
A R K I V  F O R  M A T E M A T I K  B a n d  1 nr  36 

Communicated 7 June  1950 by F. CARLSON and J. MALMQUIST 

On the  ana ly t i c  c o n t i n u a t i o n  o f  E u l e r i a n  p r o d u c t s  

B y  GERMUND DAHLQUIST 

1. Introduction and snmmary 

1.1. Let h(z) be an analytic function that  is regular and takes the value 
1 for z = 0 and has no limit-point of zeros or singularities in the region I z [ --< 1. 

Consider the formal Eulerian product 

/(s) = H h (p- ' )  (1.1) 
v 

where ~ runs through all prime numbers, and 

s = a + i v  

is a complex variable. We have, e.g.  

h ( z )  = (1 - -  z) - 1  / ( 8 )  = r  = ~ n  - s  (1 .2)  
n = l  

oo  

h (z) = (1 --  z) / (s) = r (s) -1 = ~ # (n)" n - '  (1.3) 

k k 

h(~) = II(1 - ~')-~- /(s) = I I  r (1.4) 
* = 1  "*'=1 

h (z) = e z / (s) = e T M  (1.5) 
where 

P (s) = F, p-S (1.6) 

p running through all primes. 
The main purpose of this paper is to show 1 

T h e o r e m  I. The imaginary axis is a natural boundary el /(s), except /or the 
ease in which the /unctions h(z) and ](s) have the /orm (1.4). 

A wider class {h(z)} is discussed in section 4.2,  and in Par t  5 the corre- 
sponding results are derived for functions of the form 

II  h (x (v) v-'). 

1 I a m  indeb ted  to  Prof.  F .  CArmSON for sugges t ing  t h e  p rob lem and  for h is  va luable  
advice. 
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g (P) being a group character mod. k. In order to prove this result, we need 
the analogue for L-functions of the famous theorem of HARDY and LITTLE- 
WOO~) [4] concerning the zeros o f  ~(s) on the critical line. For the sake of 
completeness, the proof is worked out in detail in Part  6. 

1.2. Some subclasses of the class {/(s)} have been discussed in earlier papers. 
The function P(s) has been investigated by KLUYWl~ and later by LANDAU 
and WALFISZ [6], who made use of an expansion equivalent to 

e p(s) = f i  ~(vS), uO') (1.7) 
~=1 

where tt(v) is the MSbius function also occurring in (1.3). KLUYVER observed 
that every zero and singularity of e p(s) is a zero or singularity of one of the 
functions 

~(s); ~(2s);  ~(~s); ~ ( 4 s ) ; . . .  (1.s) 

and furthermore that,  if the Riemann hypothesis is true, then every point on 
the imaginary axis is a limit-point of zeros and singularities, the imaginary 
axis thus forming a natural boundary. His argument is applicable to the case 
investigated here in Part  3. But if the Riemann hypothesis is not  assumed, 
the problem is not so simple, because it is possible that  different factors cancel 
each other. LANDAU and WALFISZ surmounted this difficulty. They used, how- 
ever, special properties of the occurring coefficients, which have no counterpart 
in the general case treated here. The expansion 

o o  

] (s) = ] ]  ~ (v s)~-, (1.9) 
~,=1 

however, is one of t h e d e v i c e s  used in Part  3, in which h(z) is assumed to 
have no zeros and singularities inside the unit circle. But the most important 
of the new difficulties has to be overcome by use of Lemma 3.3 concerning a 
general property of arbitrary sequences of pofiitive integers. 

In Part  4, h (z) is assumed to have zeros or singularities inside the unit circle. 
In this case, the product (1.9) is divergent in the neighbourhood of the imaginary 
axis. 1 ESTERMANN has treated the case in which h( z ) i s  a polynomial with 
integral coefficients. Instead of (1.9) he used a sequence of products of the form 

/ (s) = n h (p- , ) .  f i  ~q (v s), ~, (1.10) 
p~q  r = l  

where 

~ (8) = ~(s). I I  (1 - ~-.). 
~-<q 

We generalize his method here in Part  4. 

(1.11) 

1 WINTNER [8_] t r e a t s  t h e  case  i n  w h i c h  h (z) = 1 --  �9 - z (~ is  a n  a r b i t r a r y  c o n s t a n t ) .  H e  
u s e s  r e s u l t s  s i m i l a r  to those  of LANDAU a n d  WALFISZ, a l t h o u g h  t h e i r  m e t h o d  of p roo f  i s  n o t  
a p p l i c a b l e  t o  WINTNER'S case .  Moreover ,  h i s  m e t h o d  s e e m s  to  r e q u i r e  the  convergence  of 
(1.9) i n  t h e  h a l f - p l a n e  a > 0. I f  I ~ I > 1, h o w e v e r ,  t h e  p r o d u c t  is  d i v e r g e n t  i n  t h e  n e i g h -  
b o u r h o o d  of t h e  i m a g i n a r y  axis. 
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2. Some transformations 

We shall perform some transformations. We start by proving that h(z) can 
be factorized in the form 

h(z) = I I  (1 - z,)-fl~. (2.1) 
, t ,~l 

The product is absolutely convergent with respect to z and fl~ if [z I <  a, 
where a is equal to the smaller of the numbers 1 and the least modulus of a 
zero or singularity of h (z). This definition of a will be used throughout the 
paper. 

Put  

h'(z) ~ c~ z~. 
~" -h (~) = , = 1  

The series on the 
identical with 

if 

right-hand side is convergent if ]z] < a, and is formally 

j~  ~ - z  m" (2.2) 
, r=l  m = l  

Cn ~ ~ . d  ~ ' "  

According to MSbius' inversion formula [3, theorem 266], we have 

(2.3) 

I t  follows that  the double series (2.2), each term of which is less than the 
corresponding term of the series 

Z ] m r  

is uniformly convergent for 
[z[<a--2e. 

Hence 

h'(Z)h(z) zl ~,, ~=1 = ~ ~,z ~-1 
v = l  ~ = 1  1 - -  2: ~ 

But the second member is the logarithmic derivative of the second member of 
(2.1), if we put  

p, = ~ (2.4) 

and since (2.1) is valid for z = O, this proves (2.1), for ] z [ < a. 
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Next we consider the formal identity 

p ~q 

~, p > q  *'=i 

where ~q(S) is defined by (1.11). We have to justify the inversion of the order 
of the multiplications. I t  is obvious that  

Ilog(1-z)l<A.lzl (Izl<�89 

where A is an absolute constant, and we have chosen the principal branch of 
the logarithm. Hence, if a > 1, we have 

oo / (1 )  ~,lB,.log(1-v-,'gl<lfl~l.A.~-~o<lB,.l.A. x - )~  .O ( ~ - - ) ,  �9 
p ' ~ q  p > q  

q 

We obtained the last inequality with the aid of (2.3) and (2.4). If we sup- 
pose that  

1 
1 l o g  - 

- a 

(2.6) q > a  ~, i .e.  ( r > l o g  q 

we can conclude that  the double sum 

~, t~," log ( I -  v-") 
~ > q  

converges absolutely. This justifies the inversion, if a > 1 and if (2.6) is satisfed. 
Next we consider the product 

f i  ~q (vs)~. (2.7) 

If 
1 

V > V 0 > -  
G 

then, by the Diriehlet series of the logarithm of ~q(s), we find that  

[ l o g  C q ( v s )  [ < n "~ < x - "  ~ d x  . . . . . . . .  v a - - 1  
n = q  

q 

Hence, if q satisfies (2.6), the series 

~ f l , .  log Cq (v s) 
~ = ~ o  
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1 
represents a regular function in the half-plane a > -- .  Therefore the product  (2.7) 

~0 
is regular and different from zero in the same region. F rom (2.5) it follows tha t  

Vo--1 

: II 
p~q  1,'=1 'v='% 

Taking q and Vo large enough we can a t ta in  any  point  in the half-plane a > 0. 
F rom this formula and the results mentioned above, we get the following 

L e m m a  2.1. The product 

/ (s) = H h (p-s) 
P 

where h (z) is regular /or z = 0, and h (0) = 1, de/ines a Dirichlet series convergent 
in a certain hall-plane (r > A. I~ h (z) has only a /inite number o~ zeros and 
singular points in the circle I zl ~ 1 this /unction /(s) can be continued into the 
hall-plane a > 0 with the aid o/ products o/ the /orm 

/(s) = I I  h(p-s). I I  
p<-q ,,,=1 

Thus /(s) is regular in a > 0 except perhaps /or the s-values/or which a/unction 

h(~- s )  p = 2, 3, 5, 7, 11 . . .  

has a singular point or the s-values ~or which a /unction 

$ ( v s )  v = 1, 2 ,  3 . . .  

has a singular paint or a zero. 

R e m a r k .  I] h (z) is regular and di//erent /tom zero in the circle I z I <  1, i. e. 
i/ a = 1, then q is arbitrary and there is no need o~ the /actors h (p-s). In /ac t ,  
we may use an expansion o/ the /orm 

/(s) = It ~ (" sV, 

/or any s in the hal/-plane a > O. 

3. Proo f  o f  theorem I in  the  case  a = I 

The function h(z) has no zeros or singular points inside the circle 

Izl<l. 
537 



G. DAHLQUIST, On the analytic continuation of Eulerian products 

3.1. We need some results concerning the zeros of ~(s). The following re- 
sults are sufficient here. According to BOHR and LANDAU [l], the number of 
zeros of $ (s) in the region 

0 < ~ < T ;  [ ~ - - � 8 9  

is o(T). I t  is also known that  a <  1 for every zero of ~(s). According to 
H~a~DY and LITTLEWOOD [4], the number of distinct zeros of ~ (s) on the line 
a = �89 between ~ = T and ~ = T + ~ . T  is greater than 

for I r [  > To (V).~ 

D e f i n i t i o n  3.1. 

K (7)" T 

The rectangle 

0 _ < a ~ l ;  ( 1 - - s ) - t _ < ~ - - < ( 1  + e ) . t  

is denoted by ~ (t; e). 

L e m m a  3.1. For any ~ and any su]/iciently large T, there exists at least 
one straight line through the origin, containing at least one zero o~ $(s), inside 
the rectangle ~ (T; 7) but no zero outside that rectangle. 

There are more than 
g (7)" T (T > T o (7)) 

distinct zeros on the line a = �89 in the rectangle ~ (T; 7), whereas the fines 
joining the origin and these zeros contain altogether only 

o (T) (T -+ ~ )  

zeros outside ~ (T; ~). Hence, if T > T1 (~), there exist lines possessing the 
properties required. 

3.2. Consider an arbitrary infinite set G of different positive integers. Let 

n = H ~J (xs -> 0) 

be the standard form of a number n e ~,  where 

Pl = 2; p~ = 3; P3 = 5 ;  P 4  = 7; . . . .  

Definition 3.2. A number n* = I I  ~ is a vertex number of ~ ,  if there is 
a sequence of numbers (not necessarily integers) 

A1, ~2, ~3 " " " 
such that  

for all n E ~ satisfying the conditions 

n <  2 .n* ;  n # n * .  

The symbols  K (~) and  To (~) denote  number s  depending  on ~ b u t  no t  on T. 
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The sequence (2j') may be different for different n*. We shall prove: 

L e m m a  3.2. E v e r y  in]inite set ~ o] posit ive integers contains  an  in] in i ty  o] 
vertex numbers.  

To this purpose we represent the numbers of ~ by points in a plane. We 
put e.g. 

x(n) log n [!og pj 1 
= l o g 2 ;  y(n) = ~ X i [ l o g 3 ] .  

We observe that  

A .  y ( n )  is an integer. 

B. x ( n ) - - y ( n ) - ~ c ~ ;  as n - + c o .  

C. lim sup y (n) = c<~. 

The condition C is valid, unless ~ is composed of integers for which the 
product of the odd prime factors is bounded. That case will be considered a 
little later. By B, there are at most a finite number of points of | for which 

y - - x ~ - - q .  

Now we shall t ry  to remove all numbers that  are not vertex numbers. To 
begin with, if a line 

x - - y  = q  

contains more than one point of ~ ,  we remove all such points except the 
highest. We arrange the remaining points in order of increasing q, and then 
we make a new selection. This time we keep only those points having greater 
ordinate than each point counted before. On account of C an infinity of points 
will still remain. L~t the corresponding numbers be 

n (1); n (2); n (a); n (4); . . . .  (3.1) 

For the sake of brevity, we shall write x instead of x(n), x (0 instead of x ( n  (i)) 
e tc .  Moreover, we do not distinguish between the points and the corresponding 
numbers. 

Because of the construction, it follows that  

whence 

Hence 

and by A 

y ~-- y(i); n ~ n (o implies q ~ q(i) 

y ~ y(i); n ~ n (i) implies y + q ~ y(O + q(O, i . e .  x ~ x (i). 

x < x (i), i . e .  n < n (i) implies y < y(O 

The reader 
is seen that  

n < n (0 implies y _< y(i) _ 1. (3.2) 

may interpret the argument geometrically. In the same way it  

n < 2.  n (i) implies y -- y(O. (3.3) 
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Before we complete  the  proof tha t  the  numbers  of the sequence (3.1) are 
ver tex  numbers ,  we derive results corresponding to (3.2) and (3.3) in the case 
previously omi t ted  (page 539, line t l ) .  I t  is easily seen tha t ,  in this case, the 
numbers  of ~ has to be of the  form 2 x~- u, where xl runs through an infinite 
set of positive integers, and  u runs through a finite set of odd numbers.  In  
this case we represent  the  number  n b y  the  point 

log n [ log  PJl 
x = ~ ;  y = Z x j  

log [_ log 2 ] 

in a plane. Now the conditions A and C are satisfied, but  B is not valid. 
I t  is easily seen t ha t  q (n) defined b y  the equation 

q(n) = x ( n ) - - y ( n )  

depends  only on u, and t ha t  q therefore assumes only a finite number  of dif- 
ferent values. Pu t  

l im inf q (n) = g. 

g is a t ta ined  in an infinity of points  of |  We denote t h e m  by  

n (D ~ n (2) ~ n (a) ~ . . . .  

The inequal i ty  q ~ g is valid for a t  most  a finite set  of numbers  of | and 
we can therefore assume t h a t  i is so large tha t  

I t  follows t h a t  

y ~ y(i) implies q ~ g. 

y ~_ y(i) implies q + y ~ g + y(i), i . e .  x ~ x (i). 

Hence 
n ~ n (i) implies y ~ y(~) - -  1 (3.4) 

also in the case previously excluded. In  a similar way  we find t h a t  

n ~ 2 .  n (i) implies y --~ y(i). (3.5) 

Let  | become an a rb i t r a ry  infinite set of different posit ive integers again, 
and consider 

in) = y (n) - -  ~ .  log n. 

is obviously of the form ~ x / .  We have ~ i  n) 

q~ (n) - -  ~ (n  (i)) = y - -  y(i) _ / ~ .  ilog n - -  log n(i)). 

Take 
1 

0 --< p ~ log n (o 
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Then we find that  

n < n (i) implies ~ - -  9(o < y _ y(O + 1 and by  (3.2) and (3.4) : 9 < 9(o, 

n (~ < n < 2 n (o implies ~0 - -  ~(o < y _ y(O and by (3.3) and (3.5) : ~. < 9(o. 

Hence 
n ~ n(o; n < 2. n (0 implies 9 (n) < q (n(O). 

This proves the lemma. 

3.3. Consider again formula (1.9) 

/ (s) = f i  $ (n s)2n. 
n = l  

Let 
set. 

(u; ~), i .e .  in the rectangle 

0 < a < l ;  u - ( l - - ~ )  < ~ < u - ( 1  + ~ ) .  

1 
We may obviously assume, without loss of generality, that  u > 0 and 0 < ~ < 3" 

Suppose tha t  n* is a vertex number of G and tha t  

be the set of all n for which fl~ # 0. Suppose that  | is an infinite 
We shall show tha t  there is an infinity of zeros or singularities o f / ( s )  in 

hi, ;h, X3, "-" 

is a sequence of numbers associated with n* in the sense of definition 3.2. 
By lemma 3.1., there are straight lines containing a t  least one zero s" of ~(s) 
inside the rectangle ~ (n* u;  ~), whereas there are no zeros of ~(s) on them 
outside the rectangle. This is true, if n* is large enough. Hence 

8 r 

This point is a zero or a singularity of / ( s ) ,  unless the ~-function of Riemann 
has another zero s in ~ (n* u;  ~/) s u c h t h a t  

8 ~ 8 

n *  n 
(n e |  

In this case it is possible tha t  two factors of (1.9) cancel each other in order 
to make / ( s )  regular and different from zero in the point considered. Now 
consider all zeros of the form s = s ' . r ,  where r is a real and rational number. 
Let  the standard form of r be 

r = I I  ~ i  (yi integer ~ 0) 

and let g be the lower bound of ~ )~yi, as s runs through these zeros. We 
assume tha t  the lower bound is attained for the zero 
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Then we have 

We know that  

y*. 
S* ~ S' '  H ~gi ~. 

S ~ 

n~ e ~r (u ;  ~). 

S *  

If ~ were not a zero or a singularity of /(s), there would be a number n"E 

and a zero s" of ~(s) such tha t  
S *  S rp 

__ : - -  o 

By the fundamental theorem of arithmetic, we then get 
$ pr p! 

y * - - x ~  = Yi - -x~ 
whence 

~,. (y~ - y~') = F ,  ~ .  (~% - x~'). 

According to the definition, the first member is non-positive, whereas by 
lemma 3.2. the second member is positive, provided that  

_ _  1 
1 + ~ < 2 ,  i . e .  V < 3 .  

This restriction is, however, unessential, as was pointe~l out earlier. Thus we 
have obtained a contradiction, showing tha t  ](s) has at  least one zero or 
singularity in ~ ( u ;  ~), corresponding to each vertex number which is large 
enough. 

3.4. By the Bolzano-Weierstrass theorem these zeros and singularities have 
at least one limit-point, which must lie on the imaginary axis, according to 
lemma 2.1. This limit-point is a singularity of /(s). The results of Section 
3.3. are valid for any u > 0 and for any positive r/. Moreover, the same result 
is true for u < 0 ;  because ~(s) takes conjugate values in conjugate points. 
Hence the imaginary axis is a natural boundary of /(s). 

R e m a r k .  If  @ is a finite set, then h(z) and /(s) are of the form (1.4), and 
/(s) is regular in the whole s-plane, except perhaps in a finite or infinite set 
of isolate:l points. 

4. Proof  o f  theorem I in  the case a < 1 

h(z) has M ~ 1 zeros or singularities inside the unit circle. 

4.1. Let the zeros and singularities of h(z) be 

zm = e -(bm+%n) (m = 1, 2, 3 , . . .  M) 
so arranged, that  

bl ~-~ b2 ~ b3 " ~--- b i  > O. 
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According to Section 1.3. we have to consider products of the form 

/(8) : IV [  t, (v-s)- 1] ~q (n 8),%. 
P ~ q  n = l  

Let ~9~ be the region 

If the zeros and singularities of / (s)  produced by zm, i.e. 

bm + iCm + 2:g in  (n = O, + 1, +_ 2 . . . .  ) 
8 ~  

logp  (p = 2 , 3 , 5 , 7 , . . . )  

do not interfere with those produced by the other zeros and singularities of 
h(z) or b y  the $q-factors, their number in f2~ is given by 

I,  log v t N ~ = ~  \ 2z  + 0  
b m 

] 

p < e  d' 

where ]0[ --~ 1, and p runs through the prime numbers. But according to the 
prime number theorem 

log p ~ x (x -~ c~) 
p--<x 

0 = o (~ (x)) = o (~) ( z - ~  ~ )  

whence 

Nm ~ : ~  e bm/~. ((~ ---> O) 

A zero or singularity in Y2~ produced by t h e  ~q-factors must have its source in 
some zero of ~ (s), situated below the line 

u + ~  
" t ' - -  (T. 

The number of such zeros is, according to a classical result 

and the same zero is used at most 
/1 \  

0 ~ )  (~ ~ O) 

times, since all zeros have a < 1, the number of possible ~q~factors thus being 
1 

at most of the order ~. Hence the ~q-factors produce only 
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zeros or singularities of /(s) in Q~. 
We shall show that zl produces so many zeros or singularities that  the other 

z /s  and the Sq-factors cannot cancel all of them. Two zeros or singularities of 
h (z) with the same modulus cannot interfere with each other. We may there- 
fore assume that 

b2 < bt 

without loss of generality. Even if all other zeros and singularities contribute 
to cancel those produced by  zl, there is still more than 

~-~r. [ :~  - -  o ( e ~ ) ]  - v~< ~ 0(e~")--0(~-~ log ~) ((~-+ 0) (4.1) 

zeros a n d  singularities of ](s) in g2a. But  this expression is unbounded when 
(~ -+ 0. Hence there is an infinity of zeros or singularities of ] (s) in the region 

g2 = lim ~2~. 
8 ~ 0  

By means of the argument used at the end of Section 3.4, we find that  the 
imaginary axis is a natural boundary of /(s), and the proof of Theorem I is 
complete. 

4.2. In the preceding sections the set of zeros and singularities of h (z) in 
the circle ]z I ~ 1 was supposed to be finite. The investigation of the general 
case, where no such restriction is made, seems to require more delicate methods. 
The method used above is, however, sufficient with slight modifications, if the 

b 

number of zeros and singularities in the circle ]zl, is less than, say, A.  21-r , 
if b < bl. In this rather general case, Theorem I is still valitl. 

5. A more general class of  Diriehlet series. 

The essential facts needed in the previous analysis were: 

A. Lemma 2.1., giving the formula 

= I I  h (v-') �9 M c, (- 
~-<q n=l 

B. Lemma 3.1., concerning the distribution of the zeros of ~(s). 
Consider, for instance 

t (s) = I I  h (x (v)  v - ' )  

instead of the function (1.1). X(~) is a group character rood. k. 
corresponding to (5.1), i.e. 

544 

(5.1) 

(5.2) 

The formula 



ARKIV FOR MATEMATIK. B d  1 nr 36 

l(s) = ] [  h(zcp:~, p-,). ( [  L~(~ s ;  z).~,~ 
p . < q  n = l  

(5.3) 

is proved in exactly the same way as (5.1). The analogue of Lemma 3.1. can 
also be proved for the functions L ( s ; z  ) because the analogue of the theorem 
of BOHR and LANDAU as well as the analogue of the theorem of HARDY and 
LITTLEWOOD is valid for the functions L ( s ; z  ). The first of these results was 
proved by BogR and LANDAU [1], but the second does not seem to have been 
proved before. I t  is, however, merely an exercise in the methods developed by 
TITCHMARStt /el. 7, p. 49]. The proof is found in Par t  6. We obtain just as 
above : 

T h e o r e m  I I :  The imaginary axis is a natural boundary el lhe /unctions (5.2), 
i/ h(z) satis/ies the conditions .mentioned in Section 1.1 or Section 4.2. Only the 
cases, in which h (z) is el the /orm (1.4), are exceptions. 

6 .  T h e  L - f u n c t i o n s  o n  t h e  cr i t i ca l  l i n e  

T h e o r e m  I I I :  Let No(T) be the number o/ distinct zeros el L ( }  + iv;  Z) in 
the interval (0, T), Z (n) ~eing a group character rood. k. Then 

I No (T + n T) - -  :Vo (~')I > K (y/). I T I 

/or I TI  > To (n), n > O. 

6.1. Let z(n)  be a proper character I mod. k. If k = 1, theorem I I I  is a 
consequence of the theorem of HARDY and LITTLEWOOD. We assume therefore 
k > 1, and consider 

L(s;  z) = ~ g ( m )  "m ~'. (6.1) 

Let  

and consider 

II, if Z( - -1 )= - - i  (6.2) 
7 = 1 0 ,  if i ~ ( - - 1 ) = l  

(x ; Z) = 2 m'l- Z (m)- e ~ (6.3) 
m = l  

According to LANDAU [5; w 128, (3)], we have the functional equation 

(1) 
~ ( x ; z )  =x: ,+�89 x ; Z  (6.4) 

denoting the character conjugate to Z, ~ (:~) having the properties 

I ~ ( z )  l = 1 ~ (x)  = ~ ( ~ i .  (6 .5 )  

1 Cf. LA~DAU [5 ] ;  p r o p e r  c h a r a c t e r  = e i g e n t l i c h e r  G r u p p e n c h a r a k t e r .  

545 



G. DAHLQUIST, On the analytic continuation of Eulerian products 

Consider also [cf. 5, w 128, (2)] 

s + 7  

and 

o o  
s +  7 

i ( s ; x )  = �89 yJ(x; Z)Z ~ ~ 
0 

1 
(8 ;  z) = ~ , = - ~  ~ (s;  z) ~ 

V)~(Z 

which satisfies the functional equation [5; w 128, (5)] 

dx (6.6) 

(6.7) 

( s ;z )  = ~ ( 1 - - s ; z )  = ~ ( 1 - - ' 7 ; Z )  
whence 

V(�89 + it;  Z) 

is a real function. Consider furthermore the real function 

(6.s) 

Q(t )=  
2 e( 2) + 7)L(  + 

2 
(6.9) 

and consider the integrals, which we shall compare with each other 

t-+~h 

I = f Q ( u ) d u  
t 

t §  

J = f l O ( u ) l d u .  
t 

(6.1o) 

(6.11) 

By Mellin's integral formula applied to (6.6), we have 

a + i  o~ 

~(x; 7~).x ~ 1 = 2~7 ~(s; Z)x 2ds (6.12) 

if ~ > l. By (6.r Stirlings formula, and the well-known fact that  the L-func- 
tions are of finite order, the relation 

_~1~! 
l ~ ( 8 ; z ) l = 0 ( ~  ~ .1~! ~) ( l ~ l - ~ )  (6.13) 

holds uniformly :[or �89 ~ c" ~ ~. Furthermore ~ (s; •) is an integral function. 
By Cauchy's integral theorem 

x W e  m a k e  a s ign  c o n v e n t i o n  s u c h  t h a t  V e ( z ) .  | / e ( ~ )  = 1. 
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a + i T  �89 �89 a + i T  

+-~++f+(+; +>.x-a+,+ = j + f +  j_=i 1 
a - i T  a- - iT  �89 ++iT 

From (6.13) 

when T --> c~. Hence 

Both integrals converge by (6.13). 

+ 12 + Ia. 

1 1 - + 0 ,  I a - > 0  

a+ir �89  

2 = f .  
a- ioo  �89 

By (6.9) and (6.12) we obtain 

- - _ _  f in d~ t it  2"/+1 1 ~2- ] ,Zx -~d t "  g ~ ( x )  w (~; z )  x ~ = ~+~ Q(t) e-  
2 

Put 
+(~-+) ~ : + . . +  = x . + ~ .  

By (6.14) § 

V+ ++1 , f  --  Vi-(-)i- ~'yJ(x(y); X)" {x(y)} 4 = V2~ Q(t)e-+tudt .  

Hence the function 

~ / - 2  27§ 
f ( y )  = -  �9 ~(~(y);  x {~(y)}-~ .V2(z) 

(6.14) 

(6.15) 

has the Fourier transform Q (t), whence it follows that 

has the Fourier transform 

'Then, by Parseval's equation 

e ihy -- 1 
~(Y)  iy  

t+h 

I = fQ(u).du. 
t 

+~ +r162 4. sin2 __bY +~ 

2 = ~ f  f [Zl~dt = f lP(Y) 12 y~ .dy 2 
- - o 0  , - - 0 o  - - o 0  

27+1 sins _by 
2 

y2 �9 - -  . d y .  

Put  x = A z :  i.e. y =  �89 Then 

f lI.l~dt = 4 ~  Iw(Az; x) l~z ~--1 
- - o o  0 

+(},o~ 
- -  d z .  

log 2 z 
(6.16) 
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Put 

and observe that 

sin2 (h4 l o g z )  

log 2 z g (z) 

Then, by (6.4) 

1 l 

,flll)(,~.Z, ~ ) ' 2 Z ~ ' ~ ( z ) d z  ,1" "ljO(! ~ )  2 27--1 �9 = ; Z -2"/-1 Z - ~ -  g (Z) 

0 0 
1 oo 

0 1 
and by (6.16) 

dz = 

2y--1 
u; z) lu-2 a(u)du 

where 

and 

+oo oa 27--1 

f l l i 2d t  = 8~ .  f l~(,~z; z)12.z 2 .g(z) .dz  = O(I' + I " )  

1 
1+~ 2,t-1 

I' = h ~ f l v ,  l=.~ ~ d~ 
1 

(6.17) 

(6.18) 

f 2: '-~ dz 
r ' = j l v l  ~'~ ~ log~ 

1 1+~ 

(6.19) 

The 0-symbol refers here and in the following pages to the limit process 
(5-+ 0, h-+ cr The letter A will denote numbers, which depend only on k. 
In order to obtain (6.18) and (6.19) we used the inequalities 

( : ) / i  , 
sin 2 logz  A 2 z - - < l +  ]~ 

log ~ z . 1 
t l~g]g~, z z > _ l + ~ .  

6.2. We shall estimate I '  and I" .  First, by using (6.15) we get 

--2m2z~z. sin d 
llv, l"= ~n2re ~ + 

+ Z Z.,",,"x(~)~(.,) e-('~'+',7-''~+''-''~~176 
re#r6 

(6.20) 
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Z may be replaced by 2 R ( Z  ~ ) . 1  (6.21) 

The first sum is less than 
o~ 

f 1+2"/ A x27e-X~a~dx < A (zd) 2 
1 

Its contribution to I '  is 
1 

= ~+27 d z ] = 0  5 - -1+~ ) (6.22) 

1 

Its contribution to I "  is 

i.e. 

r oo 

I{' < A ~-~z -~- '~+ '~  -~- - A .  8- _ dz 
~, tog 2z ' j z , l o g  ~z 

1 1+~ 1+~ 

1+27 
z ;  ~ O ( h . ~  2 ). 

The double sum (6.21) contributes to I '  and I"  with terms of the form 

(6.23) 

where 

1 
1+ h 

l 2~--I f z (m;  n) = h 2. e-(M'r-i 'v)z.z~-- dz.  

1 

00 27--1 

I~' (m; n) = f e_(M~, ~s)z.iog 2 z'dZ. 

~r sin ~ ] 
M = (m 2 + n~)-k - .  (~ 

J 7g 
N = (m 2 -- n2) - k-" cos ~ ; N > 0. 

Furthermore 

' l~(m; n)l <-- h~'e-M'~] f e-(M'~-~-~)z'( 
0 

27--1 I + z ) ~ .  dz 
Ah2e-M~ 

< 
N 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

by the Riemann-Lebesgue theorem, since the functions 

1 R denotes the real part. 
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27--1 
e - ~ I ~ . ( 1  + z) 2 

a r e o f  bounded variation in (o, lh) uniformly with respect to 5 and M. 

or 27 - -1  

]/~'(m; n)] = e-M$1feiJYze-M$z" (1 + z ) ~ -  dz 
log 2 (1 + z) " 

1 
# 

1 
Turning the line of integration by the angle ~ round the point h' we find 

I2 (m; n)] = e 

since 

; e -(~v+iMo')y. 1 + ]~ + iy) dy 

~) log 2 1 + h + iy 

Ah2.e-M~ f 

0 

Thus 

< 

e-NU(1 + y?)dy 

1 y ) [ > ~  [log~ (1+ h + i A 

I 1 ] 2721 ]+~+iy < A ( I +  ]yJr). 

A. h 2. e -M~ 
" ; N > 0. (6.28) I z~ (m; n) l < N 

I t  follows from (6.27) and (6.28) that  each term of the double sum 

h2e-M~ 
m > n  

is greater than the corresponding term in the integral from 1 to cr of the 
series (6.21). The case ~ = 0 has been discussed by TITCttMARSI~ [7, p. 51] 
with the result 

S = O (h2 .1og21~) < A . h. (~-�89 (6.29) 

if 

< ao (h). 
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In the case ~, = 1, we find 

m--I  ~ --n ~ d' 

S < A a  2. ~ . e  .~:~ --n2< 
~ 2 2  n = l  

m--1 1 
< A h ~ . ~ m e - ~ ' ~  -.~< 

m = 2  n = l  
oo 

< da= ~ m. log . , .  ~ - ~  < A a~.fxl+*e-*'~a~ < 
I n = 2  

2 

< A h 2 5-1-% 
Hence 

if 
0 < 0 ~ ( h ) ;  y = l .  

Hence by (6.17), (6.22), (6.23), (6.29), and (6.30) 

2 T  +~z 1-}-2 7 

f II[~dt < f IZl~dt = O(h.~- -:~ ). 
T - ~  

(6.30) 

(6.31) 

then 

where 

6.3. Now we shall show that, if 

2 
5 T (6.32) 

7 1 

J > (A h + U)- T 2 4 (6.33) 

2 T  

f I u I . .  ~t < A r. (6.34) 
T 

We now suppose that  t > 0. For any fixed a, we have, by Stirlings formula 

whence 
~ t 27--1 

]Q(t)]> A . e  -~ .t i - . [ L ( ~ - + i t ; z ) [  

and using (6.32), we find 

for 

1--2 7 

T 4 - - . I Q ( t )  I> A . R  1+ z ( n ) . n - i - i t ~  
J 

O < T < t < 2 T .  
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By integration, we find 

where 

1--27 ~ � 8 9  

r ~ . a > A . ( h  + R[i.g(~)l~+~, ~ (6.35) 

g(s) = ~.~ z(n) n - L  

I t  remains to prove (6.34). By (6.35) it is seen that  it is sufficient to prove tha t  

2 T  

.( Ig({  + i(t + h))l~dt = O(T) 
T 

holds uniformly for 0 <--h ~ T. But the uniformity follows easily from the 
particular case h = 0. We use a formula of TITCHMARSH [cf. 7; 2.31, eq. (4)], 
and find 

. ., z,~=~ log m dx  + 0(1) (6.36) 
0 0 

where we have put 
= e - i x e - i 4  : e - x s i n d . e - i x c o s d '  

We first note that  the integrand on the right of (6.36) is bounded for small 
x, uniformly in 5. In  order to see this, we consider the identity 

z ( n ) - w "  1 - n = l  = 1 _ ~  ~ �9 ~ _ j z ( n ) ' w n + w k N ~ _ ~ z ( n ) w n .  ( 0 < / < k )  (6.37) 
n = 0  ~t=l  

Since 
k - I  

~ z(n).w" = o 
n=O 

when w = 1, the right-hand side of (6.37) has an upper bound, independent of 
w, N, 1 in the sector 

:r ~ a r g w < 7 ~  

and hence it is bounded for small x, uniformly in 5. But  

1 

log m 

tends to zero steadily, when m - ~  c~. Hence 
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~ j  (m)- u '~ 
= l o g  m 

j :N  
is uniformly bounded for I x ] - - ~ .  

We may then consider 

Oo 

fl ,m, o z ~ .ax, b= �9 
n=2 k 

b 

But the integrand is equal to 

e-2mz'sin(~ + E Z z ( m ) ' ~ ( n )  

m=2 log 2 m ~ ,n  log m-]oggn 
�9 ei• i $ -  me-id).  

We may obviously integrate these series from b to c~ for any ~ > O. I t  fol- 
lows that  

oO 

o 

e - b  (re+n) sin $ 

log m- log n.  (m -- n) 

=0(18) (6.38) 

the last result according to TITCtIMARSH [7, 3.43]. From (6.32), (6.38), and 
(6.35), we deduce (6.34). 

6.4. Suppose still that  T > 0. Let | be the sub-set of the interval 
( T , T +  ~T), where II[  = J.  Then 

f l Zl.dt= f J.dt: 
2 . 

Put ~ = T  m (6.31). Then 

whence 

T+~T 2T T�89 ~ 
f lZlat <_ f lZldt < { ,T .  f llI2dt}r < A , ~  .h~ 

T T 

3+2? 

f lZldt < A.n~. r ' .h~. 

Furthermore by (6.33) and (6.34) 

27-1  T+~ T 27--1 

f J d t > T  ' . (Ah.m(|  T ~ (Ah.m(| 
T 
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where m (6) is the measure of 6 .  Hence, for h sufficiently large 

m (~) < A . T . ~�89 . h-�89 

Now divide the interval (T, T + ~/T) into [T/2h] pairs of abutting intervals 
]1, J2 each, except the last J2 of length ~h, and each J2 lying immediately to 
the right of the corresponding ]1- Then either il or i2 contains a zero of Q (t), 
unless Jl consists entirely of points of 6 .  Suppose the latter occurs for v jl'S. 
Then 

v~lh < m(| < A . ~ . h - � 8 9  T. 

Hence there are in (T, T + ~/T) at least 

-- v > - K ( ~ - -  A~-~  h - t )  > -4h > k(~). T 

zeros, if h is large enough. This proves the theorem for positive T. If T is 
negative, the considered zeros of L(s;  )~) are conjugate to the zeros of L(s; 2), 
which have positive imaginary part, and hence, theorem I l I  is valid also for 
T < 0 .  

To this point, the proof is valid only for proper characters :~(n). If, how- 
ever, z(n) is not a proper character mod. k, we can write (cf. LANDAU [5; 
w 125]) 

L(s; Z ) =  1:[ ( 1 - - s • ) . L ( s ;  X) (Is, I =  1) 
�9 =1 ~ Psr ! 

where X(n)  is a proper character mod. q where q is a divisor of k, which 
sometimes may be equal to 1. Since the first factors are re~lar ,  theorem I I I  
is valid, also for improper characters. 

Matematiska institutet, Stockholms HSgskola. 
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