + ] / - - 1 1  

2 

0nly one 
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e V - 1 1  -----2 (mod 2 + e V ~ l l )  

V ~ 1 1 ~ 2  (rood 2 - e V ~ l l )  

~ ~1 ~ ( m o ~ + ~ )  

~_1~=~ (mo~ ~ - - ~ )  
and hence a non-residue of all these numbers by the lemma, because • 2 
and + 7 are non-residues of 5 in the rational field. Then no equations satisfy 
the conditions (7). 

2) N(b)=12. b = • 1 7 7  V ~ l l ) .  

1 + ~ 1 / ~ 1 1 - - = - 1  (m0d 2 + e V - 1 1 )  

- ( 2 + e V ~ 1 1 ) - - 1  (mod l + e V ~ l l )  

• 1 7 7  (mod 7 - - e l  ~ ] ~ )  

and they are all non-residues by the lemma. 

1 + e V Z 11 and 2 -- e V ~ 11 have a common divisor and so have 1 + ~ ] / ~ ] l  
7 + e V - 1 1  

and 2 Then only the following pair remains 

(59) x 2 + (1 + e V ~ ) y  2 -  (2 + eV -~- 11) z2=0 

with the solution [1, 1, 1]. 

3) N(b)=15. b = •  V ~ l l ) ,  c = •  (2 + V - - - l l )  

7 - V - 1 1  7 + V - 1 1  
or b = _  and c = + - -  

2 - 2 

--  ( 2 - e V ~ 1 1 ) - - 4  (rood 2 + e V ~ l l )  

_+ ~ - ~ - ~  _ _+ ~ (mo~ ~+~=~)  
are non-residues by the lemma. 

(60) x 2 - ( 2 - V - 1 1 )  y 2 - ( 2 +  V ~ l l )  z ~=0 

has the solution [2, 1, 1]. 
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II. N(a)=3, N(c)=5, N(b)=3, 4 or 5. 

1) N(b)= 3. 
3 V--  Then ab= + 3 and c= + 11, but + 3 are non-residues of 3 + 

- - 2 - 2 
and hence no equations satisfy the conditions (7). 

1 + V~-11 3 • V - 1 1  
2) N(b)=4, a 2 , b = •  c = •  2 

•  (rood 3 + e ~  ~ - ~ )  

- ( 3 - s V - / 1 1 ) - : - 4 ~ - 1  (mod 1 + ~ ;  ~ )  

and hence non-residues. Two pairs of conjugated equations remain 

l + eV ~11 3 - e V  ~ 1 i  x 2 - 2 y2 + z 2 = 0 (61) 2 2 

with the solution [1, 1, 1] and 

1 + e V ~ l l  3 - e V ~  11 
x ~ + 2 ya - z ~ = 0 (62) 2 2 

with the solution [ 3 + e V - 1 1  1, 1 - - e V ~ - H ]  
2 

I •  Z-11 3 - V = l l  3 + V = l l .  
3) N(b)=5, a 2 , b = +  2 , c = _  2 ' 

- + l + e V ~ l l 2  3--sVZlX2 - + 7 + e V - ~ 1 i = + 2  (m~ 3 + e ~  Z 1 i ) 2  - 

and hence non-residues by the lemma. No equations satisfy the conditions (7). 

I =  20. 
4. 400 

I. N(a )= l ,  N(c)=20, y .N(c)=  12-~- >13" 

It is only necessary to examine N(b)= 15. Then, according to the pos- 
7 + s V - 1 1  

tulate (5) we can suppose a = l ,  b= • (2 + e V ~11)  or _ 2 and 

c= + (3 + ~V~11) .  

- -  (3 + e l / - ~  11)  ~ - - - 1  ( r o o d  2 + eV ~ 11) 

+ 7  + eV~--11 ( 3 + ~ V---1-1) 
- + 2 mod 

- -  2 - -  

are all non-residues by the lemma. 
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The following equations remain 

(63) x 2 + (2 + eV- -  n ) y 2  _ (3 + e V -  l l )  z2=O 

with the solution [1, 1, 1] and 

(64) x 2 - ( 2 + s V - 1 1 )  y 2 - ( 3  + s J / ~ l l )  z 2=0 

~,~ ~ so~io. [ ~ ,  ~,' ~~1  T �9 

II. N(a)=4, N(c)=5,  N(b)=5.  

3-V211 3+ V--ll 
a = 2 ,  b = +  c=_+ 

- 2 ' 2 

3 - V ~ n 3 + V~ n y2 + Z 2 = 0 (65) 2 x 2 + 2 2 

[ 1 + 1/-- 11 1 --  V22~11] has the solution 1, 2 ' " 

(66) 2x 2 3 - V ~ l l y  2 3+V~-l lz2=o 
2 2 

has the solution [ 1 - - ] / ~ l l  I + V - - - ~ ]  2 , 1, - �9 

(67) 2x2 3--s1/~2 l l y2  + 3+eW--llzu=~ 

[ i+eV-li 3+eVil has the solution 2, 2 ' - " 

I= 23. 
4. 529 

N(a)=l, N(c)=23, r.N(c)= ~21 >16. 

1) N ( b ) = 2 0 ,  b = + ( 3 _ + V ~ l l ) ,  c=_+ 
9+_ V-u 

~ ~ : ~ 1  ~ ( ~ o a ~ ~ )  
- -  2 - -  

�9 ( [~) - ( 3 + e V  ~ - 1 1 ) ~ - 1 2  rood 9 - - s  

and hence they are non-residues by the lemma. Two pairs of equations remain 
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(68) 

with the solution 

9--s1/---  11 
x 2 -  (3 + ~1 /~11)y  2 

2 
z 2 = 0 

(69) x 2 -  (3 + e 1 / ~ l l ) y  2 ~ 9 - - s 1 / - -  11 z~=O 
' 2 

with the solution - / 9 + 11s1/--  11 11 + 2 e V -  11, 13 + 5 e 1 / ~ ]  - 
2 ' 9~ ]" k 

9 - -  V ' -  11 9 + 1 / - 1 1  
, c = ~ -  

2 - 2 

- -  9 
2 

2) N(b)=23,  b=__+ 

and hence a non-residue by the lemma. 

(70) x2 9 -- V--  11 y2 
2 

has the solution [3, 1, 1~. 

( m~ 9 + e l / ~ ] 2  ] 

Only one equation remains. 

9 + V ~ I  
Z 2 =  0 

2 

I =  25. 
4. 625 

N ( a ) -  1. N(c)=25. y . N ( c ) =  12~  >20" 

9 +  1/--11 
Then we only need consider N(b)=23, b = +  2 --, c= + 5. 

+ 9 + ~ V ~ - + 3  (rood 3 + ~ / ~ 1 _  
- -  2 - -  

and hence non-residues of 5 by the lemma. 
Then the conditions (7) are sufficient in the field K ( V ~ l l ) .  

S U M M A R Y  

In four of the five imaginary Euclidean quadratic fields, K (V ~ 1), K ( V ~ 2 ) ,  
K (1/~33) and K ( l / ~  11), this paper gives the following result : 

I f  a, b and c are square-free integers, relatively prime in pairs and not 
zero or, simpler expressed, if a b c  is square-free, then the equation 

a x  ~ + b y  ~ + c z ~ = O  

has proper integral solutions if and only if - - b  c, - - c a  a n d -  a b are quadratic 
residues of a, b and c respectively. 
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In the remaining field K(V2~7) we must, as in the rational field, make 
the restriction that  all the equations which by the index method correspond 
to the equation x2+  y2+  z e_.0 are insolvable. All the equations of this type 
with I less than 22 are given in w 7. 

R e m a r k  1. I t  is possible to replace this restriction by a congruence 
condition. In fact, the necessary and sufficient conditions for the solvability 
of the equation axe+ b y e §  c z e=O in a quadratic field K(Vm) is that the 
congruence 

ax  e + b y e + c z  2 - - 0  (nlod N) 

is solvable for every integral ideal modulus N in K (l/m) in integers x, y, z 
such that (x, y, z, N ) =  1. 

In the rational field the completing condition can be written 

axe + b y2 + cz e - - 0  (rood 8) 

and in the field K (V--7)  we have the condition 

a x  2 + by 2 + cz e = 0 (rood ,~3) 

1 + V ~ 7  
where z~ is one of the prime divisors of 2, for instance 2 This fol- 

lows quite analogously to [3] pp. 222--225, because a e ~  1 (1nod z3) and 
a + fl ~ 0 (mod ~), if a and fl are integers not divisible by ~. 

R e m a r k  2. I t  is possible to reduce all the equations (14)-(70) with I >  1 
to equations with less index by the index method, even if we in some cases 
must take great solutions of the corresponding equation (9), for instance 

5 + 3 e  1 / ~ 1 1  ( 1/--~Ht2 
r =  2 Q = -  7 - e  ' 2 ! to reduce (46) to (40). Hence every 

equation (6), which satisfies the conditions (7), corresponds to an equation 
with I = 1. 

By examination of only few equations more we can further prove that  if 
N ( a ) ~ < N ( b ) ~ < N ( c )  and N ( c ) > l  and if - - a b  is a quadratic residue of c, 
then we can find N ( A C ) < N ( a c )  except in (36), and hence otherwise, ac- 
cording to (9), at least one of the Diophantine equations 

a~ e+k-c -~  2 = - b  

where k is an integer and N ( k ) <  N(ac) ,  is solvable. 
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