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On the analytic continuation of Eulerian products

By GErmMuND DAHLQUIST

1. Introduction and summary

1.1. Let h(z) be an analytic function that is regular and take_s the value
1 for z = 0 and has no limit-point of zeros or singularities in the region |z]| < 1.
Consider the formal Eulerian product

fsy=1r@ 1.1)

where p runs through all prime numbers, and
s=0+171

is a complex variable. We have, e. g.

h(@) = (1 —2) fs) = C(s) = Xym~ 1.2)
n=1
hiz) = (1 —2) f(s) = £(s)t = Dy pu(m) -0 (1.3)
n=1
k k
hz) = [Ja—=)# fs) = [[ cws) (1.4)
v=1 v=1
h(z) = ¢ f(s) = P @ ' (1.6)
where
P(s) =Xp~* (1.6)

p running through all primes.
The main purpose of this paper is to show!

Theorem 1. The imaginary axis is a natural boundary of f(s), except for the
case in which the functions h(z) and f(s) have the form (1.4).

A wider class {h(z)} is discussed in section 4.2., and in Part 5 the corre-
sponding results are derived for functions of the form

2w 7).

I am indebted to Prof. F. CarrsoN for suggesting the problem and for his valuable
advice.
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G. DAHLQUIST, On the analytic continuation of Eulerian products

% (p) being a group character mod. k. In order to prove this result, we need
the analogue for L-functions of the famous theorem of HarpYy and LiTTLE-
woobD [4] concerning the zeros of (s} on the critical line. For the sake of
completeness, the proof is worked eut in detail in Part 6.

1.2. Some subclasses of the class {f(s)} have been discussed in earlier papers.
The function P(s) has been investigated by Kruyver and later by Lanpavu
and Warrisz [6], who made use of an expansion equivalent to

@ =[] c(@s)® (1.7)

y=1

where u(v) is the Mobius function also occurring in (1.3). KLUvvER observed
that every zero and singnlarity of ef'® is a zero or singularity of one of the

functions
£(s); (28); £(3s); L (49); - - (1.8)

and furthermore that, if the Riemann hypothesis is true, then every point on
the imaginary axis is a limit-point of zeros and singularities, the imaginary
axis thus forming a natural boundary. His argument is applicable to the case
investigated here in Part 3. But if the Riemann hypothesis is not assumed,
the problem is not so simple, because it is possible that different factors cancel
each other. Lanpavu and WarLrisz surmounted this difficulty. They used, how-
ever, special properties of the occurring coefficients, which have no counterpart
in the general case treated here. The expansion

HOE | ICHLS ' (1.9)
y=1

however, is one of the devices used in Part 3, in which A(2) is assumed to
have no zeros and singularities inside the unit circle. But the most important
of the new difficulties has to be overcome by use of Lemma 3.3 concerning a
general property of arbitrary sequences of positive integers.

In Part 4, h(z) is assumed to have zeros or singularities inside the unit circle.
In this case, the product (1.9) is divergent in the neighbourhood of the imaginary
axis! ESTERMANN has treated the case in which h(z) is a polynomial with
integral coefficients. Instead of (1.9) he used a sequence of products of the form

f&)=Hre ) o ‘ (1.10)
where ‘ pet =t
L(s) =¢(s)- T —27. (L11)
p=q

We generalize his method here in Part 4.

. ! WiNTNER [8] treats the case in which h(z)=1—a-2 (x is an arbitrary constant). He
uses results similar to those of LaANDAU and WaLFisz, although their method of proof is not
applicable to WINTNER’s case. Moreover, his method seems to require the convergence of
(1.9) .in. the half-plane ¢ > 0. TIf |a| > 1, however, the product is divergent in the neigh-
bourhood of the imaginary axis. '
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2. Some transformations

We shall perform some transformations. We start by proving that %(z) can
be factorized in the form

= 1] (1~ 2%)=Fw. (2.1)

The product is absolutely convergent with respect to z and B, if |2]| <a,
where a is equal to the smaller of the numbers I and the least modulus of a
zero or singularity of A(z). This definition of @ will be used throughout the

paper.
Put

The series on the right-hand side is convergent if |z]| <<a, and is formally
identical with

i i o - 2 (2.2)

if

According to Mébius’ inversion formula [3, theorem 266], we have

o | = 'Zﬂ(f)c

It follows that the double series (2.2), each term of which is less than the
corresponding term of the series

33T

a—a

Sn-Max|e,) =0(@—e™™ (n—o0). (2.3)

18 uniformly convergent for
2] <a—2e

Hence
h’ (z

N|l—l
u[ﬂs

But the second member is the logarithmic derivative of the second member of
(2.1), if we put

By =— (2.4)

and since (2.1) is valid for z = 0, this proves (2.1), for |z| < a.
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6. DAHLQUIST, On the analytic continuation of Eulerian products

Next we consider the formal identity

LA | e 1 | H 1 — pr9y s =

IIh(pts) P>q p>q v=

=l Ha—py- HCNS

v p>q

where {,(s) is defined by (1.11). We have to justify the inversion of the order
of the multiplications. It is obvious that

llog (1 —2)| < 4-|z] (lzl <)

where A is an absolute coustant, and we have chosen the principal branch of
the logarithm. Hence, if ¢ > 1, we have

2 1Bo-Tog (L —p=9)|<|B.]- 4- 2 p7 <|B.|- Afw ”"dw<** 0( 1i)'

pq p>q (a’ - 8)

We obtained the last inequality with the aid of (2.3) and (2.4). If we sup-
pose that

9, e, — 2.6
g>a % 1.e G>logq (2.6)

1 log }
a

we can conclude that the double sum
> 2\ B.-log (1—p~"%)
v P>q

converges absolutely. This justifies the i Inversion, if ¢ > 1 and if (2.6) is satisfed.
Next we consider the product

11 2o (vs)5e. 2.7

v=1g

If

Y=y > -
G

then, by the Dirichlet series of the logarithm of (,(s), we find that

o0

. 1 v ql vo
|log Cq(vs)l<,§qh”<f vodg = L.

yo—1
q

Hence, if ¢ satisfies (2.6), the series

DB, log L (vs)

y=w,
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represents a regular function in the half-plane o > vl Therefore the product (2.7)

()
is regular and different from zero in the same region. From (2.5) it follows that

1g—1 oo
o) =TT1r@ ) Il &) ] Cavs)™
r=yq »=1 v="1g

Taking ¢ and », large enough we can attain any point in the half-plane o > 0.
From this formula and the results mentioned above, we get the following

Lemma 2.1. The product
i) = [ 2
P

where h(z2) is regular for z = 0, and h(0) = 1, defines a Dirichlet series convergent
m a certain half-plane ¢ > A. If h(z) has only a finite number of zeros and
singular poinis in the circle |2| < 1 this function f(s) can be continued into the
half-plane o > 0 with the aid of products of the form

16) = T hee)- TL L0 0%
p=q b=l
Thus f(s) 1s regular in o > 0 except perhaps for the s-values for which a function
h(p~?) p=23051T11...
has a singular point or the s-values for which a function
L(vs) »=1,2,3...
has a singular point or a zero.
Remark. If h(z) is regular and different from zero in the circle |z| <1, 1.e.

tf @ =1, then q s arbitrary and there s no need of the factors h(p~*). In fact,
we may use an erpansion of the form

1) = [l ¢ sy
v=1

for any s in the half-plane ¢ > 0.

3. Proof of theorem I in the case a = 1
The function %(z) has no zeros or singular points inside the circle
lz] < 1.
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G. DAHLQUIST, On the analytic continuation of Eulerian products

3.1. We need some results concerning the zeros of {(s). The following re-
sults are sufficient here. According to Bonr and LaNDAU [1], the number of
zeros of £ (s) in the region ‘

0<z<T;|lo—%|>h

is o(T). It is also known that o <1 for every zero of {(s). According to
Harpy and LitrLewoop [4], the number of distinct zeros of £ (s) on the line
o =14% between 7 =T and v = T + - T is greater than

Km)-T
for |T'| > Tq ().

Definition 3.1. The rectangle
I=o=1; 1—¢e)t=t=(lL+¢&-t
is denoted by R (t; &).

Lemma 3.1. For any n and any sufficiently large T, there exists at least
one straight line through the origin, containing at least one zero of ((s), inside
the rectangle R (T'; ) but no zero outside that rectangle.

There are more than
K@) T (T > Ty (@)

distinct zeros on the line ¢ = } in the rectangle R (7'; ), whereas the lines
joining the origin and these zeros contain altogether only

o(T) (T > o)

zeros outside R (T'; n). Hence, if T > Ty(n), there exist lines possessing the
properties required.

3.2. Consider an arbitrary infinite set & of different positive integers. Let
n=Tlwm (e = 0)
be the standard form of a number n €S, where
PL=2;0,=3; P3=5; py=17;....

Definition 3.2. A number »* = Hp;‘; is a vertex number of &, if there is
a sequence of numbers (not necessarily integers)

}'l’ Az’ }'3 LR

Zﬂ.jz; > lex,'

for all n €& satisfying the conditions
n<2-n*; n#n’.

such that

! The symbols K (n) and Ty (n) denote numbers depending on 7 but not on 7.
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The sequence (4;) may be different for different n*. We shall prove:

Lemma 3.2. Every wnfinite set © of positive integers contains an infinily of
vertex numbers. .
To this purpose we represent the numbers of © by points in a plane. We

put e.g.
log n log p;
am) = g ¥ = 2@ [i{)égj]'
We observe that :
A. y(n) is an integer.

B. z(n)—y(n) > co; as n — oo,

C. lim sup y(n) = oc.

The condition C is valid, unless & is composed of integers for which the
product of the odd prime factors is bounded. That case will be considered_ a
little later. By B, there are at most a finite number of points of & for which

Yy—r>—4q.

Now we shall try to remove all numbers that are not vertex numbers. To
begin with, if a line
rt—y=gq

contains more than one point of &, we remove all such points except the
highest. We arrange the remaining points in order of increasing ¢, and then
we make a new selection. This time we keep only those points having greater
ordinate than each point counted before. On account of C an infinity of points
will still remain. L&t the corresponding numbers be

n0; n®@; n®; y®; (3.1)

For the sake of brevity, we shall write = instead of z(n), " instead of z(n®)
ete.. Moreover, we do not distinguish between the points and the corresponding
numbers.

Because of the construction, it follows that

y=yP; n % a® implies ¢ > ¢®

whence 4 . . ) .
¥ =99 n7#n® implies y + ¢ > ¢y@ + ¢, i.e. x> 2D
Hence
z <z, i.e. n < n® implies y < y@
and by 4

n < n® implies y < ¢y — 1. (3.2)

The reader may interpret the argument geometrically. In the same way it
is seen that ) _ .
n <2 -n® implies y < ¢, (3.3)
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Before we complete the proof that the numbers of the sequence (3.1) are
vertex numbers, we derive results corresponding to (3.2) and (3.3) in the case
previously omitted (page 539, line 11). It is easily seen that, in this case, the
numbers of © has to be of the form 2% -w, where z; runs through an infinite
set of positive integers, and u runs through a finite set of odd numbers. In
this case we represent the number n by the point

_logn log p,-]
x_log2’ y_zxj[log2

in a plane. Now the conditions 4 and C are satisfied, but B is not valid.
It is easily seen that g(n) defined by the equation

g(n) = z(n) —y(n)

depends only on u, and that ¢ therefore assumes only a finite number of dif-
ferent values. Put

lim inf g(n) = g.
g is attained in an infinity of points of &. We denote them by
2 < n® <n® <.

The inequality ¢ <g is valid for at most a finite set of numbers of & and
we can therefore assume that ¢ is so large that

y = ¢ implies ¢ = g.
It follows that

y =9 implies ¢ + y =g + y?, i.e. =D,
Hence '
n < n® implies y < ¢ — 1 (3.4)

also in the case previously excluded. In a similar way we find that
n < 2-n® implies y < . (3.5)

Let © become an arbitrary infinite set of different positive integers again,
and consider

@(n) = y(n) — p-log n.
@(n) is obviously of the form Z Aiz;. We have

p(n) — @p(n?) =y — ¢ — u-(log n — log n).
Take

0=u< ~—L .
log n®
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Then we find that
n <<n® implies ¢ — ¢ <y —yD + 1 and by (3.2) and (3.4): ¢ < ¢,
29 <n <209 implies ¢ — ¢ <y — ¢ and by (3.3) and (3.5): ¢ < ¢

Hence . . )
n 7 a5 0 <2 0D implies @ (n) < ¢ (n).

This proves the lemma.

3.3. Consider again formula (1.9)
f(s) = HC(n 8)Pn,
n=1 -

Let © be the set of all n for which 8, # 0. Suppose that S is an infinite
set. We shall show that there is an infinity of zeros or singularities of f(s) in
R (u; ), 1.e. in the rectangle :

0<o<l;u-(l—pn)<r<u-(1+mny).

1
We may obviously assume, without loss of generality, that « > 0 and 0 < 7 < 3"

Suppose that n* is a vertex number of & and that

Al: 2'27 Z‘-S)

is a sequence of numbers associated with n* in the sense of definition 3.2.
By lemma 3.1., there are straight lines containing at least one zero s’ of {(s)
inside the rectangle M (n*u;7), whereas there are no zeros of [(s) on them
outside the rectangle. This is true, if »* is large enough. Hence

s’ v
n—*em(u, ’I]).

This point is a zero or a singularity of f(s), unless the ¢-function of Riemann
has another zero s in R (n*u; %) such-that

— = (n€®)

In this case it is possible that two factors of (1.9) cancel each other in order
to make f(s) regular and different from zero in the point considered. Now
consider all zeros of the form s = s'-7, where 7 is a real and rational number.
Let the standard form of r be

r=[]ou (¥: integer =0)

and let g be the lower bound of Z Aiyi, as s runs through these zeros. We
assume that the lower bound is attained for the zero
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G. DAHLQUIST, On the analytic continuation of Eulerian products
*
5" =" [ ot
td
ZM%’ = Zliyi = g.

s
;’LTKGSR (u, 7’])

Then we have

We know that

8* . . ’”
It L5 were not a zero or a singularity of f(s), there would be a number " €&

and a zero s of {(s) such that

¥ r
By the fundamental theorem of arithmetic, we then get
yi— @ =y —a
Z A - ?h Z A (377, - x@

According to the definition, the first member is non-positive, whereas by
lemma 3.2. the second member is positive, provided that

whence

1+79 . 1
1_«77<2, 1 e. 7]<3

This restriction is, however, unessential, as was pointed out earlier. Thus we
have obtained a contradiction, showing that f(s) has at least one zero or
singularity in R (w; ), corresponding to each vertex number which is large
enough. '

3.4. By the Bolzano-Weierstrass theorem these zeros and singularities have
at least one limit-point, which must lie on the imaginary axis, according to
lemma 2.1. This limit-point is a singularity of f(s). The results of Section
3.3. are valid for any u > 0 and for any positive . Moreover, the same result
is true for w << 0; because {(s) takes conjugate values in conjugate points.
Hence the imaginary axis is a natural boundary of f(s).

Remark. If © is a finite set, then A (z) and f(s) are of the form (1.4), and
f(s) is regular in the whole s-plane, except perhaps in a finite or infinite set
of isolated points.

4. Proof of theorem I in the case a <1

h(z) has M = 1 zeros or singularities inside the unit circle.
4.1. Let the zeros and singularities of A(z) be

Zm = e~ bmticm) (m=1,2,3,... M)
so arranged, that
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According to Section 1.3. we have to consider products of the form

(ORI | EACHED

p=q
Let £4 be the region

c=0; O<u=r=<u+7.
If the zeros and singularities of f(s) produced by zm, i.e.

=bm+icmj+-2nin =0, +1,+2..)
log p »=2385,17...)

do mnot interfere with those produced by the other zeros and singularities of
h(z) or by the (,factors, their number in Qs is given by

log p )
N = MR g
" Zb‘ ( 2x
p<e"'

where |8] <1, and p runs through the prime numbers. But according to the
prime number theorem

Dlogp~u (@ — o0)
=%
20 =0(z@) =o(=) (x — o0)
whence o
~ 0 b
N~ g @ (6 0)

A zero or singularity in Qy produced by the.(,factors must have its source in
some zero of ((s), situated below the line

u +
Pt

The number of such zeros is, according to a classical result

1 1
Z.log = é~
O( 5 log 6) (6—>0)
and the same zero is used at most ,
0 (%) (6—~0)

times, since all zeros have o << 1, the number of possible {,-factors thus being

at most of the order (15 Hence the [,-factors produce only -
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0(61—2-10,(; (1—3) (06 —~0)
zeros or singularities of f(s) in Q4.

We shall show that 2z, produces so many zeros or singularities that the other
z’s and the (,factors cannot cancel all of them. Two zeros or singularities of
h(z) with the same modulus cannot interfere with each other. We may there-
fore assume that

b, << by

without loss of generality. Even if all other zeros and singularities contribute
to cancel those produced by z,, there is still more than

2. [e%‘ Y (e'%‘)] _ bvzd 0 (e’%) —0 (515 log %) @0 (41)

zeros and singularities of f(s) in £ But this expression is unbounded when
0 > 0. Hence there is an infinity of zeros or singularities of f(s) in the region

0 = lim Q4.

d—0

By means of the argument used at the end of Section 3.4, we find that the
Imaginary axis is a natural boundary of f(s), and the proof of Theorem I is
complete.

42. In the preceding sections the set of zeros and singularities of A(z) in
the circle |z| =1 was supposed to be finite. The investigation of the general
case, where no such restriction is made, seems to require more delicate methods.
The method used above is, however, sufficient with slight modifications, if 1};)he

number of zeros and singularities in the circle |z|, is less than, say, 4 Lo
if 5 <<b,. In this rather general case, Theorem I is still valid.

5. A more general class of Dirichlet series.

The essential facts needed in the previous analysis were:
4. Lemma 2.1., giving the formuila
fo) = [T 1] e (ns)Pn. (5.1)
r=q n=1 )

B. Lemma 3.1., concerning the distribution of the zeros of {(s).
Consider, for instance

1@ =A@ 7% (5.2)

instead of the function (1.1). y(p) is a group character mod. k. The formula
corresponding to (5.1), i.e.
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=1 rGw o) 1] La(n 55 2)? » (5.3)
< n=1

is proved in exactly the same way as (5.1). The analogue of Lemma 3.1. can
also be proved for the functions L (s; y) because the analogue of the theorem
of Bour and LaNpAU as well as the analogue of the theorem of Harpy and
LitrLEwoop is valid for the functions L (s; ). The first of these results was
proved by Borr and Lanpau [1], but the second does not seem to have been
proved before. It is, however, merely an exercise in the methods developed by
Trrcamarse [ef. 7, p. 49]. The proof is found in Part 6. We obtain just as
above:

Theorem II: The tmaginary axis is a natural boundary of the functions (5.2),
if h(2) satisfies the conditions mentioned in Section 1.1 or Section 4.2. Only the
cases, 1 which h(z) s of the form (1.4), are exceplions.

6. The L-functions on the critical line

Theorem III: Let No(T) be the number of distinet zeros of L(L +17; ) in
the interval (0, T'), x (n) teing a group character mod. k. Then

| No (T + 0 T) — No(T)| > K ()| T

for | T'| > Ty (n), n>0.

6.1. Let y(n) be a proper character! mod. k. If & =1, theorem III is a
consequence of the theorem of Harpy and LitrrLEwoop. We assume therefore
k> 1, and consider

L(s; z) = D) g (m)-m~>. (6.1)
m=1
Let
1, if y(—1)=—1
y bt (=) (6.2)
lo, i z(—1)=1
and consider
® _maz
(@; 2) =2 Dymi-yq(m)-e * . (6.3)
m=1
According to Lanpav [5; § 128, (3)], we have the functional equation
e (1. -
v - (L) (6.4
% denoting the character conjugate to ¥, £(y) having the properties
le(] =1 e(x) = &()- (6.5)

! Cf. Laxpav [5]; proper character = eigentlicher Gruppencharakter.
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Consider also [cf. 5, § 128, (2)]

and
1
n(s; 2) = —=="&(s; 0* (6.7)
Ve()

which satisfies the functional equation [5; § 128, (5)]

n(ssx) =n(l—s;7) =n(—35; %) (6.8)
whence

N3+t x)

1s a real function. Consider furthermore the real function

Q(t):hVé(%).(?]z)*Hf"'*Z.ﬁ*g) -I’(l +42y ) L +it; g) =

— 118;;65 e(g; J) ’ 2£ ~&(s; %) (6.9)

and consider the integrals, which we shall compare with each other

I - f Q (6.10)
t+-h

J = [1Q )] du , (6.11)
t

By Mellin’s integral formula applied to (6.6), we have
a+i o0

viz; z)- ansz Yo 2ds (6.12)

a—1i o0

if « > 1. By (6.6), Stirlings formula, and the Well known fact that the L-func-
tions are of finite order, the relatlon

7]

[&(ss 0] = 0@ * -|el4) ([7] > o0) (6.13)

holds uniformly for } < ¢ < «. Furthermore &(s; y) is an integral function.
By Cduchys integral theorem

' We make a sign convention such that Ve Ve =1
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at-1T 31T 44T o+iT
s . .
é};@ff $2d82]+‘/‘+j£11+12+l3.
a—iT a—1T 3—iT L1447
From (6.13)
I,—~0, I;—0

when T — co. Hence
atioe }4io

a—to0  E-1c0

Both integrals converge by (6.13). By (6.9) and (6.12) we obtain

Vm 2711_ lf _(,’,’_J):t, i
T vEnet =g [ Qe B TR BdL (6.14)
Put .
s—ov.d &) Z e (6.15)
By (6.14)

2y+1

R /) ay+l -
~Vel- |/ §vws - low) ¢ =V§n«j@<z>e-“ydt-

Hence the function
Vo 2y+1

Fo)=—|/ 5 vewiztew * Ve

has the Fourier transform @ (t), whence it follows that

ethy —1
5
has the Fourier transform
t+h
I-[Q)-du
t
Then, by Parseval’s equation
4 Sm2 hy Sln ZZ‘:?{

2y+1 9
flww D-lel s " - du.

[l’llzdt~f|F

Put z =1z, ie. y = 1-logz. Then

+oo b ay-1 sin? (2 log z)
J1rpa - aa [1vGe s Lz, (816)
— o0 0

log? 2
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Put

sin® (Z Io‘g z)

etz — 90
and observe that

1
0@ = o)
Then, by (6.4)
1 1
. 2 2y-1

272172 2 g(2)dz =

[lw(lz; 2) lzz%_l-g(Z)dz = 6/ ’w(f /)

0

and by (6.16)

+o o 21

flllzdt = 8n~f|1p(lz; DE2 2 -g@)-dz=0" +1")
oo 1

Wherg .

1
1+i 2y—1

r =h2f|w|2-z7dz
i
and

«w
2v—1 d
27 - 2
I = [ 2.5 2 L.
. I‘/’l log® 2
1
1+i

2y—1

2 3 r
2 2 Tg(z)dz = flzp(lu; 0lu 2 gu)du
1

(6.17)

(6.18)

(6.19)

The 0-symbol refers here and in the following pages to the limit process
(0 >0, h > 00). The letter 4 will denote numbers, which depend only on k.

In order to obtain (6.18) and (6.19) we used the inequalities

sin? (%logz) A-H? z£1+7lz
! =

log? 2 ] 1 ——

oz o TR

6.2. We shall estimate I’ and I”. First, by using (6.15) we get

0 2miaz

Hpk = Smere 5

m=1

-sin d

; —(m2+n0) ZZ sin d+4 (m2—n2) 22 cos &
+ 2 Dminr- g (m)7(n)e C E

m=+n
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Z Z may be replaced by ZR(Z Z) A (6.21)

m=+n m>n
The first sum is less than

1+2¢

Afsze“’””Azd:c <A@ 2.

Its contribution to I’ is

14
’ 142y 142y
L= [iﬁ / (z0) 2 z'/‘l’dz] =0 (h'é 2 ) (6.22)
1
Its contribution to I' is
142y 142y [
<4 [6 " z—é—,+/ y 4z ZA.(;‘*‘:["‘[,,,,,LJZ%A
log? 2z z log? 2z
! 1l
ie.
2y
I =0(k-6 2). (6.23)

The double sum (6.21) contributes to I’ and I'” with terms of the form

h
2y—1
Iy (m; n) = A2 [‘("” iMz. 2 de. (6.24)
1
00 'y—l
15 (m; n) f ~ai-imz E 2, (6.25)
log z .
145
where
(2 4 g2y, SID D
M = (m 'f”) PR ‘
(6.26)
N = (m2~n2)-%-cos d; N> 0.
Furthermore
" 2y—1 AR2 é—Md‘
| I (m; )| < h2-e~ M9 [e‘(MJ‘iN)z-(l +2) 2 -dz| < (6.27)
0

by the Riemann-Lebesgue theorem, since the functions

! R denotes the real part.
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2y-1

e—Md‘z,(l + Z) 2

are of bounded variation in (0, %) uniformly with respect to 6 and M.
* 27-1
T ime )| = o8| [ gveman. 1122
|12 (m; m)| = e fe e log® (L + 2) z|.
1
R

. . . ) .1 .
Turning the line of integration by the angle T round the point y We find

2
oo , 2y—1
. e~ (NHiM )y, (1 n % n @'y)iiz"
’” ~-Md B
I3 (m;n)| = e M(H")- 1 dy| <
N log? (1 + 7+ iy)
0 h

< ARBE-eMId e ¥yl + y)dy

V]
since
1. A
log2(1+;—t+zy)l>}7
1 2y-1
'1+};+¢y 2 <A@+ |yl
Thus
.32, ,—-Md
|15 s m)| < 2 kNe cN=0. (6.28)

It follows from (6.27) and (6.28) that each term of the double sum

hZe——Md‘

S=AZZm7nY- ¥

m>n

is greater than the corresponding term in the integral from I to oo of the
series (6.21). The case y = 0 has been discussed by Trrcamarse {7, p. 51]
with the result

S=o(h2-1og2 %)<A-h-6—* (6.29)
it
5 < 8 (h).

550



ARKIV FOR MATEMATIK. Bd 1 nr 36

In the case y = I, we find

w m-1 ne —n2d
L S<Am mzznzm e
<Ak2 Zme mZd\ZIMT—-Tn

o0

<Ah22m log m-e ™0 < 4 p2 [w1+fe””‘2"dw<

m=2 %

< AR251-e,
Hence
S<Ah§ (6.30)
if
0 <dé (h); y=1

Hence by (6.17), (6.22), (6.23), (6.29), and (6.30)

2r +w _ix2y
[ 1IRat< [[IPdt=0(h-6 2). (6.31)
T e
6.3. Now we shall show that, if
2
b= (6.32)
then
l_l
J>(Ah+U) -T2 ¢ (6.33)
where
2T
[lU]p-dt<4-T. (6.34)
b

We now suppose that ¢ > 0. For any fixed o, we have, by Stirlings formula

| I'(6+ i7)| ~e-trnlol. |z~ V2gq (Iv] = o)
whence
6 2y~1

Q@) >4-¢ 250 & L@ +it; g
and using (6.32), we find

1 2

/IQ(t|>A R{1+ ZX n—}—u}

for
0< T <t<2T.
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By integration, we find

1-2¢

7% J>A-(h+R[-g) ")

e (6.35)

where

- zm

It remains to prove (6.34). By (6.35) it is seen that it is sufficient to prove that
27
[lo@G +ie+m)[dt=0(D)
7

bolds uniformly for 0 <k < T. But the uniformity follows easily from the
particular case A = 0. We use a formula of Trrcumarsu [cf. 7; 2.31, eq. (4)],
and find

[lg Fit)Pe2didt = [}leog |d z + 0(1) (6.36)

where we have put
w = e—ize'“’" — g~ wsind ., p~izcosd

We first note that the integrand on the right of (6.36) is bounded for small
z, uniformly in 8. In order to see this, we consider the identity

EN-+ 1——w“’ k-1
D g (m) wr == T ¥ (n)- w"+wkNZx(n (0<i<k) (6.37)

n=0

Since

2 (n)-w* =0

when w =1, the right-hand side of (6.37) has an upper bound, independent of
w, N, 1 in the sector
7

|w]<1 ~-l;£argw;<_

=8

and hence it is bounded for small z, uniformly in 8. But

tends to zero steadily, when m — co. Hence
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g m
is uniformly bounded for |z| =< %t .
We may then consider
Tl x(m) e—zmze““”Z 7
j > da, b="-
J iz log m k

But the integrand is equal to

i e_2m1-sind ZZ x(m /(n m(mzﬁ_me—m)
=, 10g2 m il log m - log n

We may obviously integrate these series from b to oo for any &> 0. It fol-
lows that

00

v s, 20t g e—2mb-sind e—b(mtn)sind
jlgl-e t=0(2m.10gzm.s§5) (Zzlogmlogn (m—mn)

0
-0 (a) (6.38)

the last result according to TrrcamarsE [7, 3.43]. From (6.32), (6.38), and
(6.35), we deduce (6.34).

6.4. Suppose still that T >0. Let © be the sub-set of the interval
(T,T + nT), where |I| = J. Then

[1I]-at=[J-ac.
] S

Put § = % in (6.31). Then

PR

T+qT 2T
f|1|dts]‘"|1|dtg{y,T-f|I|2dt}*<An%T 2. pt
S T T

whence
3+2y
[lIldt<d-p-T % -h
&
Furthermore by (6.33) and (6.34)
T+nT

2y—1
det>T 0 H(dh-m (@)~ fIUIdt)>T—Y“—(Ah-m(@)—A-T-r,*)
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where m (&) is the measure of &. Hence, for % sufficiently large
m(@) <4-T-gt-h %

Now divide the interval (7, T + nT) into [T/2h] pairs of abutting intervals
j1, j; each, except the last j, of length n%, and each j, lying immediately to
the right of the corresponding j;. Then either j; or j, contains a zero of @(t),
unless j; consists entirely of points of ©. Suppose the latter occurs for »jy’s.
Then

vph<m(@S)<4d-nt-h"t.T.

Hence there are in (T, T + nT) at least

T T T
[’271] —V>7’I’(§—A’r}_%h_t) > ?47L>k(17)T

zeros, if kb is large enough. This proves the theorem for positive 7. If T is
negative, the considered zeros of L(s; y) are conjugate to the zeros of L(s; %),
which have positive imaginary part, and hence, theorem III is valid also for
T < 0.

To this point, the proof is valid only for proper characters x(n). If, how-
ever, y(n) is not a proper character mod. %k, we can write (cf. LaNDAU [5;
§ 125))

L= (1-2) 260 (al-1

v=1 v

where X (n) is a proper character mod. ¢ where ¢ is a divisor of k, which
sometimes may be equal to 1. Since the first factors are regular, theorem III
is valid, also for improper characters.

Matematiska institutet, Stockholms Hogskola.
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