Communicated 3 June 1959 by Otto Frostman

A remark on a theorem by Frostman

By LARS LITHNER

The origin of this remark is a lecture held by Frostman in Helsinki 1957 [2]. Let us introduce some definitions and notations.

Let K be an arbitrary compact set in the euclidean space R^n and let α be a number such that $0 < \alpha < n$. Put

$$\|\mu\|_{\alpha}^{2} = \int \int \frac{d\mu(x) d\mu(y)}{|x-y|^{n-\alpha}}$$

where μ is a distribution of mass in \mathbb{R}^n and where x and y denote points in \mathbb{R}^n , $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)$.

A is the set of all positive distributions of unit mass on K, that is,

$$\mu \ge 0$$
, $\mu(K) = 1$, $\mu(R^n - K) = 0$.

Let $C_{\alpha}(K)$ be the capacity of K of order α

$$C_{\alpha}(K) = \frac{1}{\inf_{\mu \in A} \|\mu\|_{\alpha}}.$$

It is well known that if $C_{\alpha}(K) > 0$ then there exists a uniquely determined distribution μ_{α} in A that satisfies

$$\|\mu_{\alpha}\|_{\alpha}=\inf_{\mu\in A}\|\mu\|_{\alpha}.$$

 μ_{α} is called the equilibrium distribution of order α on K. Frostman [2] has set the problem whether these equilibrium distributions vary continuously with α or not. Or, if $\alpha \searrow \beta$ (\searrow means "tends non-increasingly to"), is it then true that μ_{α} converges towards a uniquely determined limit? (Convergence here in the weak sense, that is, $\mu_{\alpha} \to \mu$ is equivalent to $\int f d\mu_{\alpha} \to \int f d\mu$ for all continuous functions f with compact supports.)

If $C_{\beta}(K) > 0$, the answer is yes. The limit in this case is μ_{β} which is easy to prove [2]. On the other hand, if $C_{\beta}(K) = 0$, $C_{\alpha}(K) > 0$ for $\alpha > \beta$, then the problem is not solved but for special cases. Frostman treats such a special case in [2] namely the case that $\alpha \setminus 1$ and that K is a curve in the plane (n=2) which is rectifiable. He proves that in this case $\mu_{\alpha} \to \mu_{0}$ where μ_{0} is the distribution in A for which the mass which is situated on an arc is proportional to the length of that arc.

L. LITHNER, A remark on a theorem by Frostman

The aim of this remark is to prove another special case which does not contain the case of Frostman but which in a certain sense extends his result.

Let us suppose that the measure of K is greater than zero. We shall prove

Theorem. If $\alpha \searrow 0$ then $\mu_{\alpha} \rightarrow \mu_{0}$ where μ_{0} is the distribution in A which has constant density.

Proof. It is evidently sufficient to prove that if μ_{α_n} , $\alpha_n \searrow 0$, is an arbitrary convergent sequence, then its limit is μ_0 . Put

$$K_{\alpha}(x) = C \alpha 1/r^{n-\alpha}, \quad r = \sqrt{x_1^2 + \cdots + x_n^2},$$

where

$$C = \frac{1}{2} \Gamma \left(\frac{n}{2} \right) / \pi^{n/2}.$$

f denotes the Fourier transform of f, that is,

$$f(x) = \int_{\mathbb{R}^n} e^{-2\pi i x \xi} f(\xi) d\xi, \quad x \xi = \sum_{i=1}^n x_i \xi_i.$$

Hence

$$R_{\alpha}(x) = C \alpha \pi^{n/2-\alpha} \frac{\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{n-\alpha}{2}\right)} r^{-\alpha} \to 1 \text{ when } \alpha \searrow 0.$$

This implies that $K_{\alpha} \to \delta$ in the distribution sense. δ is the Dirac function. Put

$$\|\mu\|_{K_{\alpha}}^{2} = C \alpha \|\mu\|_{\alpha}^{2}, \quad \|\mu\|_{0}^{2} = \int_{an} |\hat{\mu}(x)|^{2} dx.$$

Then we have

$$\parallel \mu \parallel_{K_{\alpha}}^{2} = \int_{\mathbb{R}^{n}} \hat{K}_{\alpha}(x) |\hat{\mu}(x)|^{2} dx$$

which is easily seen by Parseval's formula.

Now let μ_{α_n} be a sequence which converges towards a distribution μ' (necessarily in A). Then we have

$$\hat{\mu}_{\alpha_n}(x) \rightarrow \hat{\mu}'(x)$$
 everywhere.

By Fatou's lemma we conclude

$$\lim_{n\to\infty}\|\mu_{\alpha_n}\|_{K_{\alpha_n}}^2=\lim_{n\to\infty}\int\limits_{\mathbb{R}^n}\hat{K}_{\alpha_n}(x)\left|\hat{\mu}_{\alpha_n}(x)\right|^2d\,x\geqslant\int\limits_{\mathbb{R}^n}|\hat{\mu}'(x)|^2d\,x=\|\mu'\|_0^2$$

Observing that μ_{α_n} is a minimal distribution also with respect to the kernel K_{α_n} we get

$$\begin{split} \|\mu'\|_{0}^{2} & \leq \lim_{n \to \infty} \|\mu_{\alpha_{n}}\|_{K_{\alpha_{n}}}^{2} \leq \lim_{n \to \infty} \|\mu_{0}\|_{K_{\alpha_{n}}}^{2} = \\ & = \lim_{n \to \infty} \int_{\mathbb{R}^{n}} \hat{K}_{\alpha_{n}}(x) \, |\hat{\mu}_{0}(x)|^{2} \, dx = \int_{\mathbb{R}^{n}} |\hat{\mu}_{0}(x)|^{2} \, dx = \|\mu_{0}\|_{0}^{2}. \end{split}$$

Or,
$$\|\mu'\|_0^2 \leq \|\mu_0\|_0^2$$
.

But μ_0 is the uniquely determined equlibrium distribution of K with respect to the kernel δ . This implies

$$\|\mu_0\|_0 = \inf_{\mu \in A} \|\mu\|_0$$
 (see [1]).

Hence $\mu' = \mu_0$ and the theorem is proved.

REFERENCES

- 1. Deny, J.: Les potentiels d'énergie finie. Acta Mathematica 82 (1950).
- FROSTMAN, O.: Suites convergentes de distributions d'équilibre. Treizième Congrès des Math. Scandinaves (Helsinki) 1957.