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B a i r e  s e t s  a n d  B a i r e  m e a s u r e s  

B y  KENNETH A.  R o s s  a n d  KARL STROMBERG 

I n t r o d u c t i o n  

The purpose of this  paper  is to  ascer ta in  to wha t  ex ten t  cer tain known results  
abou t  Baire  sets and  Baire  measures  on a-compact ,  local ly compact  spaces 1 are 
va l id  in more general  spaces. We f requent ly  f ind t h a t  the  known results  car ry  over 
to  pa racompac t ,  local ly compact  spaces, hence, in par t icular ,  to al l  locally compact  
topological  groups. We also list  some addi t iona l  proper t ies  about  locally compact  
groups t ha t  are not  va l id  in all  pa racompact ,  local ly compact  spaces. 

Let  X be a topological  space. A set Z c X is a zero-sct if Z =/-1(0) for some continuous 
rea l -valued funct ion / on X; we often wri te  Z(/) for / -1(0) .  The Baire sets are those 
subsets of X belonging to  the  smallest  a -a lgebra  containing al l  zero-sets in X. This 
defini t ion of Baire  sets is appa ren t ly  due to Hewi t t  [6]. The Borel sets are those 
sets belonging to the  smal les t  a -a lgebra  t h a t  contains all  closed subsets of X. Clearly 
a Baire set is a lways a Borel  set. I n  many  famil iar  spaces, including al l  metr ic  spaces, 
the  classes of Baire  sets and  Borel  sets coincide. Our definit ion of Baire  sets is con- 
s is tent  with t h a t  of Halmos  [5] whenever  X is a -compact  and  locally compact;  see 
1.1. All  of our results  are well known for a-compact ,  local ly compact  spaces. We 
have observed a t endency  among writers  to assume tha t  the  results  are t rue  for 
general  local ly compact  spaces; we hope t ha t  the  present  paper  will show the l imi ta :  
t ions of these assumptions.  

Fo r  a topological  space X,  C(X) will denote  the  fami ly  of continuous real -valued 
functions on X.  We also define Coo(X)= ( /E C ( X ) : / h a s  compact  support},  C+(X)= 
{/E C(X):/~> 0}, and  Cgo(X) = {/E C0o(X):/>/0}. 

Fo r  s t anda rd  te rminology and results  in measure  theory,  topology,  and  topological  
groups, we refer the  reader  to Halmos  [5], Ke l l ey  [9], and  Hewi t t  and  Ross [7], 
where he will also f ind references to  the  original  sources. 

1. Ba ire  sets  

We begin with  an e l emen ta ry  observat ion.  

Proposit ion 1.l .  I / X  is a a-compact, locally compact space, the class o/ Baire sets 
is equal to the smallest a-ring S o containing all compact Go's. I n  other  words, a set is 
a Baire set as defined in this  paper  if and  only if i t  is a Baire  set as defined in Hal-  
m o s  [5]. 

1 All topological spaces in this paper are assumed to be Hausdorff spaces. 
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Proof. Since X is regular and LindelSf, it is normal.. Therefore every closed G~ 
is a zero-set, and hence every member  of So is a Baire set. 

F Consider a zero-set Z; clearly Z is a G~. We have X = (J ~=1 ~ where each F~ is 
compact. For  each n, there is an f~ in C~0(X) such tha t  f , (F , )=  1. Defining B~= 

B /~1(1) for each n, we obtain compact  G~'s such tha t  X =  [J ~ffil ~. Thus Z =  (.J ~1  
(Z N B~) is a countable union of compact G0's and ZES o. Hence every zero-set be- 
longs to So, and so every Baire set belongs to S 0. 

The next three theorems generalize Theorem 51.D, Halmos [5]. 

Theorem 1.2. A compact Baire set F i~ any topological space X is a zero.set. 

Proof. Exact ly  as in Halmos'  proof of 51.D, there is a metric space M and a con- 
tinuous mapping T of X onto M such tha t  F = T-I(Mo) for some subset M 0 of M. 
Since T(F)=Me,  M 0 is compact and hence closed in M. Therefore M o is the zero- 
set of some g in C(M). If  we d e f i n e / = g o T ,  t h e n / E  C(X) and Z(/) =F .  

Theorem 1.3. A closed Baire set E in a paracompact, locally compact space X is a 
zero-set. 

Proof. Let ~ consist of all open subsets of X having compact  closure, and let ~q 
be a locally finite open refinement of ~ .  Since ~ is also a point  finite cover, there is 
an indexed family ~q={Wv:  VG~}  of open sets Wv such tha t  W { ~  V for all VElq 
and [J v ~ W v = X  (see Ex. V, page 171, Kelley [9]). For  VG~, we choose fv 
i n  C~o(X) such tha t  fv(W~)= 1 a n d / v ( X -  V)=0. Finally, we define Bv=/~l(1)  for 
V E ~q. Then (J v~Bv = X and each By is a compact Baire set. Hence each Bv N E 
is a compact Baire set; using 1.2, it is easy to see tha t  there exist functions gvE C+(X) 
such tha t  Z(gv)=By N E and g v ( X - V ) = 1 .  Define g=infv~gv;  since ~ is locally 
finite, g is continuous and it is obvious tha t  Z(g) = E. 

Examples 3.1 and 3.2 show tha t  the conclusion of Theorem 1.3 might  fail if either 
the hypothesis tha t  X be paracompact  or the hypothesis tha t  X be locally compact 
is dropped. We have been unable to ascertain whether or not  the conclusion holds 
when the hypothesis on X is weakened to "normal, locally compact";  however, see 
Theorem 1.5 below. Example 3.3 shows tha t  the conclusion of Theorem 1.3 does 
hold in all well-ordered spaces. 

The following routine lemma will be used in proving Theorem 1.5 and also in 
Section 2. 

Lemma 1.4. Let X be a normal space, and let Y be a closed Baire set in X.  Then a 
set E c  Y is a Baire set in X i /and only if it is a Baire set in Y. 

Proof. (~ ) .  Let ~ = ( F c X : F n  Y is a Baire set in Y}. I t  is easy to verify tha t  
every zero-set in X belongs to :~, tha t  F E :~ implies X -  F E :~, and tha t  (Fn}~=l c :~ 
implies (J~%1 FnE:~. Hence every Baire set in X belongs to :~. Thus i f  E c  Y is a 
Baire set in X, then E N Y = E  is a Baire set in Y. 

( ~ ) .  Let E = { E ~  Y : E  is a Baire set in X}. Clearly ~ is a a-algebra of subsets of 
Y. To show tha t  ~ contains all Baire sets in Y, we need to show tha t  every zero-set 
in Y belongs to  E. Suppose then tha t  E is a zero-set in Y and tha t  / in C+(Y) is 
such tha t  Z(f )= E. Since X is normal, f can be extended to a function ] in C+(X) 
by  the Tietze-Urysolm theorem. Then E = Y n ]-1(0) is a Baire set in X and E 
belongs to ~. 
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T h e o r e m  1.5. A closed a-compact Baire set E in a normal, locally compact space X 
is a zero-set. 

Proo[. Since E is a-compact, we can find a sequence {U=}~=I of open sets such that 
E c  0 n~lUn and each U~ is compact. Using normality twice, we can choose open 
sets V and W such that E c  W c  W - ~  V c  V - c  (J~=lUn. Choose a function k in 
C+(X) for which k(V-)=O and k(X-[J=~_-IU,)=I, and define Y=k-l(O). Then Y 

oo oo U -  is a closed Baire set and V - ~  Y~ [.J~=IU~. Also Y=(.J~=I( ~ f] Y) is a-compact 
and normal, and hence paracompact. By 1.4, E is a closed Baire set in Y. Hence 
by 1.3, there is an )t in C+(Y) such that Z(/)= E. We may assume that 0 <~/(x)<~ 1 
for xE Y. Since X is normal, Urysohn's lemma shows that there is a g in C+(X) such 
that g(E)=O and g ( X - W ) = 1 .  Define h on X by the rule: 

h(x)=sup ([(x), g(x)) for xe Y, 

=1 for x ~ Y .  

Clearly h is continuous on the open sets V and X -  W-. Hence h belongs to C+(X); 
it is obvious that Z(h) = E. 

Example 3.1 shows that the hypothesis in Theorem 1.5 that X be normal is needed. 
We next observe two interesting facts about Baire sets that  hold for some impor- 

tant, but special, spaces. Example 3.4 shows that both conclusions may fail in a 
sufficiently bad compact space. 

T h e o r e m  1.6. I[ X is a locally compact group or an arbitrary product o/ separable 
metric spaces, then the closure o / a  Baire set is a Baire set and the closure o / a n y  open 
set is a Baire set. 

We prove this theorem after proving Theorem 2.5. 

2.  B a i r e  m e a s u r e s  a n d  f u n c t i o n s  

The next theorem generalizes Theorem 52.G, Halmos [5]. A Baire measure is 
simply a measure defined on the Baire sets which assigns finite measure to each 
compact Baire set. 

T h e o r e m  2.1. I] X is lutracompact and locally compact and i /card  (X) is less than 
the first inaccessible cardinal, then every a-finite Baire measure ix on X is regular; i.e., 
/or each Baire set E we have 

ix(E) =sup (ix(C):Cc E and C is a compact Baire set} 

=in/{ix(U): U D E  and U is an open Baire set}. 

Proo]. Since IX is a-finite, there exists a sequence (IX~}~=x of finite Baire measures 
such that ix(E)=~%lixn(E) for each Baire set E. 

By Th~or~me 5 of chap. I, w 10, No. 12 of Bourbaki [1], we have X ~  L]~AX~ 
where the Xa's are pairwise disjoint open a-compact sets. 1 For each positive integer 
n, we define v, on the set of all subsets of A by the rule: 

vn(r)=ix,(l.JX~) for F c A .  
AEI' 

The authors are indebted to ]Professor E. A. Michael for calling this theorem to their attention. 
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Note tha t  every set U ~rX~ is a Baire set since it is open and closed. I t  is evident 
tha t  each v~ is a finite measure on the set of all subsets of A and tha t  card(A) is less 
than  the first inaccessible cardinal. Now Theorem (A) of Ulam [16] shows tha t  for 
each n there exists a countable subset A,, of A such tha t  v~(A~)=v~(A). Now let 

A A0= U . = l  ~, and let Y =  U~AoXz. Since A 0 is countable, we see tha t  Y is a-com- 
pact. Also 

n = l  n - 1  n - 1  

(The existence of a a-compact  set Y such tha t /z (X - Y) = 0  also follows directly from 
Rubin 's  theorem announced in [14].) 

Now consider any Baire set E in X. Theorem 52.G of Halmos [5] applies to p 
restricted to Y; tha t  is, # is regular on Y. Since Y is open and closed, Y is a Baire 
set in X and so EN Y is a Baire set in X. By  1.4, EN Y is a Baire set in Y. Now 
applying these facts, we have 

/~(E) = # ( E  N Y) 

= in f  { # ( U ) : U ~ E N  Y, U is an open Baire set in Y} 

=inf  {#(UU ( X - Y ) ) : U ~ E N  Y, U is an open Baire set in Y} 

>~inf (/z(V): V ~ E ,  V is an open Baire set in X} 

~>~(E), 
and 

/~(E) =/~(E N Y) 

= sup (ju(C):C~ E, C is a compact Baire set in Y} 

sup ( /~(C):Cc E, C is a compact Baire set in X} 

~<#(E). 

These relations show tha t  ~ is regular on X. 
Example 3.5 shows tha t  the assumption tha t  ~ be a-finite in Theorem 2.1 is 

needed. Example 3.6 shows tha t  the hypothesis on X in Theorem 2.1 cannot be 
weakened to "normal and locally compact";  and Example 3.7 shows tha t  the hy- 
pothesis tha t  X be locally compact cannot be dropped. 

A Baire ]unction on a space X is a function J into a topological space Y such 
t h a t / - I ( U )  is a Baire set for every open set U in Y. The next  theore,~a ~how~,~ Chat 
the definition of Baire set used in t;b.i~ p~per is a good one. I n  particular', it general- 
izes Exercise 51.6 of Halmos [5]. 

Theorem 2.2. Let X be any topolooeal space and let 73 be 
on X containing all real-valued co~.'~tinuous ]unctions and 
poin~wis,~ convergent sequence o/]unctions in, it. Then B 
real-valued Baire ]unctions on X.  

the s,mal~s~ cbz~.~ of/unction,~ 
containing th~ limit o/every 
consists o] exactly all o/ the 

Pr~;~oL Let ~)0 consist o5 ~!..[ continuous iunctions in B. For  every ordinal a > 0  
ttm~ i~ ~ess the~:,l the first uncoc.r~,-~ble ordins,1 ~ ,  let B~ consist of all functions which 
ar~ pciu~wise ~imits of seq~ie~ces of ~unctions in U~<~ ~ .  Then B = U~<aB~. Each 
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family B~ is closed under finite suprema and finite linear sums, and hence the same 
remarks apply to B. I t  follows that B is closed under countable suprema. 

Now let Z be a zero-set in X; Z =Z(]) for some ]E C+(X). Then the characteristic 
function ~r of Z is equal to 1-sup~ n.inf(], 1/n), and hence belongs to Y. If ~ =  
{E:zEEB}, then ~ contains all zero-sets and is closed under complements and 
countable unions. Thus if E is a Baire set, then E E E and XE belongs to B. 

Finally, every Baire function belongs to B because it is a limit of linear combinations 
of characteristic functions of Baire sets. That every function in B =  I.J~<nB~ is a 
Baire function follows by transfinite induction on :r 1 ~< ~ < Y~ (clearly every function 
in B0 is a Baire function). 

Theorems 2.3 and 2.5 deal with the question: Given a continuous (respectively, 
Baire) function g of a topological space X into a metric space Y, do there exist a 
continuous open mapping ~ of X onto a metric space M and a continuous (respec- 
tively, Baire) function / on M such that g =/or?  In other words, is g essentially a 
function defined on a metric space? 

Note that if the requirement that ~ be open is dropped, then the question becomes 
trivial. In this case, M can be taken as g(X) which is a subset of Y, ~ can be taken 
as g, and ] can be taken as the identity map on M. Example 3.8 shows that the orig- 
inal question does not have an affirmative answer for all compact spaces. 

Theorem 2.3, Let X be a product o/separable metric spaces Xa, aEA; and let g be a 
continuous {respectively, Baire) ]unction o] X into a separable metric space Y. Then 
there is a countable subset Co] A such that g is qssentially de]incd on the metric space 
M =IIaEc Xa. The mapping v is the ordinary projection o] X onto M.  

Proo]. For g continuous, this theorem is proved by Corson and Isbell [2], Theorem 
2.1. The crucial step of the proof is to show that g is determined by the indices in a 
countable set C: 

x, y E X  and Xa=y a for aEC implies g(x)=g(y); 

see, for example, Theorem 4 of [13]. 
The proof for a Baire function g is the same once it is established that such a g 

is determined by a countable set of indices. This can be proved for all Baire functions 
by applying transfinite induction to the sequence B~, 1 < cr <~ ,  defined in the proof 
of 2.2. 

Lemma 2.4. Let X be a ~-compact, locally compact group. 1] E is a Baire set in X,  
then there exists a compact normal subgroup N o] X such that E = E N  and X / N  is 
metrizable. 

Proof. Halmos [5], Theorem 64.G, states that for an appropriate compact normal 
subgroup N, E = E N  and X / N  is separable. The term separable used in [5] means 
that there is a countable base for the topology of X/N.  Thus Urysohn's metrization 
theorem {[9], page 125) shows that X / N  is metrizable. 

Theorem 2.5. Let X be a or.compact, locally compact group, and let g be a continuous 
{respectively , Baire) ]unction on X into a separable metric space Y. Then there is a 
compact normal subgroup N o] X such that X /N is metrizable and g is essentially defined 
on X /N .  The mapping ~ is the ordinary l~rojection o] X onto X /N .  

This theorem is a slight generalization of the theorem on page 60 of Montgomery 
and Zippin [12]. 
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Proo/. Let g be a Baire function on X into Y. I t  is easy to see that  it suffices to 
find N and establish that  

x y  -1  EN implies g(x)=g(y). 

Let B be a countable basis for Y. Each set g-l(B), BE B, is a Baire set and hence, 
by 2.4, there is a compact normal subgroup NB such that  g-l(B)=g-I(B)N~ and 
X[Ns is metrizable. Let N = N s=~ hrs; clearly N is a compact normal subgroup of X. 
Since each X/N s is metrizable, each N B is the countable intersection of open sets. 
Therefore N is also the countable intersection of open sets and it follows that  X/N  
is metrizable. 

Suppose now that  xy ~1 E N and g(x) = ~ E Y. Then (=) = N~r for appropriat~ 
Bj E ]g, and hence 

) g-l(o~) = iT-1(Bj) = g-i(Bj)Ns,~ [7 g-I(B~)N~ g-l(Bj) N=g-l(~)N~g-l(oO. 
t~1 t=1 t=1 1 

Thus g-l(~)=g-l(:c)N, both x and y belong to g-l(~), and g(x)=~=g(y). This com- 
pletes the proof. 

The assumption in Theorem 2.5 that  X be a-compact is necessary, at least for 
Abelian groups, as Theorem 2.8 below will show. 

We now prove Theorem 1.6 as promised in Section 1. 

Proo] o/ Theorem 1.6. Step I. Suppose that  E is a Baire set in a compactly gener- 
ated, locally compact group X. By 2.4, there is a compact normal subgroup N of X 
such that  E = E N  and X/N is metrizable. I t  follows that  E - ~ E - N .  If  ~ denotes 
the projection of X onto X[N, then v(E:)  !s closed in X/N and there is an ] in C(X/N) 
such that  Z(/)=v(E-). T h e n / e v e  C(X) and Z(/ov)=E- so that  E -  is a Baire set. 

Step II .  Suppose that  E is a Baire set in an arbitrary locally compact group X. 
Then X contains an open and closed, compactly generated subgroup H. Clearly every 
coset of H is a closed Baire set. Each E fl xH is a Baire set in xH by 1.4 and so, by 
Step I, each E- ~ xH is a zero-set in xH: Consequently, E -  is the zero-set of some 
continuous function on X: 

Step I I I .  Suppose that  U is an open subset of a compactly generated, locally 
compact group X. Let 2 denote the Haar  measure on X. There exists a sequence 
{"~n}~=l Of compact subsets of U such that  2 ( U - [ J ~ ) = 0 .  Choose functions 
/~E C+(X) such that  fn(_~.)= 1 and f~ ( X - U ) = 0 ;  define F .  =/;1(1). Then each F~ 
is a Baire set and 2 ( U - ( J  .%1F~)=0" Since [ J ,~ l  Fn is a Baire set, its closure U-  
is also a Baire set by Step I. 

Step IV. Suppose that  U is an open subset of an arbitrary locally compact group X. 
An argument similar to Step I I  and using Step I I I  shows tha t  U-  is a Baire set. 

Step V. Suppose that  E is a Baire set in a product X of separable metric spaces 
X~, aEA. As noted in 2.3, every Baire function is determined by eountably many  
indices. In  particular, this applies to the characteristic function of E. Hence for 
some countable subset C of A, E=Eo • a where E o is a subset of I IaecX a. 
Hence E - = E o  • IIaeA-c Xa. Since E~ is a zero-set in the metric space IIaec Xa, it 
follows that E -  is a zero-set in X.  

Step VI. Suppose that U is an open subset of X-----IIaEA Xa, where each X a is sepa- 
rable metric. By Theorem 3 of [13], U-  is determined by  countably many  indices. 
Arguing as in Step V, we infer that  U-  is a zero-set in X. 
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The next  two lemmas are needed to prove Theorem 2.8. Example 3.9 shows tha t  
the natural  analogue of Lemma 2.7 for compact spaces is not  true. 

Lemma 2.6. Let ~o be the set o/ordinals less than the first uncountable ordinal ~ .  
I / A  is an uncountable Abelian group, then there is a non-decreasing transfinite sequence 
{H~:ccE ~0} o/proper subgroups o / A  such that U ~ H~ = A.  

Proo[. Let J be a subgroup of A having cardinality tr 1. From Theorem 20.1 of 
Fuchs [3], it follows tha t  there is an isomorphism [ of J into a divisible group D such 
tha t  card (D) =tO 1. By  16.1 [3], [ can be extended to a homomorph i sm/ '  of A into D. 
Let  K be the kernel o f / ' .  Then card (A/K)= tr 1. Let  {x~K:~r E ~0} be a well-ordering 
of A/K.  Define ~/~ to be the countable subgroup of A / K  generated by {x~K :fl <~ o~}. 
Then {~/~:~E~0} is a non-decreasing sequence of proper subgroups of A / K  and 
O ~ t ~ = A / K .  Finally, define H~={xEA:xKE~t~};  the sequence {H~:aE~o} has 
the desired properties. 

Lemma 2.7. Let G be a locally compact Abelian group with identity e, and assume 
that G is not metrizable. Then there is a set A c G such that card (A ) =tr e (~A, and every 
Go set containing e intersects A in a nonvoid set. 

Proo/. There is a compactly generated open subgroup H of G. By  virtue of Pontrya-  
gin's structure theorem for locally compact,  compactly generated Abelian groups 
(see 9.8 [7]), H ma y  be chosen to be topologically isomorphic with R m • G 0, where 
m is a non-negative integer, R is the real line, and G O is a compact group. Evident ly  
G O cannot be metrizable, and it suffices to find a set A 0 in G O as in the lemma. {Note 
tha t  G O is itself a G~ set in (7.) We therefore assume tha t  G is compact. 

By  23.17 and 24.48 of [7], the character group (~ of G is discrete and uncountable. 
By  Lemma 2.6, there is a non-decreasing transfinite sequence {~/~: a E ~o} of proper 
subgroups of G such tha t  O ~ ~/~ = G. For  a E ~o, ~/~ =~ ~ and hence ~/~ does not  sepa- 
rate points of G by 23.20 [7]. For  a E ~o, select x~E G, x~ =~ e, such tha t  ~(x~)= 1 for 
all ~ E ~/~. Let  A be the set {x~: a E ~o}. 

Sets of the form {x E G : ] ~ ( x ) -  11 < s  for v 2 E :~} constitute a base for open sets a t  
e where e > 0  and :~ is a finite subset of ~ (see 23.15 and 24.3 of [7]). Every  Ga set 
containing e contains a countable intersection of sets of this form. Hence it contains 
a set n~EcyJ-l(1) for some countable subset C of (~, and it suffices to show tha t  A 
intersects n ~ c  ~-1(1). To do this, choose aE ~o such tha t  C c  ~/~. Then x~ belongs 
to A and to n ~Gc~-l(1). This property of A also shows tha t  A must  be uncountable 
and hence tha t  card (A)=~1. 

Theorem 2.8. Let G be a locally compact Abelian group, which is not metrizable or 
a-compact. There is a continuous /unction / o/ G into the circle group T such that / 
is not essentially de/ined on any metrizable G/N, where N is compact and normal. 

Proo/. Let H be an open compactly generated subgroup of G. Then H is not  metri- 
zable and G/H is not  countable. Let  A be a subset of H as given in Lemma 2.7; 
card (A) = bt 1. For  each a E A, there is a continuous character Za of H for which za(a) ~ 1. 
Let {xa:aEA} be a subset of G consisting of elements from distinct cosets of H.  
Define / on G as follows: 
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/(x)=):~(xx~ I) if xEx~H, 

=1 if xr x~H. 
aeA 

Clearly ] is continuous on G. 
Suppose now tha t  N is a compact  normal  subgroup of G and t ha t  G/N is metr i -  

zable. Then N is a Ge set containing e; hence there  exists an e lement  a in A ~ N. 
P la in ly  ax~ and x~ belong to the same coset of N. Since/(ax~) =)~(aX~Xa 1) 4:1 and  
/(x~):Z,(x~x-~)=l, / is not  constant  on cosets of N and hence is not  essent ia l ly  
def ined on G/N. 

3. Examples 

Example 3.1. Let  N and R denote the set of integers and  the real  line, respect ively.  
Let  X be the  space f i R - ( f i N - N )  discussed in Exercise 6P of Gi l lman and Jer ison 
[4]. Then X is locally compact ,  but  not  normal.  Let  E : N c X .  Each set (n),  nEE, 
is a compact  zero-set and  so E is a a -compact  Baire set. However ,  E is closed and 
E is not  a zero-set by 6P.5 [4]. 

Example 3.2. Let  X denote  the  real line and retopologize X so t ha t  the  open sets 
are the  sets of the  form U tJ S, where U is open in the  usual  topology and S is a 
subset  of the  i r ra t ional  numbers.  The space X is pa racompac t  (see Michael [10] or 
[11]), but  not  locally compact .  Le t  E be the set of ra t ionals  in X. Each set (r), rEE, 
is a compact  zero-set and  so E is a closed a-compact  Baire set. However ,  E is not  a 
zero-set in X; otherwise E would be a Go subset  of the real  line with the  usual  topol-  
ogy, which is impossible by  the Baire category theorem. The space X and this  
p rope r ty  of E are discussed by Kat~ tov  [8], page 74. 

Example 3.3. Let  X be a well-ordered set with the order topology.  Then every 
closed Baire set E in X is a zero-set. Note t ha t  X is a lways normal,  and  X is para-  
compact  if and only if X has a countable cofinal set. 

I f  X has a countable cofinal set, then E is a zero-set by 1.3. Suppose t ha t  X has 
no countable cofinal set. I f  E is bounded,  then E is compact  and hence a zero-set  
by  1.2. If  E is unbounded;  then  X---E is bounded and,  for some fl in X, [fl, ~ [ c  E. 
Clearly E N [1, fl] is the  zero-set of some function g on [1, ill. Define ~ on X by the  
rule: 

g(x)=g(x) for x<3, 
= 0  for x>~f l+ l .  

Since [ 1, 8] is open and closed, ~ is continuous; and  i t  is obvious t ha t  Z(~) = E. 
Example 3.4. Let  X be the  compact  space fiR, where R is still  the  real  line. L e t  

U= (J ~ _ l ] 4 n - 1 ,  4 n + l [ c R .  The set U is open in R and hence is open in X. We 
have U = LJ ~ - lFk  where the Fk's are compact .  Each  Fk is a zero-set in X and there- 
fore U is a Baire  set in X. 

F ina l ly ,  we claim tha t  U-  is not  a Baire set. Otherwise U- =Z(g) for some g E C+(X). 
Clearly g(x) = 0 for x E R if and only if x E [J ~-114n - 1,4n + 1]. Fo r  n = 1, 2 . . . . .  choose 
xnER such t ha t  l < [ 4 n - - x , I  < 2  and Ig(x,)[ < I / n ;  let  S=(xl, x 2 ...). Then S is 
a zero-set for some bounded continuous funct ion on R and,  by  Theorem 6.4 [4], 
S N U- =~.  Since S is not  compact ,  S is not  closed in X and there  is an  e lement  y 
in S - S .  Then g(y)=0 and yE Z(g), and ye t  y q  U- .  This contradic t ion shows t h a t  
U :  is not  a Baire set. 
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Example 3.5. Le t  X be any  space t h a t  is not  a-compact .  Then the  measure  /~ 
given by  

~u(A) = 0  if A is a subset  of a a,  compact  set, 

= ~ otherwise,  

defines a nontr iv ia l  infini te Baire  measure  on X tha t  is not  regular .  
Example 3.6. Let  X consist of al l  ordinals  less t han  the  first  uncountable  ordinal  ~ .  

W i t h  the  order  topology,  X is normal  and  local ly compact ,  bu t  not  pa racompac t  (see 
Ex.  Y, page 172, Ke l l ey  [9]). Fo r  Baire  sets E c  X,  define ju(E)= 1 if E contains an 
uncountable  closed set, and  # ( E ) = 0  otherwise. T h e n / z  is a finite Baire  measure  
t ha t  is not  regular;  see Exercise 52.10 [5]. 

Example 3.7. Le t  X denote  the  Sorgenfrey line; i.e., the  real  l ine wi th  sets [a, b[ 
as an open basis. Then X is pa racompac t  as shown by  Sorgenfrey [15]. Since the  
sets [a, b[ are Lebesgue measurable ,  i t  follows t ha t  the  Baire  sets of X are al l  Le- 
besgue measurable .  L e t / z  be the  Lebesgue measure res t r ic ted to [0, 1] and  defined 
for al l  Baire sets of X, Then/~ is not  regular ,  since every compact  set, being countable,  
has measure  zero. 

Example 3.8. Let  X be the  compact  space f i n  +, where N § = {1, 2, 3 . . . .  ). Le t  g 
be the  continuous funct ion on X def ined by  

g(n)=l/n for nEN +, 

g(x)=O for x E X - N  +. 

Then there  does no t  exist  a metr ic  space M, a cont inuous open mapp ing  v of X 
onto M, and  a funct ion / on M such t h a t / o r  =g.  

Assume t h a t  such M,  3, and  / exist.  Then ~ mus t  be one-to-one on N+; ev iden t ly  
�9 (N +) ~=M. Select any  x in M - v ( N + ) .  Then x =l imk v(n~) for some sequence (nk}k~=l 
of dis t inct  integers. Le t  U = (n k E N + : k even}-.  Since X - U = (n E N + : n =~ nk for any  
even k ) - ,  g is open and closed in X. P la in ly  v(U)=(T(nk) : k even} U (x}. Since 
X = l i m  k T(n~+l), T(U) is no t  open. This contradic ts  our  assumpt ion.  

Example 3.9. Le t  X be the  wel l -ordered set of ordinals  less t han  or equal  to the  
smallest  ord ina l  0 whose corresponding cardinal  is ~2" Then X is compact  and  not  
f irst  countable.  I f  A c X  has the  p rope r ty  t ha t  O~A a n d  card (A)=~r then  A is 
bounded and  0 has a neighborhood missing A al together.  
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