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On a class of normed rings'

By J. WERMER

Introduction

A BEURLING in [1], introduced the class of normed rings L, with the norm
= flf z)dx, o(z) being a weight function such that o(z+y) <

So(w)a(y). This paper has its origin in Prof. Beurling’s suggestion to use the
methods and results of [1] in studying a more general class of spaces. The
writer wishes to take this opportunity to express his sincere thanks to Prof.
Beurling for his stimulating advice and kind encouragement

We are concerned with certain spaces of functions defined on the real line.

Let L be a Banach space of functions summable on (— co, 00), and let L con-

sist of all ¢ with [ [f(z)|-|@(x)]dz<oo it feL. We shall use the following

notation: if f, g€L, f*g(x jf(z ¥) g (y)dy, while if fef, pEL, f*g(x)=

= f fly—=z)p(y)dy. We shall consider the following conditions on L:

(1) L contains the characteristic functions of all finite intervals.
(2) If feL and geL and |f(z)|=|g(x)] a. e.,wthen =gl

(3) If for a measurable function f we have [ |f(z)|- |y (@)|dz<oo, for all
v in L, then feL.
(4) Every bounded linear functional « on L is of the form « (f) = f f(x)p(z)dz,

where q)eL for all f in L; conversely, every ¢ in L defines a bounded func-
tional in this way.

(5) The translation operator 7.:T.f(z)=f(x—1) is bounded on L for each
real 7.

(6) L is a normed ring under convolution, i.e., if f, g€L, then f * g€ L and
Nfxgli<kl7]l-llgll, where & is a constant.

! Most of this paper forms part of the author’s dissertation (Harvard, 1951).
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J. WERMER, On a class of normed rings

If we assign to each ¢ in L a nom equal to the norm of the corresponding

functional on L, then L becomes a Banach space isomorphic to the conjugate
space of L. It is easily seen that every space L satisfying (1) through (4) is
separable. If in addition L satisfies (5) we may note the following: log {{ 7, |}
is a subadditive function finite for all real 7. By known properties of sub-
additive functions we have that || 7.|| is bounded on every finite ‘interval of

values of 7. (Cf. Hille, [7], Chap. VL) Since the constant 1 is in L, || T%]| =1
all 7. If 7, converges to 7, T, f converges to I/ for every fin L in the norm

of L. Finally, as | 7| tends to oo, || 7%||=0(e*""!) for some finite 4.
If at last L satisfies (6), i.e. L is normed ring, we can say the following:

Every complex-valued homomorphism of L has the form: f maps into f §)=
= f fx)e**dx where s is some complex number determined by the given

homomorphism. We shall consider in this paper only such spaces L for which

| T.]|=0(e'"!) for each positive e. Hence ¢** is in L if and only if s is real and

hence the space of regular maximal ideals of L coincides with the real line.

We shall denote by J the class of normed rings L satisfying (1) through (6).
In Section 1 we shall consider for the spaces L in J the following questions
which are of interest in the general theory of normal rings:

(A) Given a point p on the real line and an open set around p. Does L
contain a function [ with f (p)= f f(x)é?*dx#0 while f (4) is identically 0

outside the open set?

(B) Is the set of f in L with f (4) identically 0 outside a compact set dense
i L?

(C) Does every clgsed ideal I in L which is not all of L have a zero, i.e.
can we find p with f{p)=0 for all f in I?

In section 2 we shall consider spaces L satisfying (1) through (4) and discuss

a problem concerning trigonometric approximation in L. In Section 3 we shall
use the results of Section 2 to answer the following question for a subclass of J:

(D) How may one characterize the ideals which have precisely one zero?

Examples of spaces L satisfying (1) through (4) may be obtained as fol]ows
Let r>1, - + 1 =1, and let p (z) be positive and summable and o (z) = (p () T,

If L denotes the space with norm | f|"= f |f(@)| o(z)dz and L; the space
with || ¢|= f |@ () p(z)dx, then L is a space L satisfying (1) through (4)

) — . r—T
and L; is its conjugate space L. Furthermore, if sup p; @) )
—O <TI0

real 7, then L] also satisfies (5). Regarding (6) we have the following Lemmas:

< oo for all
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_ Lemma 1: Let L be a space which satisfies (1) through (5). For such ¢ wn
Llet ¥(r)=|lp@+71)|, —c0o<r<o0, If, for each ¢ in L, V€L and ||P| <k| o]l
where k is a constant, then (6) holds for L.

Proof: We first note that if @p€L then for every real = and f in L,

-]

[le@+ollf@lde= [ lo@)]||f@-v)|dz<oco
since f(z—7v)€L by (5). Thus @ @+7)eLl. If now f, 9€L, then f and ¢ are
summable and so fxg¢ is summable, Take any ¢ in L. Then

oo

[le@ldz| [ f@-vowdyl< [lo@ldy [ [1@]||p@+y)ldz

—-~—00

=<}

< [le@ |- l-Z@dv<lagll-1El-1IF]

-0

Therefore [« g (z)-@(x) is summable for every ¢ in L whence by (3) f xg€L.
From (4) we get that

ligll= sup | | f%0@)e@)ds]

and so, since || ¥||<k{@|, we have |[fxg|l<k|f||-]lgll-

Lemma 2: Let L; have the same meaning as above and s<oo. If ¢€L;
let ¥(v)=|@@+7)||. Then, for every o, ||| <kl | where k is a konstant, i/

and only iffp(w—r)p(r)drsksp(x).

Proof:
lp@roll=[lo@rolp@de= [ lp@[p@E-nde

121 = [llorls@ac= [lp@lds [ pe-np@ar.

Clearly || ¥||<kllg]| if and only if [ p(z—7)p (1)dr<k p ().

We note that the condition fp(w—r)p(r)drskp(w) is satisfied for in-

1 a
stance for p (x)= I:L-Iw—la, a>1, or p(x)=e'"!

1z

, 0<a<1, while 1t is not sati--

fied for p(x)=¢"
Thus a space L, r>1, is in J provided the above-named conditions on p{)
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-]

are satisfied and also f p@—7)p(xr)dr<kp(r). A space L, is in J provided

g{xr)=1 and o’(x+y)s_a(a:)0'(y). In particular, for o identically 1, the ring r
of all summable functions is in J and every L in J is, on the other hand, a
subring of L'.

Section 1: In [1] Beurling proved the following for the spaces L;: If o ()
18 non-decreasing and o{(z+y)<o(z)o(y), then (B} holds whenever (4} holds,

and (A) holds if f lglg_-i%? dx<oo. Under this assumption, he showed that

every proper closed ideal generated by a single element has a zero. (C) follows
easily from this last fact provided that o (z) is an even function.

Let now L belong to J and let T, be the operator of translation by 7.
If o(v)=||T.||, then clearly o(7;+7,)<p(7)e(r:) and so L, is a ring. We
assert:

Lemma 3: Properties (A) and (B) hold in L provided that they hold in L,.

Proof: Let F be in L, and f in L. We assert that then Fxf is in L and
HFxfll<|IFI-NF, where ||F|| is taken in L, and || /|| and || F * f|| are taken

in L. For ||[F *f|| is tae supremum of f l@@)| | F*f()|de over all ¢ in L
with ||@|[=1. But -

©a

[lo@||Fxi@ ldw<f|F y)ldyflfx y¢(x)ldw<f|F )Tyt dy.

—o

Hence

| F*fll< IIF Mewady-IHI=IIFR-I7)-

Further, the set of functions F * g where g€L, F €L,, is dense in L. For
suppose ¢ is in L and

o0

[ 9@ F xg(@)da=0

for all F in L, and ¢ in L.
Then f F-ye@)dz=0 if F is in L,, whence at last ¢ =0 which yields

the assertion.

Suppose now that (A) holds in L, and consider any real p and any posi-
tive £. We first choose f in L with f(p)#0, and next we choose ¥ in L, with
F(p)#0 and F(1)=0 for |A—p|>e. Then F*f€L and the Fourier transform
of Fxf vanishes outside (p—é p+s) and ;éO at p. Thus (A) holds for L.

Now suppose (B) holds in L, Given g in L we can find for each positive
& some G in L, and f in L with lg—G@x*f||<e. Further, by hypothesis, there
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exists H in L, with ||@—H ||, taken in L;, less than ——

for some a. Then |lg— Hxf||<|g—G*f||+]|G*/—Hxf
and the Fourier transform of Hxf=0, |i|>a.

b

andH(l) 0 for |1]|=a
<e+ |76 H|l<2e

Lemma 4 Given o(z)=1 and o(x+y)<o(x)o(y). Then (4A) holds in L, if

and only if flolg:;f)dx<oo.

1

Proof: Set P (a;) = ;—(m

Then P (x) is real, non-negative, is in

[log P (x)

L2 (-~ o0, co) and f 114 Idac<oo

By theorem 12 of Paley~Wiener [4], there exists ¥,{z) in L* with F,(z)=0,
x>0, such that F;(x) is the Fourier transform of a function Gl( ) with
| Gy ()| =P (x). Then |Gy (z)|o(x)eL’ and G, (x)€L’. Since P(—zx) obeys the
same condltlons as P(z), there exists F{z) in L? with F () =0, >0, such that
F (z) is the Fourier transform of G (z) where |G (z)|=P(—=z) and so

|G (@) o(—x)= l—j—wé, whence |G (—z)|o(@)eL’, G(—z)€L'.
Set G (x)=G (—=). Then F,(z)=F (—z) is the Fourier transform of G, (z) and
Fy(x)=0, z<0.

We can now choose numbers «,, a, corresponding to a given point p on the
real line and a given positive ¢ so that the Fourier transform of ¢ @, (z)#0
for A=p and =0 for A>p+e, while the transform of &% @, (x)#0 for A=9p

and =0, l<p+e Then if H(z)=€* G, (x)%e™" G, (z), we have H(p);éO

and H (1)=0, |A—p|>e. Also HeL; since it is the convolution of two func-
tions in this space Thus (A) holds.

Conversely, suppose floi{a(z#?— =oo, Given F in L, we have
[ log |o(@)|d
log | F (z og |o(zx)|dx
fog] floglF (x) o ()] 1+ 5 f T5 a2
—-N

N
| F ()| o (x) } f dz
<log{f Ltat d logo‘(x)1+z2
N

|
Thus f og |1F+(i Idx —oo. By the theorem of Paley-Wiener quoted above,
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J. WERMER, On a class of normed rings

it follows that if F vanishes outside a finite interval, then F=0 a.e. Thus (A)
fails in this case.
Lemma 5: Given o(z) as in Lemma 4. If there exists o, (x)Zo(x) with

log g, (z)dz
1+2°

holds in L.

< oo such that o, (x) 1s even and increasing on (0, oo), then (B)

Proof Under the hypotheses, we can find a non-null function A (z) with

f]h Y o1 (@)dz< oo and k(2)=0, |1|>a. (Cf. Levinson, [5].) We may sup-

pose that f h(x)dz=1, for else we take ke'”" h(z) which has the same prop-

erties as h but for suitable k, p has the integral =1. For n=1,2,... we then
set by (t)=nh(nt). Then

flkn(r)lo(r)dr= flk(r)la(g)drs flk(r)lo’l(r)d1<oo.

Let now F belong to L.,. We have

>

rh(‘r) dr j.?F(x)qs(w)dx

LY

l| o F = F || = sup
14

j.?hn (v)dt fF(x—r)q)(w)dx»

where @ is in the conjugate space of L, and || ¢|=1,

fh 1:){ f( (z—%)——F(m))<p(w’)d:v}dt

— o0

= sup

< f!h(T)HITzF—F”dT-
Now

@12 - Fl<b@IIE] (o (2) +1) <IEl @ @nm o)

for all 7. Also lim || 7 F — F||=0 for all 7, whence by the theorem of dominated

. A
convergence || b * F — F|| converges to 0. Since k- F (1) =0 when h, (1) =4 (1—1) =0

and so when |A|>na«, (B) holds.
It follows from the general theory of commutative normed rings that if (A)
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and (B) hold in a semi-simple ring, then (C) also holdsi there. (See [8], Th. 38,
p. 114.) Our rings are semi-simple, since f in L and f(A)=0 for all 2 implies
f=0. The preceding Lemmas thus yield:

Theorem 1: Let L be in J. Then (A) holds in L provided that

g | 2 de
1+7°

— o0

and (B) and (C) hold in L if there exists o (7). even, increasing on (0, co) with

log o, (v)dT

it <o and such that | 7. < oy (7).

—o0

Lemma 5: Let L be in J. For any { in L and positive &, there 1s some g
m L with ||fxg—f|l<e.

Proof: Set g, (1:)=I sup I|| T:||- Then g, (7) is non-decreasing and || 7-|| < g, (%)
T|<it
Let h(x) be the characteristic function of (—, ) and let A, (¢)=nh (nx). Then
fh(m)dwzl and each kb, is in L. Also

o0

[ 17 @)] 02 (x)dxs_“k(x)lgl(w)dx< co.

An argument like that of Lemma 5 then yields that lim ||k, *f—f||=0 which

n=00

proves our assertion.

Section 2: In this Section, we study the problem of approximation of func-
tions in L by trigonometric polynomials, the approximation being in the weak
topology of L induced in L by L. If L is reflexive, e.g. if L is a space L}
with s>1, weak and strong closure is equivalent for subspaces of L, and so
the approximation here will actually be in the norm of L.

We shall not assume that L is a ring or even that L is invariant under
translation but shall only suppose that I satisfies conditions (1) through (4).

. The weakly closed subspace of L spanned by - trigonometric polynomials

;Cr ¢%* coincides with all of I, since if f is in L and if f is orthogonal to all

¢** in I, this means that f(1) vanishes for all 2 and so f=0. Given now any
@ (x) in L, there thus certainly exist closed sets A of real numbers such that
@ (x) is in the closure of trigonometric polynomials with frequencies in 4. If a
set /1 has this property for a certain ¢, we shall say that A ‘‘synthesizes” ¢.

We now ask: Can we assign to each ¢ a set A which consists of those and
only those frequencies involved in synthesizing @? In precise language, our
question is: Given @#0. If S, denotes the intersection of all closed sets which
synthesize @, is S, non-empty?
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Theorem 2: Let h(c) be a function unbounded ai the origin, even, decreasing
on (0, co) and with f log* h(o)do<co. If for each positive o the norm wm L

of the fumction e°'*! sansf@es the tnequality
(I) e | <ke®

then for each @ in L, ¢£0, S, exists as a non-emply set.

Corollary: If (I} holds in L, then (A4) and (B) hold there.

Proof: Suppose (A) fails in L. Then there is a point p and a positive ¢ such
that if f€L and | annihilates all ¢'** with [ —p|>e, i e. ]?]‘(x) é**dxr=0 for

~o0
these A, then also f annihilates ¢'?*. But that means that the set of 1 with
|A— p|>s synthes1zes €7%. On the other hand, the set consisting of p alone
synthesizes ¢'?*. Thus for ¢ (z)=¢"7, S, is empty.
Suppose now (B) fails in L. Then there is some ¢#0 in L with ¢ annihi-

lating all f in L with f vanishing outside some finite interval. Thus for any
positive «, if f in L annihilates all ¢** with |41|>a«, then also f annihilates ¢.
Hence the set of 4 with |1]>a« synthesizes ¢. Since this holds for each a,
S, is empty.
But by Theorem 2, S, is non-empty for ¢# 0. Hence both (A) and (B) hold.
We do not consider the difficult question of finding when S, synthesizes ¢.
We shall only show the following:

Theorem 2: Let S be any set which contains in s interior both S, and oo,
t.e. contains the complement of some finite nterval. Then S synthesizes @.

In the proofs of theorems 2 and 2 we shall make use of the theory of the
spectrum of a function developed by Beurling. Let ¢ (x) be any function with

f|<p(m)|e‘”"'dw<oo if ¢>0. We set:
= f(p( e dx, o=Re(s)>0; O~ J'q)(z e**dx, 0<0.
(1}

Then @* is analytic in the right half-plane and @~ is analytic in the left half-
plane. If the functions ®* and @  do not coutinue each other analytically
over any interval of the imaginary axis, we say that ¢ has as its spectrum the
whole real line. Otherwise, there is a function @ analytic in both half-planes
and on some subset of the imaginary axis, with @ (s)=@* (s) if 6>0 and
@ (s)=®" (s) if o<0. The set of singularities of D (s) is then a closed set of
points i¢ on the imaginary axis. The corresponding set of real numbers ¢ is
defined as the spectrum of ¢ and denoted >,. In the study of the spectrum,
the following Lemma is useful:

Lemma: Let h(z) be a function unbounded at the origin, even, decreasing
and with [log* h(z)dw<oo. Then for each rectangle |z|<a,|y|<b and each

0
b'<b, there exists a constant M such that of u(x,y) is subharmonic and less
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than or equal to h(x) in the rectangle, then u(x, y)<M if |z|<a, |y|<b". (Cf.
Sjoberg, [3], for a proof of this Lemma.)

Let now ¢ (z) be a function such that [[p(2)[e *@ do<ke" where k(o)
satisfies the conditions of the Lemma and }cwis a constant. Beurling showed in
[2] that then 3, empty implies @ (z)=0 a.e.

Lemma 6: If for .all ¢ in L [|g(@)|e " da<k|g|le"® where k(o) is as

tn the Lemma above, then for an& u::losed set A of real numbers, the set C4 of ¢
with 2, included in A is a subspace of L closed in the weak topology of L.

Beurling has proved this result in the norm-topology for a class of function-
spaces. Our proof is a modification of his.

Proof: It follows at once from the definition of spectrum that the spectrum
of a linear combination of two functions is included in the union of their spectra.
Hence C4 is a subspace. It remains to prove closure and, since L is separable,
to prove sequential closure. (Cf. Banach, [6], Th. 8, p. 131). Given a sequence
@1 Pg> .- 0 L with >, included in A for all », and with ¢, converging to
@, we must show that >, is included in A.

Take any s, not in /4. Then there is a circle ¥ around s,=1¢, the interior
of which does not meet any 3, and hence such that @, (s) is regular inside

y for all #. Since @, converges to @, [[@.|| is bounded and [@. (2)/(z)dz

o0
converges to f(p(x)f(x)dw for each f in L. In particular, for any s=o+14t

with ¢>0, vs:e can let f be the function which =e** if >0, and which
vanishes identically for 2<0. Thus:

[ -}

@u(s)= [gn@) e da= [ gu(@)f (@) da.

0

Then @, (s) converges to P (s) for each s inside y with ¢>0, and similarly
for 0<0. By hypothesis, we have for s inside y:

[@n (s)| <k||@nlle* <k "

and hence the function w, (o, t)=log|®.(c+¢(¢+14,))| is subharmonic in a
rectangle |¢|<a, |t| <) and satisfies there the inequality

un (0, 1) < log k' + 4 ().

By the abdve Lemma, then, |@, (s)| is uniformly bounded for all s in some
rectangle centered at s,. Hence some subsequence @, (s) convergences uniformly

in each proper subregion to a function v (s) holomorphic in the subregion. But
we saw that @, (s) converges to @ (s) pointwise except on the .aginary axis.
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Hence @ (s) =y (s) and so @ (s) is regular in a neighborhood of s,. Thus
$04 2, and so D, is included in A. Lemma 6 thus is proved.

o0
Proof of Theorem 2: Since [|¢(z)|e*'*!dz<|le™'*!||-||¢||, our assumption

-0

on |[e*® vyields the hypothesis of Lemma 6. Let A be a set which synthe-

sizes . I gi=¢*, @,(s)= fe“"e"”da:z and so the spectrum of ¢;

1
s—1A
b

consists of the point A. Hence each g, with 4 in A belongs to the set of func-
tions whose spectrum is included in A. By Lemma 6, this set is a weakly
closed subspace and since it contains each ¢'** with A in A, it also contains ¢,
since by assumption A synthesizes ¢. Thus D, is included in A. Also we saw
above that 2, is not empty if ¢+#0, under our hypothesis. Hense S, contains
the non-empty set >, and so is non-empty, as claimed.

Proof of Theorem 2: Let S be a set which contains S, in its interior and
which contains, for some a, all A with |1|>a. We assert that if for an f in

L /‘A(l)=0 for all 4 in S, then jf(z)zp(w)dx=0. Let A be the set of 4 where

f (A)#40. Then 4, the closure of 4 is compact and is disjoint from S,. Since ]‘A(l) =0
if |A|>a, é—l;tf(x): ff(l) e ***d2 and so we have, for positive o:

-]

ff(z)q;(w) el dy= J?Otp (x) e 1 J?an(l) e didx=

— o0

2n [f() [@@e ™2 dudi=2n [f(1) (D (+il)— D (—o+ik)dA

i

—_
~
&
A
O
IS
8
I
=
2
—g
—
&
b
5
Q‘
a
3
IS
8
I
@

For

lim |@ (6 +iA)— D (~o+ik)|=0

o=0
uniformly for A in A because 4 is a compact set disjoinf from the set of
singularities of @ (s), and also |f(4)| is bounded, and finally f(A), vanishes out-
side of the finite interval (—a, a). The assertion is thus proved.

Section 3: In this Section we return to the class J of rings L satisfying (1)
through (6), and shall discuss problem (D) for a subclass of J.
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Def.: If I is an ideal in L, A (I) is the set of zeros of I, i.e. the set of 2
with f(4)=0 for all f in I.

Def.: If ¢ is in L, I, is the closed ideal of f in L with fx¢=0.

Theorem 3: Let L be in J and let (A) and (B) hold in L. Then of ¢ s
wm L, 8,=h(I,).

Proof: Consider any open set O with k(/,) included in 0. Let now f be

in L and f vanishes identically on 0. We can find ¢ in L with ||fxg—f]|<e,
by use of Lemma 5’ Further since by hypothesis (B) holds, we can find a

]

[lf—f*a ]l <2¢ and fg, (2)—

g, in L with |[g—g,]|< 7o and 4, (1) =0 for |A|=a for some a. Then

for A in O and also =0 for |A|>«. Then f*g, is in I,, by a general theorem
on normed rings in which (A) holds. (Cf Mackey, [8], pp. 111-12.) Thus

fel, and so f(1) vanishing on O implies ff (z)p (x)dx=0. Hence O synthe-
sizes ¢ and since this holds for any open set O which includes % (Z,), S, is

included in A(I,). R
Conversely, let A be any set which synthesizes ¢. If now f(4)=0 for all

A in A, then ff(x—y)e“’dzz?(i.)e’“z() for all 4y and 2 in A, and so

ff (#—y)p@x)dx=0 for all y, whence f is in I,.

For any 20 in A(l,), if f(/'t)=0 for all 4 in A, then f(4;)=0. By (A), then,
Ay is in A. Thus k(l,) is included in A. Since A was any set which synthe-
sizes @, it follows that £ ([,) is included in S,. Thus %(I,)=S,, as asserted.

We next give a criterion, in terms of ||T |l, which assures that condition
(I) is satisfied for a given L in J, and so allows us to apply to L the results
of Bection 2. The criterion turns out to be very close to that of Theorem 1.

Lemma 7: Let L be in J. If there emsts a funchon oy (t) which s even,

while log 0, (v)
T

wncreasing on (0, oo) decreases on (0, o), and with

such that || T.|| <oy (1), then (I) holds.

Proof: Set o(r)=||T.|| and let y(») be the characteristic function of the
interval (0, 1). Then x €L and we have for n=0, +1, +2,.
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n+l

[lo@|dz= {lw(ﬁn)ldwjf 1@ e @+n)|de<|zl-lel-e®).

Hence
o n+1

[le@le@dz< 3 [lp@]ede<Cllell 2 e e (n).

Let u(f)=logo, (t). We define N=N (o) as the first positive integer with
M%V) < 5 Since uT(t) decreases to 0 by hypothesis, N (o) i1s well-defined for

6>0 and N {o) grows to oo as ¢ approaches 0. Let now 0<o<1 and set
N=N{o). Then

<

00 0 (u(n) )
e g (n)=2>e" M =23¢" \n
0

0

e Mo n)<2

o8

Since u (n) increases with n by hypothesis, we have

0 N-1 0 ] o
e Mo m)<2 ( et ™M Ee"i") <2Ne'™+0 (1) <2Ne" 2+0(1)-
-0 0 N

o o
Let now k()= log io e °" o (n). Then

1
h()<Cy+log N+ N -7+ log})_£01+2N+ log -
where C, is a constant.

Therefore flog+ h(c)do< oo if flog N (o)do< oo,
0 0

u(e)
ez ()

Choose now for each positive ¢ the number z(c) with =g¢. Then

N(U)Sez(i) +1 and so

log N (o) <cyt2 (g)

where C, is a constant. But

oo o0

fz(c)éo= fu((;z)dzz f%g)dy< oo

by hypothesis, and so fz (g) do< co. This implies that flog N(o)do < oo
0

which in turn gives J'log* h(o)do < oo. Clearly also A (o) decreases on (0, co)
0

and so k(o) has the properties required in (I). Since |je°"*'||<Ce"@, (I) thus
holds, as asserted.

In particular, if, for some finite n, ||ZT%||=0(/7|") as |7| approaches oo,
Lemma 7 tells us that (I} holds.
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Lemma 8: Let |p(7)|=0 (|v|") as |v| approaches co. Then if >, consists
of the single point 0, @ is a polynomial of order not ewceeding n.

Proof: Beurling has shown in [2] that if a function ¢ has compact spectrum
and if f|¢(x)|e‘”"‘dw£ke”“’) where k(o) is as in Section 2, then for any

contour I' in the complex plane which surrounds the set of singularities of @,
we have

1 ST
qp(x)—ﬁJQ(s)e ds.
r
In particular for the ¢ of this Lemma we can choose I' as a circle around the

origin of arbitrarily small radius.

Letting = take on complex values in the preceding formula, we see that ¢
1s an entire function and that for each positive &

lg ()| =0

for all complex z. Thus ¢ has order 1 and type 0.

We now assert that any entire function ¢ (2) of order 1 and type 0 with
|@ ()| =0(z|*) for real z is a polynomial. For k=0 this is a well-known result.
Suppose further that the assertion holds for k=#—1 and consider any ¢ satis-

®(z)—9(0)

fying our hypotheses for k=n. Then ¢, (z)= satisfies the hypotheses

for k=n—1 and hence by assumption ¢, is a polynomial. Hence ¢ (z) = ¢ (0) +z ¢, (2)
also is a polynomial. Thus by induction the assertion is proved for all k. In
particular the ¢ of this Lemma is a polynomial. Since | (z)|=0 (|=[*) for real
z, ¢ is a polynomial of order not exceeding k. Lemma 8 is thus established.

Theorem 4: Let L be in J and assume ||T.||=0([*) as || tends to oo,
for some positive k. Let I be a closed ideal in L with precisely one zero, the
point p. Then there exists an integer m<k so that I consists of all functions
wm L whose Fourier transforms vanish at p together with their first n derivatives.

Proof: Without loss of generality we may suppose that p=0. We claim that
I is invariant under translation. For else there is some f in I with f(z+1,)
not in [ for some 7,. Then we can choose y in L with y(9)=0 if ¢ is in I,
2 (fx+71))#0. By continuity, this implies that y (f(@+1))#0 if |[T—7,|<e
for some positive &. Then we can choose % in L with

Tx(x)f*k(w)dx= <>foh(—'r)d'c fx(x)f(z%—r)dz;éo.

Since fx% is in I, this is a contradiction. Hence f(x+7) is in I for all 7.
Let I' denote the set of ¢ in L with fw(x)/‘(x) dx=0 for all f in I. Con-
sider now any ¢ in I’. Take any A in iwand set @ =hxy. Then
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o0

le@|< [lh@)lly@+y)ldy<|bll-lwll- 1Tl =0(=[").

—oQ

Suppose Ay €Y, In the proof of Theorem 2 we saw that >, is included in S,.
Hence by Theorem 3, >, is included in A(I,). If f is in I, then

oo

ff(a:—‘t)wp(z)dxz()

— 00

for all 7. Thus fxy¢=0 and hence fxp=0. Thus f in I implies €I, and,
since A, €h(I,), this implies A, €k (I). Since % (I) contains by hypothesis only
the point 0, we conclude that either >, is empty or >, consists of 0 alone.
In the first case ¢ =0, while in the second case Lemma 8 yields that ¢ is a
polynomial of degree not exceeding k.

Choose now any f in L with ff(x):c”dx=0, v=1,2, ...k Then

— 00

o0

[ 1 (@) hxyp(z)dz=0

—0C

for all A in L. Choose % in L with |[|A*f—f||<e. This is possible by Lemma 5'.
Then

| [i@v@de|=| [{@y@de— [{@h*yp@da|<]f=fxrl- Iyl

Hence Jf(x)w(x)dxzo. It follows that u(z) is a polynomial of degree not

exceeding k. Then there is an n <k such that all v in I’ are polynomials of
degree less than or equal » but at least one y, is in I’ having degree n. Since
I and hence I’ is invariant under translation, I’ contains all functions g, (x+ 7)
and hence I’ contains the functions z’, »=0, 1, ...n. Hence I’ is the set of all
polynomials of degree not exceeding n.

It follows that f is in I if and only if ff(a:) 2dx=0, v=0,1,...n and so

if and only if /¥ (0)=0, »=0, 1,...n. The assertion is thus proved.

REFERENCES

1. BEURLING, A., ¢Sur les intégrales de Fourier absolument convergentesy, 9¢ Congrés des
Math. Scand., 1938.

, «Sur les Spectres des Fonctions», Colloques internationaux du centre national de la
recherche scientifique, XV, Analyse Harmonique, Nancy, 1947.

3. Ss0BERG, N., C. R. du 9° Congrés des Math. Scand., 1938.

84

550



L

® >,

ARKIV FOR MATEMATIK. Bd 2 nr 28

PALEY-WIENER, Fourier Transforms in the Complex Domain, AMS Coll., Publ., Vol. XIX,
1934.

Levinson, N., Gap and Density Theorems, AMS Coll. Publ. Vol. XXVI, 1941,

BanacH, 8., Théorie des Opérations Linéaires, Warszawa, 1932,

Huig, E., Functional Analysis and Semi-Groups, AMS Coll, Publ. XXXI, 1948,

Mackey, G. W.. Commutative Banach Algebras, multigraphed lecture notes edited by A.
Blair, Harvard, 1952,

Tryckt den 17 december 1953

Uppsala 1953. Almqvist & Wiksells Boktryckeri AB

551



