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Baire sets and Baire measures

By KenneTH A. Ross and KARL STROMBERG

Introduction

The purpose of this paper is to ascertain to what extent certain known results
about Baire sets and Baire measures on ¢-compact, locally compact spaces! are
valid in more general spaces. We frequently find that the known results carry over
to paracompact, locally compact spaces, hence, in particular, to all locally compact
topological groups. We also list some additional properties about locally eompact
groups that are not valid in all paracompact, locally compact spaces.

Let X be a topological space. A set Z< X is a zero-set if Z =f~1(0) for some continuous
real-valued function f on X; we often write Z(f) for f~1(0). The Baire sets are those
subsets of X belonging to the smallest g-algebra containing all zero-sets in X. This
definition of Baire sets is apparently due to Hewitt [6]. The Borel sefs are those
sets belonging to the smallest ¢-algebra that contains all closed subsets of X. Clearly
a Baire set is always a Borel set. In many familiar spaces, including all metric spaces,
the classes of Baire sets and Borel sets coincide. OQur definition of Baire sets is con-
sistent with that of Halmos [5] whenever X is o-compact and locally compact; see
1.1. All of our results are well known for o-compact, locally compact spaces. We
have observed a tendency among writers to assume that the results are true for
general locally compact spaces; we hope that the present paper will show the limita-
tions of these assumptions.

For a topological space X, C(X) will denote the family of continuous real-valued
functions on X. We also define Coo(X)={f€ C(X):f has compact support}, CH(X)=
{f€C(X):f>0}, and Cgo(X)={f€ Coo(X):f>0}.

For standard terminology and results in measure theory, topology, and topological
groups, we refer the reader to Halmos [5], Kelley [9], and Hewitt and Ross [7],
where he will also find references to the original sources.

1. Baire sets

We begin with an elementary observation.

Proi)osition 1.1. If X is a o-compact, locally compact space, the class of Baire sels
1 equal to the smallest o-ring S, containing all compact G5’s. In other words, a set is
a Baire set as defined in this paper if and only if it is a Baire set as defined in Hal-
mos [5].

1 All topological spaces in this paper are assumed to be Hausdorff spaces.
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Proof. Since X is regular and Lindelsf, it is normal. Therefore every closed G
is a zero-set, and hence every member of §, is a Baire set.

Consider a zero-set Z; clearly Z is a G5;. We have X = U7, F, where each F, is
compact. For each n, there is an f, in Cgo(X) such that f,(F,)=1. Defining B,=
f21(1) for each n, we obtain compact Gs’s such that X=Uy_,B, Thus Z=U37.,
(ZN B,) is a countable union of compact Gy’'s and Z€S,. Hence every zero-set be-
longs to 8§, and so every Baire set belongs to §,.

The next three theorems generalize Theorem 51.D, Halmos {5].

Theorem 1.2. A compact Baire set F in any topological space X is a zero-set.

Proof. Exactly as in Halmos’ proof of 51.D, there is a metric space M and a con-
tinuous mapping T of X onto M such that F=T-1M,) for some subset M, of M.
Since T(F)=M,, M, is compact and hence closed in M. Therefore M, is the zero-
set of some g in C(M). If we define f=goT, then f€ C(X) and Z(f)=F.

Theorem 1.3. A closed Baire set E in a paracompact, locally compact space X is a
zero-set.

Proof. Let U consist of all open subsets of X having compact closure, and let ¥
be a locally finite open refinement of Y. Since Y is also a point finite cover, there is
an indexed family W ={Wy:V €U} of open sets Wy such that Wy V for all V€Y
and UyesWy=X (see Ex. V, page 171, Kelley [9]). For V€Y, we choose fy
in Cé(X) such that fy(W7)=1 and f,(X — V)=0. Finally, we define By,=/;'(1) for
VEY. Then U vepyBy=2X and each By is a compact Baire set. Hence each By N K
is a compact Baire set; using 1.2, it is easy to see that there exist functions g€ C*+(X)
such that Z(g,)=ByN E and g,(X —V)=1. Define g=infyegy; since V¥ is locally
finite, ¢ is continuous and it is obvious that Z(g)=E.

Examples 3.1 and 3.2 show that the conclusion of Theorem 1.3 might fail if either
the hypothesis that X be paracompact or the hypothesis that X be locally compact
is dropped. We have been unable to ascertain whether or not the conclusion holds
when the hypothesis on X is weakened to “‘normal, locally compaet”; however, see
Theorem 1.5 below. Example 3.3 shows that the conclusion of Theorem 1.3 does
hold in all well-ordered spaces.

The following routine lemma will be used in proving Theorem 1.5 and also in
Section 2.

Lemma 1.4. Let X be a normal space, and let Y be a closed Baire set in X. Then a
set E<Y i3 a Baire set in X if and only if it is a Baire set in Y.

Proof. (=). Let F={F<X:FNY is a Baire set in Y}. It is easy to verify that
every zero-set in X belongs to F, that F € F implies X — F € F, and that {FleacF
implies UY., F,€J. Hence every Baire set in X belongs to F. Thus if E<Y isa
Baire set in X, then EN Y =F is a Baire set in Y.

(=). Let E={EcY:E is a Baire set in X}. Clearly £is a g-algebra of subsets of
Y. To show that £ contains all Baire sets in Y, we need to show that every zero-set
in Y belongs to €. Suppose then that E is a zero-set in ¥ and that f in C+(Y) is
such that Z(f)=E. Since X is normal, f can be extended to a function fin CHX)
by the Tietze-Urysohn theorem. Then E=1Y nf-1(0) is a Baire set in X and ¥
belongs to £.
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Theorem 1.5. A closed a-compact Baire set E in a normal, locally compact space X
18 @ zero-set.

Proof. Since E is g-compact, we can find a sequence {U,}>-, of open sets such that
Ec UP-1U, and each U; is compact. Using normality twice, we can choose open
sets V and W such that Ec We W c VeV - clUP.,U,. Choose a function £ in
CH(X) for which k(¥V-)=0 and KX —U.,U,) =1, and define Y =k*(0). Then Y
is a closed Baire set and V" <Y< U¥.,U,. Also Y=UZ-,(U, NY) is g-compact
and normal, and hence paracompact. By 1.4, E is a closed Baire set in Y. Hence
by 1.3, there is an f in C*(Y) such that Z(f)= E. We may assume that 0<f(z)<1
for € Y. Since X is normal, Urysohn’s lemma shows that there is a g in C*(X) such
that g(E)=0 and g(X — W)=1. Define & on X by the rule:

h(x)=sup (f(z), g(x)) for x€Y,
=1 for -z¢Y.

Clearly & is continuous on the open sets ¥V and X — W ™. Hence % belongs to CH(X);
it is obvious that Z(h)=E.
Example 3.1 shows that the hypothesis in Theorem 1.5 that X be normal is needed.
We next observe two interesting facts about Baire sets that hold for some impor-
tant, but special, spaces. Example 3.4 shows that both conclusions may fail in a
sufficiently bad compact space.

Theorem 1.6. If X is a locally compact group or an arbitrary product of separable
metric spaces, then the closure of a Baire set is a Baire set and the closure of any open
set is a Baire set.

We prove this theorem after proving Theorem 2.5.

2. Baire measures and functions

The next theorem generalizes Theorem 52.G, Halmos [5]. A Baire measure is
simply a measure defined on the Baire sets which assigns finite measure to each
compact Baire set.

Theorem 2.1. If X is paracompact and locally compact and if card (X) is less than
the first inaccessible cardinal, then every o-finite Baire measure u on X is regular; i.e.,
for each Baire set E we have

w(E)=sup {u(C):C< E and C is a compact Baire set}
=inf {u(U):U> K and U is an open Baire set}.

Proof. Since u is o-finite, there exists a sequence {u,}5-, of finite Baire measures
such that u(E) =37 1u,(E) for each Baire set E.

By . Théoréme 5 of chap. I, § 10, No. 12 of Bourbaki [1], we have X = U1ea X2
where the X,’s are pairwise disjoint open o-compact sets.l For each positive integer
n, we define v, on the set of all subsets of A by the rule:

n(0)=p(UXs) for TA.
el
! The authors are indebted to Professor E. A. Michael for calling this theorem to their attention.
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Note that every set U;X; is a Baire set since it is open and closed. It is evident
that each v, is a finite measure on the set of all subsets of A and that card(A) is less
than the first inaccessible cardinal. Now Theorem (A4) of Ulam [16] shows that for
each n there exists a countable subset A, of A such that »,(A,)=»,(A). Now let
Ag=U7-1A,, and let ¥ = e, X, Since A, is countable, we see that Y is g-com-
pact. Also

M8

(A —Ay)=0.

1

H(X_ Y)= él,un(X_ Y): glvn(A_Ao) <

n

(The existence of a g-compact set ¥ such that u(X — Y) =0 also follows directly from
Rubin’s theorem announced in [14].)

Now consider any Baire set £ in X. Theorem 52.G of Halmos [5] applies to u
restricted to Y; that is, y4 is regular on Y. Since Y is open and closed, Y is a Baire
set in X and so £NY is a Baire set in X. By 1.4, EN Y is a Baire set in Y. Now
applying these facts, we have

p(E)=p(EN ¥)
=inf {u(U): U= EN Y, U is an open Baire set in ¥}
=inf {(UU(X—-Y)):U>ENY, U is an open Baire set in ¥}
Zinf {u(V): V> E, V is an open Baire set in X}

= u(E),
and

w(B) =B N Y)
=sup {u(C):C< E, C is a compact Baire set in Y}
<sup {u(0):C< E, C is a compact Baire set in X}
<u(B).

These relations show that y is regular on X.

Example 3.5 shows that the assumption that u be o-finite in Theorem 2.1 is
needed. Example 3.6 shows that the hypothesis on X in Theorem 2.1 cannot be
weakened to ‘“‘normal and locally compact”’; and Example 3.7 shows that the hy-
pothesis that X be locally compact cannot be dropped.

A Buaire function on a space X is a function f into a topological space ¥ such
that f~(U) is a Baire set for every open set U in Y. The next theorern shows that
the definition of Baire set used in this paper is a good one. In particular, it general-
izes Exercise 51.6 of Halmos [5].

Theorem 2.2. Let X be any topological space and let B be the smatlest class of functions
on X containing ell real-valued continuous functions and containing the limit of every
poiniwise convergent sequence of functions in . Then B consists of ewactly all of the
real-valved Baire functions on X,

Froof. Let B, consist of all consirucus funetions in B. For every ordinal a>0
that is less thau the first uncouniable ordinal Q, let B, consist of all functions which
arg peintwise limits of saquences of fanctions in U g, Bg. Then B= U ,.q B.. Each
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family B, is closed under finite suprema and finite linear sums, and hence the same
remarks apply to B. It follows that B is closed under countable suprema.

Now let Z be a zero-set in X; Z =Z(f) for some f€ C*(X). Then the characteristic
function y, of Z is equal to 1 —sup, n-inf(f, 1/n), and hence belongs to B. If £=
{E:y;€B}, then £ contains all zero-sets and is closed under complements and
countable unions. Thus if Z is a Baire set, then E€ £ and y; belongs to B.

Finally, every Baire function belongs to B because it is a limit of linear combinations
of characteristic functions of Baire sets. That every function in B= Uaz<aBe is a
Baire function follows by transfinite induction on «, 1 <a<Q (clearly every function
in B, is a Baire function).

Theorems 2.3 and 2.5 deal with the question: Given a continuous (respectively,
Baire) function g of a topological space X into a metric space Y, do there exist a
continuous open mapping 7 of X onto a metric space M and a continuous (respec-
tively, Baire) function f on M such that g=for? In other words, is g essentially a
function defined on a metric space?

Note that if the requirement that 7 be open is dropped, then the question becomes
trivial. In this case, M can be taken as g(X) which is a subset of Y, 7 can be taken
as g, and f can be taken as the identity map on M. Example 3.8 shows that the orig-
inal question does not have an affirmative answer for all compact spaces.

Theorem 2.3. Let X be a product of separable metric spaces X,, a€A; and let g be a
continuous (respectively, Baire) function of X into a separable metric space Y. Then
there is @ countable subset C of A such that g is gssentially defined on the metric space
M=1l,.c X,. The mapping 7 is the ordinary projection of X onto M.

Proof. For g continuous, this theorem is proved by Corson and Isbell {2], Theorem
2.1. The crucial step of the proof is to show that g is determined by the indices in a
countable set C:

xz, y€X and z,~=y, for a €C implies g(z)=g(y);

see, for example, Theorem 4 of [13].

The proof for a Baire function g is the same once it is established that such a ¢
is determined by a countable set of indices. This can be proved for all Baire functions
by applying transfinite induction to the sequence B,, 1 <a<(, defined in the proof
of 2.2. :

Lemma 2.4. Let X be a g-compact, locally compact group. If E is a Baire set in X,
then there exists a compact normal subgroup N of X such that E=EN and X|N is
metrizable. '

Proof. Halmos [5), Theorem 64.G, states that for an appropriate compact normal
subgroup N, E=EN and X/N is separable. The term separable used in [5] means
that there is a countable base for the topology of X/N. Thus Urysohn’s metrization
theorem ([9], page 125) shows that X/N is metrizable.

Theorem 2.5. Let X be a o-compact, locally compact group, and let g be a continuous
(respectively, Baire) function on X into a separable metric space Y. Then there is a
compact normal subgroup N of X such that X|N is metrizable and g is essentially defined
on XN, The mapping T is the ordinary projection of X onto X|N.

This theorem is a slight generalization of the theorem on page 60 of Montgomery
and Zippin [12].
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Proof. Let g be a Baire function on X into Y. It is easy to see that it suffices to
find N and establish that

ay~1€ N implies g(x) =g(y).

Let B be a countable basis for Y. Each set g~1(B), B€ B, is a Baire set and hence,
by 2.4, there is a compact normal subgroup N such that g—}(B)=g-}(B)N and
X [Ny is metrizable. Let N = [ e N; clearly N is a compact normal subgroup of X.
Since each X /Ny is metrizable, each Ny is the countable intersection of open sets.
Therefore N is also the countable intersection of open sets and it follows that X/N
is metrizable.

Suppose now that xy '€ N and g(a:) a€ Y. Then {a} = N;2, B; for appropriate
B,€B, and hence

070 = Ao (B)= Ao B)Na> A B)N > (A7B)) V=g 0¥ =g .

Thus g~Y(«) =g~'(«)N, both x and y belong to g~'(«), and g(z) =a=g(y). This com-
pletes the proof.

The assumption in Theorem 2.5 that X be o-compact is necessary, at least for
Abelian groups, as Theorem 2.8 below will show.

We now prove Theorem 1.6 as promised in Section 1.

. Proof of Theorem 1.6. Step 1. Suppose that E is a Baire set in a compactly gener-

ated, locally compact group X. By 2.4, there is a compact normal subgroup N of X
such that ¥=FEN and X/N is metrizable. It follows that E~=E"N. If 7 denotes
the projection of X onto X /N, then 7(£ ") is closed in X/N and there is an f in C(X/N)
such that Z(f)=v(E~). Then for€ C(X) and Z(fot)=E~ so that E~ is a Baire set.

Step I1. Suppose that E is a Baire set in an arbitrary locally compact group X.
Then X contains an open and closed, compactly generated subgroup H. Clearly every
coset of H is a closed Baire set. Each £ N zH is a Baire set in zH by 1.4 and so, by
Step I, each £~ NxH is a zero-set in zH. Consequently, £~ is the zero-set of some
contmuous function on X.

Step III. Suppose that U is an open subset of a compactly generated, locaily
compact group X. Let A denote the Haar measure on X. There exists a sequence
{F,}7_1 of compact subsets of U such that A(U—U%-, F,)=0. Choose functions
f,,G C+(X) such that f,(F,)=1 and f,(X —U)=0; define F,=f;'(1). Then each F,
is a Baire set and A(U —U%., F,)=0. Since 3., F, is a Baire set, its closure U~
is also a Baire set by Step 1. '

Step IV. Suppose that U is an open subset of an arbitrary locally compact group X.
An argument similar to Step II and using Step III shows that U~ is a Baire set.

‘Step V. Suppose that E is a Baire set in a product X of separable metrio spaces
X,, a€A. As noted in 2.3, every Baire function is determined by countably many
indices. In particular, this applies to the characteristic function of E. Hence for
some countable subset C of A, E=E,Xl,¢c4-¢c X, where E, is a subset of Il,.c X,.
Hence £~ =E; X1l eq-c X,. Since Ey is a zero-set in the metric space Il,.c X, it
follows that B~ is a zero-set in X.

Step VI. Suppose that U is an open subset of X =I1,.4 X,, where each X, is sepa-
rable metric. By Theorem 3 of [13], U~ is determined by countably many indices.
Arguing as in Step V, we infer that U™ is a zero-set in X.
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The next two lemmas are needed to prove Theorem 2.8. Example 3.9 shows that
the natural analogue of Lemma 2.7 for compact spaces is not true.

Lemma 2.8. Let Q, be the set of ordinals less than the first uncountable ordinal €.
If A is an uncountable Abelian group, then there is a non-decreasing transfinite sequence
{H,: 2 € Qq} of proper subgroups of A such that |J,H,=A.

Proof. Let J be a subgroup of A having cardinality ®,. From Theorem 20.1 of
Fuchs [3], it follows that there is an isomorphism f of J into a divisible group D such
that card (D)=N,. By 16.1 [3], f can be extended to a homomorphism f" of 4 into D.
Let K be the kernel of f. Then card (4/K)=R,. Let {2,K:x € Q,} be a well-ordering
of A/K. Define Y, to be the countable subgroup of 4/K generated by {xzK:f<a}.
Then {H,:«€Q,} is a non-decreasing sequence of proper subgroups of 4/K and
U.H.=A/K. Finally, define H,={x€A:zK€N,}; the sequence {H,:a€Q,} has
the desired properties.

Lemma 2.7. Let G be a locally compact Abelian group with identity e, and assume
that G is not metrizable. Then there is a set A< @ such that card (4) =¥, e¢ A, and every
G set containing e intersects A in a nonvoid set.

Proof. There is a compactly generated open subgroup H of G. By virtue of Pontrya-
gin’s structure theorem for locally compact, compactly generated Abelian groups
(see 9.8 [7]), H may be chosen to be topologically isomorphic with R™ X G, where
m is a non-negative integer, R is the real line, and G, is a compact group. Evidently
G, cannot be metrizable, and it suffices to find a set 4, in G, as in the lemma. (Note
that G, is itself a G5 set in G.) We therefore assume that G is compact.

By 23.17 and 24.48 of [7], the character group G of G is discrete and uncountable.
By Lemma 2.6, there is a non-decreasing transfinite sequence {H,:a€ (3} of proper
subgroups of @ such that{, H. =@. For a € Qp, HoF @ and hence 3, does not sepa-
rate points of @ by 23.20 [7]. For « €Q,, select x,€ G, z,+ e, such that yp(z,) =1 for
all y€N,. Let A be the set {r,:a€Q}.

Sets of the form {z€Q: |yp(x) —1| <e for p€ F} constitute a base for open sets at
e where ¢ >0 and F is a finite subset of @ (see 23.15 and 24.3 of [7]). Every G; set
containing e contains a countable intersection of sets of this form. Hence it contains
a set {1 ,ecp(1) for some countable subset C of @, and it suffices to show that 4
intersects M yec p~1(1). To do this, choose a€ Q, such that C<=H,. Then z, belongs
to A and to M yecy(1). This property of 4 also shows that 4 must be uncountable
and hence that card (4)=R,.

Theorem 2.8. Let G be a locally compact Abelian group, which is not metrizable or
a-compact. There is a continuous function f of G into the circle group T such that f
18 not essentially defined on any metrizable G/N, where N is compact and normal.

Proof. Let H be an open compactly generated subgroup of G. Then H is not metri-
zable and G/H is not countable. Let A be a subset of H as given in Lemma 2.7;
card (4)=N,. For each a € 4, there is a continuous character y, of H for which y,(a)+1.
Let {x,:a€A} be a subset of G consisting of elements from distinct cosets of H.
Define f on G as follows:
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f@) =y (xxz?) if x€x,H,
=1 if z¢U =«,H.
acA

Clearly f is continuous on G.

Suppose now that N is a compact normal subgroup of @ and that G/N is metri-
zable. Then N is a G5 set containing e; hence there exists an element @ in AN N.
Plainly ax, and z, belong to the same coset of N. Since f(ax,) =y (axz;') 1 and
f(x) = xa(x.xz2") =1, f is not constant on cosets of N and hence is not essentially
defined on G/N.

3. Examples

Example 3.1. Let N and R denote the set of integers and the real line, respectively.
Let X be the space SR — (SN —N) discussed in Exercise 6P of Gillman and Jerison
[4]. Then X is locally compact, but not normal. Let £ = N< X. Each set {n}, n€E,
is a compact zero-set and so E is a o-compact Baire set. However, £ is closed and
E is not a zero-set by 6P.5 [4].

Example 3.2. Let X denote the real line and retopologize X so that the open sets
are the sets of the form U U S, where U is open in the usual topology and § is a
subset of the irrational numbers. The space X is paracompact (see Michael [10] or
(11]), but not locally compact. Let E be the set of rationals in X. Each set {r}, r€E,
is a compact zero-set and so E is a closed o-compact Baire set. However, E is not a
zero-set in X; otherwise E would be a Gj subset of the real line with the usual topol-
ogy, which is impossible by the Baire category theorem. The space X and this
property of E are discussed by Katétov [8], page 74.

Ezample 3.3. Let X be a well-ordered set with the order topology. Then every
closed Baire set £ in X is a zero-set. Note that X is always normal, and X is para-
compact if and only if X has a countable cofinal set.

If X has a countable cofinal set, then K is a zero-set by 1.3. Suppose that X has
no countable cofinal set. If E is bounded, then F is compact and hence a zero-set
by 1.2. If E is unbounded; then X -- E is bounded and, for some g in X, [f, co[< E.
Clearly E N [1, B] is the zero-set of some function ¢ on [1, 8]. Define § on X by the
rule:

§x)=g(x) for z<p,
=0 for z=zg+1.

Since [1, 8] is open and closed, § is continuous; and it is obvious that Z(§)=E.

Ezample 3.4. Let X be the compact space SR, where R is still the real line. Let
U=U7r-14n—1,4n+1[< R. The set U is open in R and hence is open in X. We
have U= {J ¥, F, where the F,’s are compact. Each Fy is a zero-set in X and there-
fore U is a Baire set in X.

Finally, we claim that U~ is not a Baire set. Otherwise U ~ =Z(g) for some g € C+(X).
Clearly g(x) =0 for x€ R if and only if x€ U F.,[4n —1,4n+1]. For n=1, 2, ..., choose
z,€ R such that 1<|4n-z,| <2 and |g(z,)| <1/n; let S={z,, x, ...}. Then S is
a zero-set for some bounded continuous function on R and, by Theorem 6.4 [4],
8 N U™ =¢. Since S is not compact, S is not closed in X and there is an element y
in § —8. Then g(y) =0 and y€ Z(g), and yet y¢ U . This contradiction shows that
U~ is not a Baire set.
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Example 3.5. Let X be any space that is not o-compact. Then the measure p
given by
u(A4)=0if A is a subset of a g-compact set,

= oo otherwise,

defines a nontrivial infinite Baire measure on X that is not regular.

Example 3.6. Let X consist of all ordinals less than the first uncountable ordinal 2.
With the order topology, X is normal and locally compact, but not paracompaet (see
Ex. Y, page 172, Kelley [9]). For Baire sets E< X, define u(E)=1 if E contains an
uncountable closed set, and u(E)=0 otherwise. Then u is a finite Baire measure
that is not regular; see Exercise 52.10 [5].

Example 3.7. Let X denote the Sorgenfrey line; i.e., , the real line with sets [a, B[
as an open basis. Then X is paracompact as shown by Sorgenfrey [15]. Since the
sets [a, b[ are Lebesgue measurable, it follows that the Baire sets of X are all Le-
besgue measurable. Let u be the Lebesgue measure restricted to {0, 1] and defined
for all Baire sets of X. Then y is not regular, since every compact set, being countable,
has measure zero.

Example 3.8. Let X be the compact space BN*, where N* ={1, 2, 3, ...}. Let ¢
be the continuous function on X defined by

gn)=1/n for n€N",
gx)=0 for x€X—-N*.

Then there does not exist a metric space M, a continuous open mapping 7 of X
onto M, and a function f on M such that for=g.

Assume that such M, 7, and f exist. Then 7 must be one-to-one on N*; evidently
T(N*)=DM. Select any x in M —7(N*). Then x=lim, 7(n,) for some sequence {n,}i>-1
of distinct integers. Let U= {nkEN *:keven}~. Since X U= {nEN *:n=+mn, for any
even k}~, U is open and closed in X. Plainly (U)={z(n,): k even} U {z}. Since
z=lim, r(n2k+1), 7(U) is not open. This contradicts our assumption.

Example 3.9. Let X be the well-ordered set of ordinals less than or equal to the
smallest ordinal § whose corresponding cardinal is ®,. Then X is compact and not
first countable. If A< X has the property that ¢4 and card (4)=¥,, then 4 is
bounded and 0 has a neighborhood missing A altogether.
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