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A study of certain Green’s functions with applications in

the theory of vibrating membranes

By AxE PLEUEL

Introduction. The first part of this paper contains estimations for x— + oo
of the Green’s functions which satisfy the equation

o\? 2 \?
(1) (8701) u -+ (W) u~z2u=0

and Dirichlet’s or Neumann’s boundary conditions. A similar investigation in
the theory of Laplace’s equation was recently carried out in collaboration with
T. GaneLIUus. A previous paper on Green’s functions of the biharmonic equa-
tion has been published in the proceedings of the Symposium on Spectral Theory
and Differential Problems in Stillwater, Oklahoma, 1951.

In the second part of the paper, eigenvalue problems of vibrating membranes
are studied by CARLEMAN’s methods [1]. By the help of the results of part I
certain theorerns on the asymptotic behaviour of the eigepvalues and eigen-
functions are obtained.

In order to simplify the exposition, only membranes with infinitely differ-
entiable boundaries are being considered.

Part 1. Estimates for the Green’s functions.

1. The eguation (1), viz. Au—»*u=0, is considered in an open, bounded
and simply connected domain V of the cartesian a!a*plane. The boundary S
of V is given by equations z' =4 (s), ¢=1, 2, in which s is the arc-length of
the boundary, measured in the counter-clock-wise sense, and ¥ (s) are infinitely
differentiable functions. S also denotes the total length of the boundary. The
distance from a point x=(z, 2°) to S is m, this distance being positive when
x belongs to V. The letter n also denotes the inner normal of S; n;=n, is the
normal at the point ¥ (s)= (%" (5), ¥* (5)).

The equation (1) has the elementary solution %{KO (¢ 7), where K, is the

- - . 9
Bessel K-function and r=r, ., is the distance between x, = (2}, 2) and z,—
= (23, 23). We assume x> 0.
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A. PLELJEL, A study of certain Green’s functions
Let

G (xy. @y — %) = - K, (1) =y (1, T3 )

denote any of the two Green’s .functions of (1) which satisfy the boundary
conditions
G'=0 when z, €S (Dirichlet’s condition),
or
oG

o 0 when z, €S (Neumann’s condition).

The compensating (or regular) parts u (z) =1y (z, z5; %) of these functions satisfy
(1) and fulfil the inhomogeneous conditions

]
(2) u(y)= Z!KO (#7ys,) when y €8,
du 1 @
(3) 5—;& = 5;! a—nKo(%Tyzz) when yES.

The functions w(z)=y (z, z; %) are constructed in a well-known way by as-
suming in the different cases

(4) u {x) = %f@is K,(xr:s)p(s)ds,
and ’

1
5) w@=1 [ Kyero 0)ds,

S

where 7,,=7,, is the distance from z to y=vy(s). The conditions that (4), (5)
satisfy (2) and (3) lead to integral equations of Fredholm’s type for the func-
tions @ (s). When the unique solutions of these equations are introduced in (4),
(8) we get formulee for the y (z,, 2, ») suitable for our study of these functions.

If y (x,, z,; %) is the compensating part of the Green’s function of Dirichlet’s
condition, then

1 7
6) v (@, g %)= 922 " éTSKo (#72,5)- Ko (72,5)ds
S
— oo [ [ 5 Ko terend L6, 9) Ko i) dsds
o2 EPRL) %rzs)- Li(s, 8)- Ky (xrz,5)dsds,
s S

where L (s, s') 1s defined by the relations
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K5 8)=

T O

KO (% rss'),

K™ (s, s')= f fK(s, s, K (sy, 83) K (80, $Vd sy d s,
S

S

L(s,s)=K(s, s)— KV (s, s) + K® (s, §')— -,

s being the distance between y(s) and y(s').
Similarly, for the compensating part of the Green’s function of Neumann’s
condition,

- 1 2
() v(zy, 2 #)= — »~——fK0 (’M’””).g; Ky(xr:,5)ds

27t
S

— 2%12 }f Ko (eres)- M (s, s,)'fZ;K" (7z,0)dsds’
N

where

M(s, s')=K(s', s) - KV (s, s) + K® (s, )+ ---.

On the basis of (6), (7) the functions y (z,, T,; %) will be estimated for large
values of ». The case when z, and z, lie in the neighbourhood of the same
boundary point is particularly interesting. We first examine the properties of

i Ky (xres) and K (s, ')

K() (9{ Tzs), ﬁ
s

when the distances between x and y(s) and between y(s) and y(s’) are small.

2. Coordinates in the neighbourhood of the boundary. Let %>0 be suffi-
ciently small. Then &'=s and £2=n can be taken as new coordinates in the
strip along S where O<n<h. If &' and &2 are plotted in a cartesian &' £%-plane,
the image of the strip O0<n<h will be a strip along the £-axis in which
0<&<h We denote by I a closed interval of the £'-axis and by C(I) a
rectangular (closed) domain £'€7, 0<&* <4, where d<h and the length of [
is less than S. We also denote the inverse images of I and of C(I) in the
@' z*-plane by the same symbols I and C(I).

In what follows, the letter y is nsed for points (4%, 4*) of the boundary, and
the images of these points on the £'-axis are written 5= (5", 0). The distance
between two points &, & in the &'&%-plane is

0, e, = V(EL— EL + (£ — B2,

Let = be a point in a domain C(I) and let y €. The images of z and y

in the £'&*plane are £ and 7. If r=7,, and g =g, the relation r=Vg?+ @ (£, )
holds true with @ (&, 4)=0 (0®) when ¢ tends to zero. More precisely, if ¢ (&%)
is the curvature of 8 in y=y (&),
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A. PLEUEL, A4 study of certain Green’s functions
D& )= —c(E)(E -7V E— 5 (@) (E —7)
1
g (E)(E - E0()

If » is the inner normal of S in y ('), then

o

= — __E2__
5 on E-Y (& 1),

where for ¢ tending to zero, ¥ (&, n)=0{(g% or

21

(&) = 5eE)E =) = 5 (@) (E ~n")* ¢

A N

¢ (&) (&' —7")’+ 0 (o).

On account of the regularity of the boundary, the functions @ (&, 5) and
¥ (&, ) are infinitely differentiable with respect to &', & and 7"
We finally note the identity

o (2%, %)

® (&, &)

=1—c(& &

3. Local expansions. Let z and y be points in C(I) and I having the
images £ and 7 in the &' &*plane. We consider, with r=7;, and o=g:,, the
function K (x7)=K,(zVo? + ®). According to Taylor’s theorem this function

is written
Y(DY {1 dV .
Ky (xr)= EO (2”v! (é Zi—g) K, (2 0) + remainder.
If (D& n)Y, v=1, 2, ... N, are expanded in finite Taylor series of powers

of & —n' and of £ and with coefficients depending on &', the function K, (»7)
assurnes the form

) Koy (er)= 31 (£ (€ — ') (£ (1 4

o) Kol + B4 6 )

Here >* denotes a sum of a finite number of terms, in which f(&') are in-
finitely differentiable functions and «, B, » are non-negative integers. Since
D (&, n)=0{(0®), the inequality a+p>3» holds frue.

If C(I) is sufficiently small it is easily seen that for any given positive in-
teger /A, the function K,(xr) has a local development (9) in which the re-
mainder has continuous derivatives of orders k< A satisfying the relations

D* E1 (&, 5, ) =0 (x~"e~**?), A= constant >0,
when x tends to +oo and £€C(I), nel.
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By definition, the integers «+f--2v are called the degrees of the terms in
(9). Since a+pf>3v, these degrees are non-negative. We also observe that
K, (xg) is the term in the expansion which has degree zero.

Similarly
1a

1) Ko =S 1@ E 7 @ (] 20) Kolw) + R4 E 7 ),

where the remainder has the same properiies as in (9). In (10) the integers
a, B, v fulfil the inequalities « +f>3v—2, »>>1. Thus the degrees of the terms

2 Ko (x0).

in (10) are > —1; the term of degree —1 is — Py

4. Transformation of the local expanmsions. We define the inverse differ-

. a\! .
ential operator (5;) by the equation

(11) (é%)_ F(v)= JF(t)dt.
With the factor f(£') omitted, let
1 dY
12 1_ a2y l~- ™
12) @y @ (5 7o) Fotro

be a term in (9) or (10). By simple calculations it follows that (12) is a linear
combination of a finite number of functions

(13) &y (%) (5%2)'"1(0 (xo),

where p,l and m are integers, p>0, [>0. The degree of the expression (13),
viz. p—1l—m, equals the degrez a+pf—~2» of (12).

To abbreviate, we introduce the symbol &? for the differential operator in
(13), whereupon this function takes the form (£%)?2? Ky(xp) with g¢=1+m.
(The symbol D? is reserved for monomials containing only non-negative powers
of simple differential operators.)

From now on the expansions (9) and (10) are written

(14) Ko (725) = 3* [ (£1) (£2)° 8° K, (x0) + R (€, 7, %),
and
(15) oo Ky (472) = 3" (8 (€ 0 K, () + B (6, 7, %),

In (14), min (p—¢)=0 and in (15) this value equals —1. The terms of min-

. ) .
Imum degree are K,(x90) and — &;K‘, (x0) respectively.
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A. PLELJEL, 4 study of certain Green’s functions

5. e’-functions. Let &, £ be points in the half-plane §2>0 and let p; and
0, be their distances from a variable point 5 of the £-axis. The minimum of
the sum g,+ g, is

w=VE - 8P H(E+ )P
~q q AWEA
By & and 0 we understand operators of the type 9%= 57) la2) - =0,
but which here contain differential operators with respect to &, and 52 instead
of &.

We consider certain functions ¢! (£,, &,, ») which occur when the expressions

(14), (15) for K,(x7.s) and for a—i—Ko {%7:5) are inserted in (6) and (7).

An (&), &, x)-function is defined for points &, & belonging to a sufficiently
small domain C(I), except when & =&,€1. It has the following properties. For
every posttive integer A it has an exrpansion

(16) & (&, &, ) =27 [ (1) (E (&)™ & | o (2 012) + R (&1, &5, %)

in which the functions f(£1) are infinitely differentiable, the integers p,, p, are non-
negative and A 15 the minimum of the integers p,+ p,—q. The remainder has
continuous derivatives DF R of orders k< A with respect to & and &. For the
remainder and its derivatives relations

(a7 D¥ RA=0 (»~1e**%2) 4= constant >0,
(> 2,

hold true when = tends to infinity. We may suppose that i cannot be increased
by transforming the right hand side of the expansion; its value is then called the
degree of the e*-fumction.

It is easy to see, that a function which for every A has an expansion
DX (&L &) (8D (83) 68 K, ("912)+R (&1, &3, %)

with infinitely differentiable coefficients f (&1, &) is an € (&, &, x )function.
The proof follows by expand)nu the functions f(.fl, &) in Taylor series. It is
similarly seen that F(fl, &) et (&, &,, %) is an €' (&, &, )functlon with u >4,
prov1ded that F (&, &) is infinitely differentiable. If F=&1 - or F=§ or
F=§, the value of u equals A+1, Clearly a derivative of an e (£, &, %)-
function with respect to &}, &%, £ or & is an &' (&, &,, x)-function.

Functions € (&, n, ») and e (ny, 1y, %) are defined in a similar way as the
et (&, &y, ®)-functions when E€C(I), n€l, &4n and when 15, Ny €1, 1,70,
Thus, these functions have expansions

(18) ‘f n, % Z* 51 52 & K, (”Qén)+RA (&, n, %),
(19) ¢ (11> M %)= Z* f (71%) [0 K¢ (% 029,) e, + R4 (115 25 %),

wn which f(&,), f(n) are infinitely differentiable and the remainders satzs]‘y (17)
with s replaced by 0z, and gy, respectively. In (18) A is the minimum of
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p—q and in (19) # equals the minimum of ~gq. It is assumed that A cannot
be replaced by a larger value in the expansions (18), (19).

The properties of the e*(&, 5, x)- and €' (i, 7., »)-functions are essentially
similar to those of the functions ¢*(&,, &,, #) and need not be listed. We ob-
serve that

hm el ("Sl; 52; %)y hm 6;' (517 52’ %)
e E1->11. Eaona

are (&, 175, %)- and e” (v, 7,, x)-functions with u> 4.
The formule (14), (15) show, that with respect to a sufficiently small domain

C(I) the functions K, (xr) and 5%[{0 (7) are e*functions. Thus,

bl
Ko (xrey)=e (£, 7, %), an K, (’“'zy)ze-l (¢, m, %)
v

when z€C(I), y€I and z+y. The only term of degree —1 in the e '-ex-
2

. 2 . £ Lo
pansion of Py Ky(xr:y) is — = Kg(x0e,), which is zero when £=0. It
Tty O¢y

follows that K (s, s') = y% 873;—]{0 (3755) is locally an €° (7, 55, *)-function if we

put s=ul, s’ =n.

6. A theorem on e’-functions. If the functions ™ (&, 5, %) and € (&, 7, %)
are defined in C(I,) and C(1,) and if I is an interior part of I, N1, then the
integral

(20) | (& m, 2 € (&, m, ) At = (£, &, %)

nLal,

w5 an etMTI(E &, x)-function in every domain C(I)<C(I)NnC(I,). This is
true, provided that when one or both points &, &, belong to 1, the value of the
tntegral is defined as its limit value when &, and &, approach I from the in-
terior of C(I).

The proof of this theorem depends on the study of the expressions

(21) , f R (&, m, %) R (&, 1, ) d ',
(22) e f 50 Ky (201) B (&, 7, %) 7',
(23) <5§)”21 { RBU (&, m, %) 8% Ky (x00) A,
(24) (&)™ @ I{ 61 Ko (1) 80" Koy (w0)) 7,
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A. PLEUEL, 4 study of ceriain Green’s functions

where 0,=0¢ ., 0:=0cn, and where the integers py, p,, q;, ¢, satisfy the in-
equalities 9, >0, P, =0, p, — ¢, =4, Pa— @2 = As.

Let A be an arbitrary positive integer. Then if A, and- A, are taken suf-
ficiently large, it is clear that (21) has the same properties as the remainder
in (16). The same is true also for (22) and (23). This is easily seen when
p,—q, and p,- g, are large. In other cases it follows after partial integrations,

. . a 2
if one observes that, when applied to K, (xps,), the operators . 5L, (6—5—2) may
1

2

be replaced by — a—a—nl and »*— (61171) . Surpassing the details of this dis-

cussion we examine functions of the type (24), which give the principal part
of the expansion of e****1 (£, &, x). To do this we first deduce an integral
theorem.

7. An mtegral theorem. Let £,, 52 be points in £2>0 and put o, =g,

02=0s,8 027 04¢ where £,=(&, —&). For £=§&, we have g,=g;, (see sec-
tion 5).
By Green’s theorem for the upper half-plane one obtains the formule

(25) | [K (e 2 Ko (o) — Ko (ees) - Ko (rel)]dn ~o,

(£2=0)
) [ Ko L Ky~ Ko 2 Ko beon)] dnt + 25 Ko (v =0
@&i-0)
(since & is here a point on the £'-axis it is replaced by = (', 0) in accord-
ance with our earlier conventions; » is the normal of the &'-axis so that
0 0
on 6752) '

For &£=7 (point on the &!-axis) it is clear that K, (xg,)=K,(x0,) and that

0 ,. .
Ky )= — %K‘, (x0p)= -2 K, (x0,). Hence, from (25) and (26) it fol-

lows that

352

2 n
f Ko (o0 53 Ko (v 0 = — Ko ().

(£2=0)

Let I and I’ be closed intervals of the &'-axis of which I is an interior subset
of I'. According to the last equation

2 -
@) [ Kae) ;5 Ka e dnt = —n Koo+ R b )

It is easy to verify that R (&, &, x) has continuous derivatives of all ordeis
with respect to &, and &, when &}, £3€] and that, with positive constants ¢
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the relations
(28) DR (&, &, x)==0 (¢™%)

are fulfilled when » tends to infinity.

8. The expression (24). Let I be an interior subset of I'’=1,n1, The
-1

. 0 .
result of applying the operator &% 8% (a-tz) to formula (27) is
s2

2\ .
@) [ K o) o By o dnt = — e (5] Kl

hinl,

a ~1
+o ”'Ix "qz (aE:) R (517 SZ’ %)-

For a function F () which tends exponentially to zero when ¢ tends to + oo

—1 —1
(30) () Feva- (%) e

a -1
Thus, in the first term of the right hand side of (29), the operator % 6% (5—5—2)

may be replaced by a similar monomial containing exclusively differentiations
with respect to &,. According to (28) the last term in (29) and its derivatives
are of orders O (e °*) when &, &,€ C(I) and » tends to infinity.

Our study of the expression (24) completes the proof of the theorem which
was announced in section 6.

9. We alse consider integrals of the type

(31) [ e (&1, n, ) & (g, 1, %) d !

Linl,

where €2 (n,, 7, ) is defined when %y N €1,. We suppose that O(I) is part of
C(l,) and that I is contained in the interior of I, N7,

The examination of (31) depends on the study of expressions similar to (21),
(22), (23), (24) but with pz=0 and with 6% K, (xg,) and R (&,, 7, ) replaced
by lim 87 K, (xg,) and R% (z,, 7, x x). The 1nvestifrati0n of the expressions cor-
respondlng to (21), (22) is done in the way indicated in section 6. If 1,>0,
1e if ¢,>0, the limit valnes of the integrals in (23), (24) when &, tends to
7y are -obtained by performing the transition to the limit under the integral
signs. Therefore, if 1,20, the results obtained for (23), (24) are 1mmedla,tely
transferred into sunllar results for the corresponding expressions occurring in
the study of (31). It follows that, if 1,>0, the integral

(32) | (&, %) € (s 1, ) dogt = 2 (£, gy, )

Iini,
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A. PLELJEL, A study of certain Green’s functions

is an €VRTU(E my, ®)-function when & €C(I),n€l. When & €I, & #n, the
value of (32) vs defined as the limit of the integral when & tends to zero.

Similarly, when 2,20, 2,>0 and when I is an interior part of I, N1, the
integral

(33) [ € (ny, m, ) € (ny m, %) At = €77 (. 7y, %)

ILnl,

7:8 an ex,+;.,_,+1

(M1, Moy #)-function, defined when 1y, n,€1, 15,71,

10. E*-functions. Let z,, z, be points in V+S and let 7,, be the minimum
of the sum r;,, +7.,, when y varies in S.

Functions defined in the large and having the local properties of ¢*-functions
are called E*functions. More precisely: An E*(x,, x,, #)-function is defined and
anfinitely differentiable with respect to =, and x,, when these points belong to V+ 8
except when x,=z,€8. If D* E* is a derivative of order k (D E*=E"), and if
8 is an arbitrary positive number, a relation D* E*=0 (e °*), where c=c(d) is a
positive constant, holds true for r,,>0 when » tends to infinity. With respect to
every sufficiently small domain C (I) the function 1s an €" (&}, &, x)-function with
=y

Similarly E*(x,, y,, #)- and E*(yy, ys, %)-functions are defined when x, € V+S,
4, €8, 2, 7Yy and when yy, ¥ €8, y, #¥s. They are locally equal to € (&, &, %)-
and €" (ny, Ny, ®)-functions with =24 When r;,,>6>0 and when 7y,,,>26>0
the functions E*(xy, o, %) and E*(y,, ¥, #) and their derivatives tend exponem-
tially to zero in the same way as the E*(xy, z,, x)-functions and their derivatives.

In an E*function it is assumed that A cannot be replaced by a larger value;
A 1s called the degree of the function.

. . . 4]
We observe that the functions of section 1, viz. Kgy{x7:y), %KO (37:,) and

K(s,s) are E°(z,y, %), E'(x, y, »)- and E°(y,, ¥, x)-functions (y;=y (s),
Y2=9(5))

11. Integral relations for E*-functions. From (20), (32), (33) one easily
deduces analogous properties of the E™-functions. Thus, the integral

(34) J- Ell (ml, Y (S)> H) EA2 (mz, Yy (S), %) dS = EZP&AZ%’I (xl’ 1;2’ ”)
N

is an EM*h*l (g, x, x)-function, provided that when one or both of the points
z,, %, belong to S, the value of the integral be defined as a limit value.
Similarly, if 1,>0

(35) fE;-l (‘zl! Y (3)7 ”) E;-Z (y2> Yy (3)5 %) d.S‘ = Ekl%h%ﬂ (xl’ ?/2: %):

N

and if 4,>0, 4,>0, the relation

(36) J‘ EM (y1, Y (s), %) E* (42,4 (8), ) ds = BNt (yy, yy, %)
S

holds true.
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12. Estimates for E’-functions. We insert a remark on the asymptotic be-

haviour of the functions {we make a momentary exception from our ccnventions

. . a\' (@
regarding the notation) (;) ((’)_y
z
1

l+m=q. The operator (5%) is defined according to (11) and r=Vat+ 2.

m
) K, (xr) where I, m are integers, 1>0,

Then, with 4 = constant >0, the relations

W R

are valid.

0 (x%e™**") when ¢ <0,
O([1+|logxr{le**") when ¢=0,

O(r %e ") when ¢>0,

I

. - . . ~ ~ .
Since it is readily seen that lim =** =1 when 7,, (or g.,) tends to zero, it

O12
follows from (37) that

0(5‘?26“4";“) when 1<0,

E (), 25, #)= 1 0 ([1+| log % 714]] e~ 4% when A=0,
O (x *e #*'11) when 4> 0.
Similar relations hold true for E? (@1, Yar #)- and E*(yy, ¥s, % )functions

A derivative of an E*function is an E*'-function. Hence, it is superfluous
to assign special estimates for the derivatives of E’-functions.

13. Consequences for Green’s functions. In the case of Dirichlet’s boundary
condition the compensating part of Green’s function is given by the formula (6).
. ° . . .
Since o Ky (x7r:,y) and K, (x7,;) are E'functions with A= —1 and 4=0, it

follows from (34) that the first integral in (6) represents an E°(z, s, )-
function.

The kernel K (s, s') is an E°(y,, v, %)-function if we put y; =y (s}, ¥a=%{5').
Therefore, according to (36) the iterated kernel K™ (s, s') is an E" (yy, ¥,, )-
function. Thus, for n>% and with r=7, ,, we obtain the inequalities

| D*¥ K™ (s, s')| < constant s "** e 4",

By the help of these inequalities it is readily seen that

Ly (s, s") =Z 1Y K¢Y (s, s')

P

is an EY (y,, y,, %)-function. Hence,

L=

(_ I)VK(V) (S, s/ )LN (S” s/)dsu

v=0 v

Lis, s)= % -1y K® (s, s') + (
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is an E°(y,, ¥y, #)-function. It finally follows that the second integral in (6)
is an E' (z,, x,, x)-function. Thus, y (x;, %5, %) 15 an E°®(x,, x,, »)-function. This
1s also true for the compensating part of Green’s fumction in the case of Neu-
mann’s boundary condition, as can be seen by a similar investigation of the
formula (7).
As immediate consequences we obtain the relations

y (&g, Ty %) =0 ([1+]log x 7y,|]e#7"12)

and

D*y (my, 2 2) =0 (7 € *2), k=1, 2, ...

12

. . . 0
14. More precise estimates. The e*-expansions of v Ky (x7r:,5s) and of
S

K, (%7:,5) can be written

¢ 0
8Tst° (372,5) = — Py Ky (% 06,0) + €° (&4, 1, %),

K, (x Tz,s) = Ko {# 0¢,0) + e (&, 7, %)

Thus, on account of (27) we obtain the relation

1 [ @ 1 -
(58)  gos | g Kalnren) Kolers) ds= 5 Koledu) - ¢! (fu, & ),

27t ) om,
S

which is valid if z,, x, belong to a sufficiently small domain C(I). The
e' (&1, &,, »)-function can be estimated by the help of formule (37). If (38) is
inserted in (6), we see, that in the case of Dirichlet’s boundary condition,

y(xly Z2, )= K (H912)+0( ! *Axgw) A>O

This gives the local behaviour of the compensating part when 7, is small and
» tends to infinity. When r,,>8>0 the function y (x;, s, #) is of the order

0 (e=°*), ¢>0. Thus, since lim 2% =1,
012

y (21, Ty, %)= —K (e7y0) +0 (e 471z), 401
In the same way the local relation
(39) ¥ (X1, Ty, #)= — —K (3 942) + O (e 4*), 4> 0,
as well as the formula in the large

1 Estimates of Green’s functions in terms of the light-distance 7,, were first given by
H. WEvL (see [3]).
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1 — —AxT
y(wl,xz,x)——‘TK (x712)+0( Lem4nTe) 4 >0,

47T

are deduced in the case of Neumann’s boundary condition.
By equally evaluating terms of higher orders in the e*-expansions, })etter
approximations are obtained, which give remainders of orders O (% *e **®2) in

which the integer £ can be made arbitrarily large.

15. Integrals of the compensating parts over V. Since for £*>4>0 the
function y (x, z, »#) is of the order O (¢™°*), the integral over V of this function
can be approximated in the following way (see (8))

RS
J= _”yxw%dxdw [ 7@ o %) [1-c(E)E]dEdE+0 (7).
00

If the e’-expansion of y(x, , x) is introduced in the last integral, one obtains
an asymptotic series of the form

k

(40) =2 a,n’+0 =1

In the cases of the two different boundary conditions, the constants a, are
calculated from the e*-expansions by the help of the formula (¢=1+m; when
l is odd the integral vanishes)

f (&) [(a&)l (a%)m K, (» ém)] .

F(p—q+l+1)
tto e TA+1) 2 r

~( =1y 99-q-2 L VT4 N & /. ‘1+1) —pra-t
(=1)* "2 F(»l+1) I'ip—q+1+1)

D
('p+1)]’(—-——2
2 .

which is valid for » tending to infinity provided that p—g¢>0.
The values of the three first coefficients a, are:

wm the case of Dirichlet’'s condition

S

0= 6 BT 512
S

and in the case of Neumann’s condition

S 1 7

— = — — = — 2
87 a2 6’ ‘1'3 512J‘ (C(s)) (lS.

ay=—

Here c¢(s) denotes the curvature of the boundary.
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Part II. Applications to eigenvalue problems

16. Carleman’s method. We consider the problems to seek solution of the
equation

(41) Au+iu=01n V,

satisfying Dirichlet’s or Neumann’s boundary conditions, viz.

(42) u=0 on S.
or

ou
(43) 870“0 on S.

In his study of vibrating membranes [1] Carleman made use of the formula

Py (ml) Py (772)

I ,_2:72_,2°<7
(44) G (9-'71, ZLa; % ) G (zly xz’ J“0) (% "0) ;:;0 (ﬂ.,,‘i' %2) (Av 4 %(2))

where 1, are the eigenvalues, and ¢, (z) the eigenfunctions of one of these prob-
lems. The eigenfunctions are supposed to be orthonormalized on the domain
V. In the problem {(41), (43)} the smallest eigenvalue A, is zero, in the problem
{(41), (42)} it is positive.

When #,, z, coincide, (44) assumes the form

1 1
A . — — —
(45) o log %+ (z, z, %) T log #y—y (x, T, #y)

0 2
(S (v (@) .
(=) 20T s )
For » tending to infinity, the term 7 log % 1s the dominating part of the left
7
hand side, so that

3 (@ @)  logax
(46) Zo (A+xY) (A +xE) 27

On applying a tauberian theorem to this relation, Carleman proved the
the asymtotic formula

(47) > (g, (@)~ éz when ¢—> + oo,

A<t

By integrating (45) over V before applying the tauberian theorem, he was also
able to deduce Weyl's law for the eigenvalue-distribution viz.

N ()~ %tt when ¢— + oo,
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where N (f) is the number of eigenvalues less than ¢, and V denotes the area
of the domain V.
The formule (46), (47) are valid provided that x be an inner pownt of V.

17. Asymptotic behaviour of eigenfunctions on the boundary. In this sec-
tion we consider exclusively the membrane problem with Neumann’s boundary
condition.

For 2, =x,=2z the equation (39) becomes

v (x, x, #) = — ;1— Ky(2xE)+0 (k7" e AR

L7

If, according to this equation, the values of y (z, z, ») and y (z, x, ;) are in-
serted in (45), we get a relation in which we can let z tend to a boundary
point. The result is

o (@ )? 1 % -1 —1
2__, D - = -
(3 ,m)pfo( )t ) log y +0E)F00647).

Hence, for x tending to infinity, one obtains the formula

S mw?® g
o b+ H) (o) mod

From this relation it follows, in the same way as (47) follows from (46), that
the asymptotic formula

t
2 ()~ P when t— +o0 and y€S

kolds true for the eigenfunctions of the problem.

18. On ecertain Dirichlet’s series. In the following investigation we write
o and w, instead of »* and »3.
According to (40) an integration of (45) over V gives the result

14 ’ - 14 y -2
4 — log 2 — — log w,— 2 -
(48) in log w + EO a,0 2+F(w) in log w, v; a, w, F(w,)
it 1
(©=90) 2 G+ o) G T o)

k+1
where F (w)=0 (w_T) when @ tends to + oo
We consider the problem with Dirichlet’s boundary condition. Since in this
problem the least eigenvalue 2, is positive, we can let w, tend to zero in (48)
thus obtaining the formula
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14 k -3 1
(49) Elongrza,w +F(w)+C= wzl—“(ly+w)

y=1

in which C is a constant.
[When the problem with Neumann’s boundary condition is considered, we

1 1 - -~
subtract oo from both sides of (48). The transition to the limit w,—0 then

0
leads to the formula

v S 1
Z:zlogw%— Yaw *+ot+F(w)+C= “’zz(z +w)

r=1

Here, of course, the constants a, and C are generally different from the con-
stants a, and C in (49).]

Let H(») be the function on the right hand side of (49). This function is
multiplied by

1 1
5. (@)= || ?e*™ ¥ 0< argw <27,
A ﬂ@

and the product is integrated along a curve in the complex w-plane. This curve
is taken from w= + o0 to w=a>0 along the real axis (with arg w =2 x), then
around the circle |w|=a and at last from w=a back to w= +oco along the
real axis (with argw=0). According to the calculus of residues, the integral

equals the sum of the Dirichlet’s series E A, 2. By integrating along the real

r=0
axis, the function H (w) may be replaced by the left hand side of (49). In this
way we obtain the formula

oo

0 : Y d
(50) 2 A7 — 4 smnnzfloizwd Sin 2 z a’f @

3

47! 7T 2+ =
y=0 ) 2

d w

s1nnzfdw smyzz E

1-z inz

4z 19y i8(1—2)
F o, JH(ae e do.

The last integral in this formula represents an integral function of z, and since
_ k3l k—1
Fw)=0 (cu 2 ) the last but one is analytic for Re(z)> — —— (Re means

real part of). The other integrals in (5) can be explicitly evaluated. One o0b-
tains the results
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A2v-1

) m +x(2)

M=

1) 3 37 o

+

]

2k—1
i 2
In the case of Neuman’s boundary condition it is similarly seen that

where the function x(z) is analytic when Re(z)> —

0 k
(52) ShT= S ()
. T (z e )
2
2k—-1
2
The values of the coefficients a,, a; in (51) and (51) are given in section 15.

with a function y (z) which is analytic for Re(z)> —
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