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On the Diophantine equation uw—DP=+4N

By BencT StOLT

Part 1
§ 1. Introduction
It i1s easy to solve the Diophantine equation
A2+ Bzy+Cy*+Dz+Ey+F=0

with integral coefficients, in integers x and y when the equation represents an
ellipse or a parabola in the (z, y)-plane. If the equation represents a hyperbola,
the problem is much more difficult. In this case the problem may be reduced
to the solution of the equation

1) ‘ w?— D=+ N,

where D and N are integers. We exclude the case of D being a perfect square,
which is without interest. For solving an equation of this type one may use
either the theory of quadratic forms or the theory of quadratic fields.

T. NagerL has shown! how it is possible to determine all the solutions of
(1) independently of these theories.

Suppose that (1) is solvable, and let « and v be two integers satisfying (1).
Then u + VD is called a solution of (1). If z+yVD is a solution of the
Diophantine equation ’

(2) ' $2 —D y2 = 1’
the number : B -
(u + vVD) (z + yVD) = (u, + v, VD)

is also a solution of (1). This solution is said to be associated with the solu-

tion w + vVD. The set of all solutions associated with each other forms a
class of solutions of (1).

A necessary and sufficient condition for the two solutions u + v VD and
u' + v'VD to belong to the same class is that the two expressions
ww' —ov' D vu —uv

(3) ‘ N g ¥

be integers.

1 See [1], {2], [3], [4]. In the following we use the notions propose& by NAGFLL.
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Let K be the class which consists of the numbers u; + v; VD, ¢ =1,2,3,....
Then the numbers w; —w VD, i=1,2,3,... form another class, which is
denoted by K. K and K are said to be the conjugates of one another. Conjugate
classes are in general distinet but may sometimes coincide; the latter case is
called an ambiguous class.

Among the solutions of K, a fundamental solution of the class is defined in the
following way. u* + v*VD is the fundamental solution of K, if o* is the
smallest non-negative value of v of any solution belonging to the class. If the
class is not ambiguous, 4* is also uniquely determined, because — u* + v* VD
belongs to the conjugate class; if the class is ambiguous, »* is uniquely de-
termined by supposing #*=0. «* =0 or v* =0 only occurs when the class
is ambiguous.?

If N =1, there is only one class of solutions, and this class is ambiguous.

For the fundamental solution of a class, NAGELL deduced the following
theorems (D and N are natural numbers, and D is not a perfect square).

Theorem. If u+vVD is the fundamental solution of the class K of the
Diophantine equation

4) u?— Dv* =N,

and if z+y VD is the fundamental solution of the Diophantine equation (2),
we have the inequalities

N
: =v= —
() 0 v<y1]/2(x1+1)

(6) 0<|ul<V3@ +1N.

Theorem. If u+ vVD is the fundamental solution of the class K of the
Diophantine equation '
) w?—Dv? = —N,

and if x; + ylV]_) 18 the fundamental solution of equation (2), we have the
inequalities

o
8 < .,
© v<o=ul/ 55

(9) 0<lu|<V3@m—1N.

Theorem. The Diophantine equations (4) and (7) have a finite number of
classes of solutions. The fundamental solution of all the classes can be found
after a finite number of trials by means of the inequalities in the preceding
theorems.

» In his first papers NageLL defined the fundamental solution in a slightiy differer:
manner.

2
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If u* +o* VD is the fundamental solution of the class K, we obtam all the
solutions u + v VD of K by the formula

u+oVD = (u* +b* VD) (x + y VD),

when  + yVD runs through all the solutions of equatioh (2), mncluding + 1.
The Diophantine equations (4) and (7) have no solutions when they have no solu-
tions satisfying inegqualities (5) and (6), or (8) and (9) respectively.

NaGeLL also proved the following theorem.
Theorem. 1) If p s a prime, the Diophantine equation

(10) wr— D= +19p

has at most one solution w + vVD in which u and v satzsfy inequalities (5) and
(6), or (8) and (9) respectively, provided u = 0.

2) I f solvable, equation (10) has ome or two classes of solutions according as
the prime p divides 2D or not. :

In this paper we shall extend the results of NAGELL to the more general
equation

(11) ut— D= +4N.

For this equation we deduce inequalities equivalent to those given by NAgELL.
Furthermore, we shall treat the problem of the number of classes corresponding
to a square-free N. An upper limit for the number of classes will be de-
termined.

These investigations will be continued in a second part, in which the problem
of determining an upper limit for the number of classes corresponding to an
arbitrarily given N will be solved by elementary methods. Furthermore, we
shall prove that there is at most one ambiguous class. In a third part, the
same problems will be treated by means of the theory of algebralc numbers
and ideals.

§ 2. The Diophantine equation x®>— Dy® =4
Consider the Diophantine equation
(12) ?—Dy? =4,

where D is a positive integer which is not a perfect square. When z and y
are Integers satisfying this equation, the number
r+y VD
2
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z+yVD ' + y' VD
and
2 2
are equal, if z =2’ and ¥y = y'. Among all the solutions of the equation there
18 a solution

is said to be a solution of this equation. Two solutions

2

in which z; and %, are the least positive integers satisfying the equation. This
solution 18 called the fundamental solution.
A well-known result is the following

Theorem.! When D is a natural number which is not a perfect square, the
Drophantine equation :

(12) 2Dy =4
has an infinity of solutions. If the fundamehtal solution s denoted by &, every

:v+yVE

solution
2

may be written in the form

x+yVﬁ

go= ke, (k=0 %1, %2 £3,..).

If the fundamental solution of the Diophantine equation
(2) 2Z—Dyt=1
1s denoted by z' + ¥’ VD, the following results are easily obtained.

If D=1 (mod. 8), D=2 (mod. 4), D=3 (mod. 4), the fundamental solution
of (12) is gﬁigiv—p

If D=5 (mod. 8), and if there ewist odd solutions of (12), we have, for the
fundamental solution, the relation '

3 _
(13) (’”———1 th VE) ~ o + ¢ VD.
If there only exist solutions with even x and y, the fundamental solution of (12) 1s
&ﬂ%ﬁ@ = x’ + ?/l ]/E

If D=4D,, we denote the fundamental solution of
2—Dyyt=1

1 Se [5].
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22* + 4* VD
2
s even, the fundamental solution of (2) s z* + %Vj), and the fundamenial solu-

by =* +vy* Vﬁl. Then the fundamental solution of (12) s Iy

tion of (12) s ' + ¢ VD, as before. When y* = yy 18 odd, we have the relation

ﬁ?_2‘|‘x1yll/ﬁ'

(14) o +y VD= 5

The last formula is easily obtained by observing that
& +y' VD =2z+ Dyy*® +a* y* VD.

Finally, we give a table of the fundamental solutions of the equation
#? —Dy* =4 for D=5 (mod. 8), D < 100.

D Fundamental solution D Fundamental solution
5 | $(3+Vs) 53 | 1(514+7V53)

13 | 3(11+3V13) 61 | 3 (1523 + 195V 61)

21 | 3¢5+ V21 69 | 3(25+3V69)

29 | 32745V 29) 77 |3+ V)

37 | 3(146+ 247V37) 85 | 1(83+ 9V 85)

45 | 3 (7+ V45) 93 | 3(29+3V93)

§ 3. The classes of solutions of the Diophantine equation u? — Dv? = + 4 N.
The fundamental solutions of the classes

Let D be a natural number which is not a perfect square, and consider the
Diophantine equation

(11) w—Dv?= 44N,

where N is a positive integer. Suppose that the equation is solvable, and that
+oVD . : . D . .

u—;)—~ is a selution of it. If ﬁg VD is any solution of

(19) 22— Dy =4,

the number

2 2 4
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is also a solution of (11). This solution is said to be associated with the solu-

+2VD o . .
tion 7&__5_7 . The set of all solutions associated with each other forms a class
of solutions of (11).
. . . . . u + »VD
It is possible to decide whether the two given solutions -— --— and

)

P

14 fv V

, it is easy to see that

the necessary and sufficient condition for these two solutions to be associated
with each other is that the two numbers

uu' —ov' D vu' — uv

av 2 Ty
be Integers.
+ D . .
If K is the class consisting of the solutions Wt 2“1/_, 1=1,2,3,..., 16
is — VD ,1=1,2,3,..., also constitute a class,

which may be denoted by K. The classes K and K are said to be conjugales
of each other. Conjugate classes are in general distinct, but may sometimes
coincide; in the latter case we speak of ambiguous classes.

. D . .
Among all the SOluthnb - ;—1/ ~ in a given class K we now choose a
. +u VD . . .
solution u—l—Tti* in the following way: Let »; be the least non-negative

value of v which occurs in K. If K is not ambiguous, then the number %, is

—uy+ v, VD
2

jugate class K. Tf K is ambiguous, we get a uniquely determined w; by pre-

scribing that #; 20. The solution Ut ;)l VD defined in this way is said to be

also uniquely determined; for the solution belongs to the con-

the fundamental solution of the class.
In the fundamental solution the number |u;| has the least value which is
u+vVD

2
when the class is ambiguous, and similarly for the case v, = 0.
If N =1, clearly there is only one class, and then it is smhiguous.

We prove

possible for |u|, when

belongs to K. The case u; = 0 can only occur

Theorem 1. If %i—;ﬂfg is the fundamental solutivw ./ ihe class K of the

Diophantine equation
(15) , u?—Do® = 4N,

6
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where D and N are positive integers and D is not a perfect square, and ¢f

ugl—}—p 1s the fundamental solution of. equation (12), we have the inegqualilies
(16) 0=vs VW,

Vo, + 2
(17) 0<]ul = V(g +2)N.

Proof. If inequalities (16) and (17) are true for a class K, they are also

true for the conjugate class K. Thus we can suppose that u is positive.
It is plain that .

uzy— Doy, _uay _ |/ (& (_w_f__\\q
(19 o vm 1/(E ) ()

Consider the solution

u+ vl{jD_'xl-—ylVﬁ _uz— Doy + (v —yu) b 15

2 2 4
. o .

. : . u+vVD-, .
which belongs to the same class as — * @E .~ Since %6"?'";()'}”" is the funda-
mental solution of the class, and since by (18) 9251&1)7191 is positive, we
must have \ |
(19) L :D_”yl.; Y.

; 4 2

From this inequality it follows that

wt(my— 222 Do = (WP — 4 N) (2] —4)
or

and finally :
’.lllz § (1‘1 + 2) N.

This proves inequality (17 ), and it is easily seen that (17) iraplies (16).

. :
Theorem 2. If g--—;')—]/—p 15 fhe fundamental solution of the class K of the

Diophantine equation

(20) ut—Dv? = —4N,
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where D and N are positive integers and D is not a perfect square, and if

+u5 VD | . . . .
{1_%11__ 15 the fundamental solution of equation (12), we have the inequalities

%N yw
(21) 0<vs Vo =3 VN,
(22) 0= |ul S V(@ —2)N.

Proof. If inequalities (21) and (22) are true for a class K, they are also

true for the conjugate class K. Thus we can suppose that « = 0.
We clearly have

2,2
yiu

23 v yi 1}, ,
—— = (— + B)(u +4N)>
or

(23) v — U

4 > 0.

Consider the solution

u —I-'UVE_wl—yle) _ uxy— Doy, + (wlv——ylu)Vﬁ

2 2 4
. D . +9VD |

which belongs to the same class as -t ;LD Since 2 ;)— is the funda-
mental solution of the eclass, and since by (23) %M 18 positive, we
must have

TyO— YU U
24 MRS Sl S
24) 4 =2

From this inequality it follows that

D (x,—2) 2 Dyt u® = w? (af — 4)
or
u2 é (x1—2) N.

This proves inequality (22), and it is easily seen that (22) implies (21).
From Theorems 1 and 2 we deduce at once

Theorem 3. If D and N are positive wntegers, and if D is not a perfect
square, the Diophantine equations (15) and (20) have a finite number of classes
of solutions. The fundamental solutions of all the classes can be found after a
finite number of trials by means of the inequalities in Theorems 1 and 2.

8
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If i—tig@ 1s the fundamental solution of the class K, we obtain all the
solutions —-; VD of K by the formula
u+vVD u1+leD x+yVD
2 2 2
where ﬁg VD runs through all the solutions of (12), ncluding + 1. The Dio-

phantine equations (15) and (20) have no solutions at all when they have no solu-
tions satisfying inequalities (16) and (17), or (21) and (22) respectively.

We next prove
+9VD
?

-

Theorem 4. The necessary and sufficient condstion for the solutions

u, + v VD . . .
L—;I— of the Diophantine equation

w?—Dv*= +4N

to belong to the same class ¢s that

UV Uy V

2N

be an integer.

Proof. We already know that a necessary and sufficient condition is that

wuy —ovy D wvg— uy v

3

2N 2N
. .. .. wuy—ovvy D .
be integers. Thus it is sufficient to show that ——?Z—V——— is an integer when
UV~ UV . . UV — UV . . uy — oo, D
By 18 an Integer, and that 9N is not an integer when T oN

1s not an integer.
Multiplying the equations

(24) u?—Dv = 4+4N, t—Dl= +t4N
we get
(25) (wuy —vo; D) — D (uv; —uyv)? = 4(2N)%

It is apparent from (25) that uul — v'vl D is divisible by 2 N when uv; — 40
is divisible by 2N. Further, it % 2 N

integer d which is a divisor of 2 N but is not a divisor of wu; —ww;D. 4 is

nD .
——=——="is not an integer, there exists an

9
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not a divisor of D, for if it were, it is apparent from (24) that both u and u,
would be divisible by d, and thus d would be a divisor of wu; — vv; D, which
is contrary to hypothesis. From (25) it is seen that if d were a divisor of
uvy—uyv, 1t would also be a divisor of wwuy —vvy D, which is contrary to
hypothesis. Hence the theorem is proved.

If * + ¥* VD is the fundamental solution of
) 2—Dy=1

x1+y1l4D

and 5

is the fundamental solution of

a2 —4Dy? =4,
we have shown in § 2 that

=22, Y=y
If the fundamental solution of the class K* of the Diophantine equation
(1) w—Dv¥=+ N

is u* + v* VD, we get from inequalities (5) and (6), or (8) and (9) respectively:

0< o =y* ]/2(7%,
0<|u|=V3@E" £ 1N
For the fundamental solution of the class K of the Diophantine equation
(26) u?—4Dv® = + 4N,

from inequalities (16) and (17), or (21) and (22) respectively, we geb

—
< /;,
0<w yll -

0<|u|< V(@ +2)N.

Observing that x; = 227, y; = ¥*, we get the inequalities

N
® _ R
0<v" =y R

0<|u*|=V(x, = 2)N.
Thus u* and v* lie between the same limits as w and v respectively.

10
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Theorem 5. The Diophantine equation
{1 w—Dv¥=+N
has the same number of classes as the Diophaniine equation

(26) u?—4Dv?P=+4N.
2u + vl’4D

Proof. If u +vVD is a solution of (1), it is easily seen that ————

is a solution of (26). Conversely, since (26) is only solvable when u is even,
every solution of (26) corresponds to a solution of (1).

Let u+oVD and w; + v, VD be two solutions of (1) which belong to
different classes. Then the corresponding solutions of (26) belong to different
classes of (26). In fact, if the solutions belong to different classes of (1),

u’l)l—ul’v

N

is not an integer. For the corresponding solutions of (26) we get the condi-
tion that

2uv; — 2uqv
2N

is not an integer. Thus Theorem 4 is proved.

§ 4. The number of classes for square-free IV

u+oVD ul—!-leE

Suppose that 5 and 5 are two solutions of the Diophantine
equation
(11) u®—Dv* = 4+ 4N,

where u, 4, and w, v, satisfy the inequalities (16) and (17), or (21) and (22)
respectively. Then, as is easily seen,

(27) 0<|uv, Fuzv| <2y N,

where the equality signs only hold if w = u;, v = v;. -
Eliminating D from the expressions

(28) u>—Dv?P=+ 4N, wi—Dvl= +4N

we obtain

(29) (vy + Uy ) (uv; —uyv) = + 4N (oF — 07).

From (28) we also get
(30) (wuy, F Dvwy)?— D (wvy F uyv)® = 16 N,

11
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or, dividing by 4 N?,
uu, + Doy ) uvy F ulv)ZZ
(31) ( 5N ' —D ( o 4.

Thus all the prime factors of 2N are divisors of either of the expressions

U + Uy v
2

3

as is apparent from (29). If all the prime factors of N are divisors of the
same expression, the squares of the left-hand side of (31) are integers. Then
vy Fugv=0 or vy Fuv=2y; N. But then u =u;, v=v;, and the two
solutions coincide.

Theorem 6. 1) Suppose that N = p, where p s a prime. The Diophantine
equation

(32) u?—Dvit= +4p
v VD

has at most one solution u‘2_ i which u and v satisfy inequalities (16) and

(17), or (21) and (22) respectively, provided u is non-negative.

2) Suppose that p 1s an odd prime. If solvable, the equation has ome or two
classes according as the prime p divides D or not.
Suppose that p = 2. If solvable, the equation has two classes when D =1 (mod. 4), -
and one class when D=1 (mod. 4).
w+vVD u1+leD in
2 2
which % and v would satisfy the conditions of the first part of the theorem.
Then it would be possible to obtain (31). For one of the signs, the squares
of the left-hand side of (31) would be mtegers Thus » = %y, v = v;. Hence
the first part of the theorem is proved. o
+vVD
2 2

Proof. Suppose that there existed two solutions

Thus there are no more than two classes. If the two solutions o

i %'v VD are associated,. 22%) is an integer. But if D is divisible by o,
w 1s divisible by p. Thus the necessary and sufficient condition for the two
solutions to belong to the same class is that » be a divisor of D.

If p=2, it is easily seen that (32) is only solvable in odd » and v when
D=1 (mod. 4). In that case there are two classes at most. If D=1 (mod. 4),

(32) is only solvable when u is even. Thus % is an integer, and there is one

single class. Hence the theorem is proved.

Theorem 7. 1) Suppose that N = pq, where p and g are primes, p 7 q. The
Diophantine egquation

(33) ur—Dv*= +4pq

12 .
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] i -+ 'v-VB . . . . Ve
has at most two solutions 3‘},_2@__ in which ui and vi satisfy inequalities (16)

and (17), or (21) and (22) respectively, provided u; is mon-negative.

2) Suppose that p and q are odd primes. If solvable, the equation has at most

four classes when N and D are relatively prime;
two classes when either p or q is a divisor of D;
one class when N is a diwisor of D.

Suppose that ¢ = 2. If solvable, the equation Fas at most
four classes when N and D are relatively prime, D=1 (mod. 4);
two classes when N and D are relatively prime, D=3 (mod. 4);
when 2 is a divisor of D and p is not a diisor of D;
when p 15 a divisor of D, D=1 (mod. 4);
one class when p is a dwisor of D, D=3 (mod. 4);
when N 1s a divisor of D.

Proof. Suppose that p and ¢ are odd primes and that N and D are

) ) . +0VD )
relatively prime. Then for every solution u—z—, % and v are prime to pgq.

Suppose that theorem were incorrect. Then there would exist three solutions
D . . . .

Ut ;)1 VD, Ug F ;)ZV ) 'u3 + ;)3 VD in which w%; and »; would satisfy the condi-
tions of the first part of the theorem. ' Treating them two by two, we would
obtain three pairs of solutions from which three series of expressions analogous

to (27)—(31) would be obtained.
If bot p and ¢ were divisors of

uiv; + U

(34) :

when the same sign is chosen, we would have u; = uj,” v; = v;. Thus two of
the solutions would be identical. ‘We therefore suppose that p» and ¢ would not
be divisors of [34) for the same sign.

Consider the expressions

(35) 3 (uivj + ujv5) = 0 (mod. p), } (ujvg + ugvj) = 0 (mod. p).
From these congruences we get
3 (usujvjor + uiviveg) = 0 (mod. p),

1 (u,;u;v,-vk + uiugv}) = 0 (mod. p).

Thus . :
} (u vive — wiuzvf) = 0 (mod. p).

In this congruence, u5 may be substituted by Dvj. Then

3 v (uiwx — Do) = 0 (mod. p).

13
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From (30) we also get 7
(36) 3 (wsvr — wzvs) = 0 (mod. p).
Consider the expressions
(37) 1 (usv; + wjve) =0 (mod. p), & (u;vr — uxv;) = 0 (mod. p). |
From these congruences we get
1 (uiu w05 + ujvivg) = 0 (mod. p),

3 (43 %508 — u;uz v7) = 0 (mod. p).
Thus
3 (uivive + wyurvi = 0 (mod. p).

In the same way as before, we get the congruences
1 (uiux + Dw;og) = 0 (mod. p),
(38) 3 (uivr + wpv;) =0 (mod. p).
Now suppose that for every pair of solutions of (33) these expressions hold.
3 (usv; + w;v5) = 0 (mod. p), =0 (mod. ),
3 (u;v; — u;v5) = 0 (mod. @), =0 (mod. p).
From (35), however, it follows that
3 (w0 — uz ;) = 0 (mod. p).
This is contrary to hyi)othesis. If there are three solutioﬂs satisfying the

conditions of the first part of the theorem, the only possibility is that the
following expressions hold.

L (w309 + us,) = 0 (mod. p), =0 (mod. g),
(mod. p}, =0 (mod. g},

)
§ (a5 T uzp) =
3 (ug vy + w1 3)

)

0

0
= 0 (mod. ¢), =0 (mod. p),
3 (Uy v — ugv,) =0 (mod. gq), = 0-(m0d. ?),
0 (mod. ¢), =0 (mod. p),
0 )

(mod. p), =0 (mod. g).
Then follows

(39) © 3 (ugvg + Duyvg) =0 (mod. p), =0 (mod. g).
14



ARKIV FOR MATEMATIK. Bd 2 nr 1

According to (37), from the third and the fourth of the six congruences
above we. get ,
3 (uauz + Dvyvg) = 0 (mod. g).

But this is contrary to (39). Hence the first part of the theorem is proved.

If N and D are relatively prime, there are no more than four classes since
it is clear that every solutions satisfying the conditions of the first part of the
theorem may correspond to two classes. If ¢ is a divisor of D, every u is
divisible by ¢. Thus it is apparent from (34) that there is only one solution

u-l-'vVD

5 in which % and o satisfy the conditions of the first part of the

theorem. Then there are no more than two classes. If N is a divisor of D,
every u is divisible by N. Thus there is one single class at most.

If ¢=2, (33) is only solvable in odd » and v, when D=1 (mod. 4). If N
and D are relatively prime, there are four classes at most. If p is a divisor
of D, it is apparent that there are no more than two classes. If D= 1 (mod. 4),
every u is divisible by 2, and every Do? is divisible by 4. Thus, if p is not
a divisor of D, there are two classes at most, and if p is a divisor of D, there
is no more than one class. This proves the second part of the theorem.

Theorem 8. 1) Suppose that N = p; 95 . . . pu, where by, Do, . . ., Pn Gre primes,
pi # pj. The Diophantine equation

(40) W —Dv*= 1+ 4P Dy...Pn

. ui + w VD . . . . L.
has 2*1 solutions _”_21_* at most in which u; and v; satisfy inequalities (16)

and (17), or (21) and (22) respectively, provided u; is non-negative.

2) Suppose that all p; are odd primes. If solvable, the equation has at most
2" classes when N and D are relatively prime;

- 277" classes when m of the prime divisors of N are diwvisors of D;
one class when N s a divisor of D.

Suppose that pa = 2. If solvable, the equation has at most
2" classes when N and D are relatively prime, D=1 (mod. 4);
2"=™ classes when m of the odd prime divisors of N are divisors of D, D=1 (mod. 4);
when m — 1 of the odd prime divisors of N are divisors of D, D=3 (mod. 4);
when the prime 2 and m—1 of the odd prime divisors of N are divisors of D.
Proof. Let Un + ;%VD’ ui'+;iV.D’ i +2'UjVD’ U ;kVD’
ber of solutions of (40) in which % and v satisfy the conditions of the first
part of.the theorem.

For the sake of brevity we introduce the notions

--+ be a num-

(i, j))+ = % (uw,- + ujvi),
(1, 9)™ = ¥ (wavj— ujvi),
(6, )t = § (wivy £ ujoy).

15
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If p, i8 a prime divisor of N, it is apparent from (29) that p, divides either
(i,9)* or (¢,9)”, or perhaps both of them. Then we may suppose that (z,)*
18 divisible by

R B
and that (7,7)~ is divisible by
phrpl ... pba

where @, =1 or 0 according as p, divides (z,9)" or not, and B, =1 or 0
according as pr divides (¢, )~ or not. From (29) it is apparent that

oy + ﬂr g 1.
We express this fact by the symbol

(5,9) ®phpg...pn, ©phplh. .. phn.
. e S, . ui + o VD
We call this symbol the distribution corresponding to the solutions J—-2’—-~ )
u; + v VD
2
If gy=a3="-=an=1, or if fy=Bs=--- =fa=1, it is apparent from
uw; + v VD u; + v,-VD

(31) that the solutions 3 , 5 coincide.

Let the distributions corresponding to (z,7)* and (h, k)T be

, or shorter the distribution corresponding to (¢, §)*.

(4,7) ®@papg...pon, ©phpk. . . ph,

(h k) ®p¥ p ... pin', ©pipl ... pba.

Suppose that for every r, either ax=a;=1 or B =8 =1 holds, 1 £7 < n.
Then the distribution corresponding to (¢, j)* and (k, k)t are said to be positive-
equivalent. If for every r either =8, =1 or fr=ar=1 holds, 1 £7 = n,
the distributions corresponding to (z,j)* and (h, k)* are said to be negative-
equivalent. ’

When proving Theorem 7 we calculated (33)—(38). These results may be
expressed as follows.

If p, divides (4,§)* and (3, k)*, it also divides (7, k)~.
If p, divides (¢, 7)™ and (3, k), it also divides (j, &)*.
If p, divides (4,7)~ and (¢, k)~, it also divides (7, k)~..
Let the distribution corresponding to (4, k)t be
(7, k) @pa"pa” ... pin", ©ph pl ... pi".

If the distributions corresponding to (¢, j)* and (7, k)* are positive-equivalent,
it is apparent that .
ﬂ’1’=ﬂ'2~’= =ﬂn=1,

16
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and if the distributions corresponding to (7,§) and (¢, k)T are negative-equiv-
alent, it is apparent that .

af =ag = - =qap = 1.
In both these cases the solutions u_,:;,—ﬂ), u gk VD coincide.
Let
Uy + v, VD g+ 0, VD ug + v@ .
2 ’ 2 ’ 2 T
Ui + @iVT) u; + vjﬁ) U + kaE Um + vmVl_) o
T2 Ty 2 2 ’

be the solutions of (40) in which % and v satisfy the conditions of the first
part of Theorem 8.

I we know the distributions corresponding to (1, 2)* and (1, 3)*, we may
determine the distribution corresponding to (2,3)%. If we also know the
distribution corresponding to (1,4)*, we may determine the distributions cor-
responding to (2,4)* and (3,4)%, and so forth.

We now determine the conditions for all the solutions to be distinct.

Let the distribution corresponding to (1,4)* be

(1,9) ®pPpg...pin, ©phpl. .. phe.

. + o, VD
Ifa=0=-=a=1orif fy=p= =ﬂn=1,thesolut10nsgl—%—,

ui + o, VD
2
the distributions corresponding to (1,4)* and (1,7)* are positive-equivalent or
wi+ VD ui+ vﬂ/l_)
2 2
coincide. Thus the number of distinet solutions satisfying the conditions of
the first part of Theorem 8 depends on the number of distributions corre-
sponding to (1,2)%, (1,3)%, ..., (1,4)%, ... any two of which are neither
positive-equivalent nor negative-equivalent.

Let

coincide. Thus these possibilities have to be excluded. Further, if

negative-equivalent, it is apparent that the solutions

(1,9) ©@pppz...pon, ©phplk . . phe

be a distibution in which a, + B> 1 holds for one or more r, 1 £# < n. Then
this distribution is positive-equivalent to the distribution

(1,7) ®@po'py ... pin', ©ph'pl ... pi
in which q; + B =1 holds for every r, 1 <7 S n.
Let us determine the maximum number of possibilities any two of which

are not positive-equivalent. If we consider those distributions in which

ar+.37=1
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holds for every r, 1 £ r = n, there are

.

1 distribution 1,%) ©pyp2... Dn,
n distributions (1,7) @Dy, © Dy Dy . . - Dyy»

n (1) gistributions (L, k) @Dy, Dy © Dy Dys - - - Dy

1 distribution (1,m) ®pyps ... Da.
n(n—1)

. n
Here § runs through » values, & runs through 3

It 1s apparent that any two of these distributions are not positive-equivalent
and that every other distribution is positive-equivalent to at least one of these
distributions. Thus the maximum number of distributions any two of which
are not positive-equivalent, is

060 ()

It is apparent that these distributions are negative-equivalent in pairs and
that two distributions of different pairs are not negative-equivalent. Thus the
maximum number of distributions any two of which are neither positive-
equivalent nor negative-equivalent, is 2»1,

If we exclude the distribution

values, and so on.

(1,m) ®pyps...0n or (1,2) ©p1Ds... Dn

there remains 2"~ — 1 distributions corresponding to just one of (1, 2)*, (1, 3)%,
.. (1,221, Then it is apparent that there are at most 2" solutions
satisfying the conditions of the first part of the theorem. Hence this part of
the theorem is proved.

If ¥ and D are relatively prime, it is apparent that there are 2" classes at
most. If the prime p; divides D, it divides every w. Thus p; 1s a divisor of
(4, 1)t as well as of (4,9)". If m of the primes p; divide D, there are no imore
than 2*~™-1—1 distributions and 2" ™ classes at most. If all the prime
divisors of N except one divide D, there is no more than one solution satis-
fying the conditions of the first part of the theorem, and two classes at most.
If N divides D, the equation has no more than one single class.

If p, = 2, (40) is only solvable in odd % and » when D=1 (mod. 4). If N
and D are relatively prime, there are 2*~!— 1 distributions and 2"~ solutions
satisfying the conditions of the first part of the theorem. Thus there are 2®
classes at most. If D=1 (mod. 4), every u is divisible by 2 and every D?
is divisible by 4. Thus it is apparent that there are 2"—™ classes at most,
when m of the odd prime divisors of N are divisors of D, D=1 (mod. 4), or
when m—1 of the odd prime divisors of N are divisors of D, D=1 (mod. 4).
Hence the theorem is proved.

18
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Theorem 9. Suppose that N = p; ps ... pn, where Dy, Da, . . ., Pn are dislinct
primes = + 1 (mod. 8). The Diophantine equation

(41) u2—20% =P Dy ... Pn

has 2" classes.
Proof. It is a well-known fact that the Diophantine equation
w—2vi=p; (¢t=1,2,...,0)

i1s always solvable in integers u; and v, and according to Theorem 6 it has
two classes. If the fundamental solutions are denoted by w; + v; V2

— k4 —
(42) u+oVe= ] (wxwvV?2)

i=1

clearly is a solution of (41). From (42) we get 2* solutions u + v V2 of (41).
Thus Theorem 9 is proved, if all the solutions belong to different classes. We
prove the theorem by induection.

Suppose that Theorem 9 holds for » primes, and consider the Diophantine
equation

U2—2V2=p1p2 e+ PnPuti,

where par1= F 1 (mod. 8). If « + V2 and w; + v, V2 are two solutions of

(41) belonging to different classes, and if w1 + Vnt1 V2 are the fundamental
solutions of the equation

Un+1— 2Vn41 = Pnt1,
clearly the solutions

U+VV2=(u+0V2) (U1 + Vnt1 V2),
U+ ViV2 = (u+ vV2) (ttr1— vns1V2)
belong to different classes. So do the solutions |
U+VV2=(u+0V2) (Uns1 + tas1V2),
Up+ ViV2 = (uy + v V2) (ttns1 + vns1 V2).
If the solutions |
U+VV2=(u+0V2) (ns1 + tat1V2),

U]_ + Vl Vé = (ul -+ 1 Vé) (un+1 — Vp+1 Vé)
belong to the same class,
(v + vl/é) (#n+1 + Vntr Vé)2 =g(uy + vy Vé) “Pnt1 = Pui1(4 + BVé);

19
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holds. In this expression & is a solution of (2), and 4 + BV?2 is a solution
of (41). Multiplying by 4 — BV2 we get

(w+vV2)(Ad—BV2) (uns1 + tns1 V2?2 = Dus1 D1 D2 - - - Pu.
The left-hand side may be written
(A + B V2) (tni1 + w1 V2)2 =
= A, (unt1 + 2v5+1) + 4 By tny1 Vg1 + V2 (By (tn+1 + 20541) + 245 niy1One1).

From this we get the congruences ‘

A {uns1 + 20541) + 4 By ns1Vn+1 =0 (mod. ppy1),

B (up41 + 2vh41) + 2 Ay Unt1 V1= 0 {mod. ppyi).
From these congruences we get

2 A} Un+1 Va1 — 4 B thnt1 vns1 = 0 (mod. pay1),
or, since neither v,4+1 nor u,+1 is divisible by pe+1,
A3 —2B:=0 (mod. pn+1)-

This proves the theorem.

§ 5. Numerical examples

Finally, we give some examples which illustrate the preceding theorems.

Example 1. u?—51% =44 = 4.11 (Theorem 6). B
3 +2 V5. For the

fundamental solutions in which » and v are non-negative, according to inequal-
ities (16) and (17) we get '
0501, O<uszsT.

The fundamental solution of the equation u?—5o® =4 is

We find the fundamental solutions t7 —';15

Example 2. u®—5v* = —20 = — 4.5 (Theorem 6).
For the fundamental solutions in which % and v are non-negative, according
to inequalities (21) and (22) we get
0<vs2 0=5u=s2.

2
We find the fundamental solution ——;/—5 Thus the equation has only one class,

and this class is ambiguous. -

20
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Example 3. 4®—17¢® =8 = 4.2 (Theorem 6).
66 + 16 V17
2

For the fundamental solutions in which  and v are non-negative, according
to inequalities (16) and (17) we get

The fundamental solution of the equation u?—17¢® =4 is

0=v=5h 0<<us1lT.

+ 17 :
We find the fundamental solutions ;5‘;—& As D=1 (mod. 4), the equation

has the maximum number of classes.

Example 4. u®— 5% = 836 = 4.11.19 (Theorem 7).

For the fundamental solutions in which % and v are non-negative, according
to inequalities (16) and (17) we get

0=v=6, 0<u=32

5+
We find the fundamental solutions — 292+ V5’ £91 ; 51/5'

Example 5. u®—17+* = 104 = 4.2.13 (Theorem 7).

For the fundamental solutions in which % and v are non-negative, according
to inequalities (16) and (17) we get

0sv=9, O<usxz1T.

T _
We find the fundamental solutions £11+ V”, £23+5 V17-

2 2
Example 6. u®>— 331 = 88 = 4.2.11 (Theorem 7). o
46 + 8133
The fundamental solution of the equation w?—33¢*=4 is g

For the fundamental solutions in which » and v are negative, according to
mequalities (16) and (17) we get

02v=sh, O<us 14,

We find the fundamental solutions ;H—;@
Example 7. w®—211* = 84 = 4.3.7 (Theorem 7). .
5+ Va1
The fundamental solution of the equation u®— 21v% =4 is —y - For

the fundamental solutions in which % and ¢ are non-negative, according to
inequalities (16) and (17) we get

0v=1 O0<uc=l2

We find no fundamental solutions. Thus the equation is not solvable.

21
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Example 8. u®—21¢% = —84 = —4.3.7 (Theorem 7).

For the fundamental solutions in which % and ¢ are non-negative, according
to inequalities {21) and (22) we get

0<v=2, 0=u=10.

9
We find the fundamental solution “};—

Example 9. «® —5® = 751564 = 4.11.19.29.31 {Theorem 8).

For the fundamental solutions in which # and v are non-negative, according
to inequalities (16) and (17) we get

05193, 0<<u=969.
We find the fundamental solutions

+867T+5V5 +812+40V5 +883+75V5 +888+86)5

2 2 2 2

+897 +103V5 + 903 + 113V5 + 937 + 159V5  + 953 + 177 V5

2 2 2 2

Example 10. u®— 148¢% = 3108 = 4.777 = 4.3.7.37 (Theorem 8).

146 + 121148
2

For the fundamental solutions in which v and v are non-negative, according

to inequalities (16) and (17) we get

The fundamental solution of the equation u?— 148+ =4 is

050227, 0<u = 338

1+ 74 + 4V148

We find the fundamental solutions 5

. Thus the equation has half

the maximum number of classes.

Example 11. «?>— 37v* = 777 = 3.7.37 (Theorem 8).

The fundamental solution of the equation «2—37+%=1 is 73 + 12V37.
For the fundamental solutions in which % and v are non-negative, according
to inequalities (5) and (6) we get

0=Sv=18, 0<u = 169.
" We find the fundamental solutions -+ 37 + 4V37. According to Theorem 5,

the given equation will have the same number of classes as the preceding
equation.
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Example 12. u?— 148¢% = 924 = 4.231 = 4.3.7.11 (Theorem 8).

For the fundamental solutions in which # and v are non-negative, according
to inequalities (16) and (17) we get

0=sv=14, 0<<u=184.

+ 63+ 51148
2

We find the fundamental solutions

Example 13. «®—37+? = 231 = 3.7.11 (Theorem 8).

According to Theorem 5, the equation has the same number of classes as the
preceding equation. Then the fundamental solutions are + 34 4+ 5V 37.

Example 14. %?— 148¢? = 5628 = 4.1407 = 4.3.7.67 (Theorem 8).

For the fundamental solutions in which % and v are non-negative, according
to inequalities (16) and (17) we get

0=v=36, 0<<u<x456.

+ V148 4+ 22 /148
We find the fundamental solutions 176 2 VMS, +220 Eﬂkl—ﬂ

Example 15. u®— 148¢% = 61908 = 4.15477 = 4.3.7.11.67 (Theorém 8).

For the fundamental solutions in which » and v are non-negative, according
to inequalities (16) and (17) we get

0=9=122, 0<u <1512,

. + 148 + + 74 V148
We find the fundamental solutions — 250 + 21/148, + 934 + 7 Vi 8-

2 2
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