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A set of uniqueness for functions, analytic and bounded
in the unmit disc

By AkE SAMUELSSON

1. Introduction

The purpose of this note is to establish a uniqueness theorem, similar to the
well-known result of F. and M. Riesz. Before we state the theorem, let us in-
troduce some notation.

Throughout this note let § be the class of all functions, analytic and bounded
in the open unit disc C. We will also consider the subclass 3, =¥ of functions,
with only a finite number of zeros in C.

If ¢ is a point on the boundary of C (henceforth denoted by @C) and a is &
real number, 0<g <1, let S(C, ) denote the Stolz domain with vertex { € 8C and
angle arcsin «; i.e.

S, a)=1{z]|z] <1, |e—¢|< V1—0o2, |arg (1 — £2)| < aresin «}.
Moreover, if {€0C and ¢ is a function, defined on O, such that

lim ¢(z)=A4 forall o« O<a<l,

2=->{
2eS¢, @

we write limSgp(z)=4 or (p(z)-S>A as z—>_.

2L

We will use the first notation exclusively when 4 is a (proper) complex number,
while the second notation will be used not only when A is a proper complex
number but also in the case of a real-valued function ¢ and 4= & co.

For f, g€ consider the set

Ds(f, g)={¢| €80, lim® f® (2) =1im® g*® (2), £=0,1,2,...}.
2> 2>
An immediate consequence of F. and M. Riesz’s theorem ([2], p. 209) is the fol-
lowing result:
If Dg(f,q) has positive Lebesgue measure, then f=g.
The main result to be proved in this note can be stated as follows:
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A. SAMUELSSON, A set of uniqueness for functions

If Dg(f,g) has positive Hausdorff measure where the Hausdorff measure is de-
termined by the function h, given by

0 t=0,
h(t)= —tlogt if O<t<e? (1.1)
e 2+t t>e 2

then f=g.

Since Dy(f, g) < Ds(f —g,0), this statement is equivalent to the following state-
ment:

If € and f+0, then Dg(f)=Ds(f,0) is of Hausdorff measure® zero.

We will prove this last statement by proving, first, that the set
Ds(fy=Ds(f,0)=1{¢| €0, 1ziﬂ%sf<k>(z)=0, £=0,1,2,...}
is equal to the set
L(fy={c|c€aC, (log|f)])/log|c 2| >+ oo, as 20}

and, secondly, that the set Lg(f) is of Hausdorff measure zero. If f€.J3,, we will
also prove that the two sets

D(f)={¢|zeaC, lim {©(r)) =0, £=0,1,2,...}

and L(fy={¢|ceaC, (log|f(rl)|)/log (1—r)> + oo as r—1-0}
are both equal to the set Dg(f)=Ls(f), and therefore we have:
If f€3, the set D(f) is of Hausdorff measure zero.

The proofs of the equalities, Lg(f) = Ds(f) if f €y, and, L(f) = Ls(f) = Ds(f) = D(f)
if f€3,, are carried out in Section 2, while Section 3 is devoted to proving that
Lg(f) is of Hausdorff measure zero. This latter proof is based on the following
result:

If w is harmonic in C and

2n
f |u(re®)|dz=0(1) as r->1-0,

then w(rl)=0(—log(1—7)) as r—>1-0

for all £ €8C except possibly for a set of Hausdorff measure zero.

 Throughout this note we will exclusively consider the Hausdorff measure determined by the
function k, given by (1.1).
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2. Three lemmas

The following lemma relates the sets Lg(f), L(f), Ds(f) and D(f), introduced
in Section 1. '

Lemma 2.1. If f€, then
Ly(f) = Ds(f) = D(f) = L(f);
and if f€3,, then Ls(f) = Ds(f) = D(f) = L(f)-
The proof of this lemma is given in three steps.

(i) Ls(f) = Ds(h)

Suppose that (€ Lg(f) and let S(,«) be any Stolz domain with vertex (.
Choose &, such that 0<g<1l—a«. Then if 2z € S({, «), the circle C, with center z
and radius e|{—z| is a subset of S(,a+¢&) for all z sufficiently close to ¢, and
as z approaches { in S({,«), the points on the circle C, approach [ within
8(C, o+ g). Using Cauchy’s formula

€ (2) = k! (2m')"1f (t—2)""7 f(t) dt,
Cy
it is readily seen that

[/ (2)| < Ok, €) tseucp [E—0)*f®)], - Ok, e)=k!(1+e 1)

Hence, since { € Lg(f) obviously implies that
lim (¢—0)7*t)=0, k=0,1,2,...,
teSt(Zgﬁe)
we have lim f®(z)=0, k=0,1,2,...,
Estm
and thus Lg(f) < Ds(f).
(i) Ds(f)=Ls(f), D(f) < L(f)

Suppose € Dg(f). If z€8(Z,a), let L, be the line segment joining z and (.
Then for t€L,, we have

TARUIES ! fL [ (v) dv

<|t—¢]sup |[{*(z)| <[z =] sup [/ (z)]
rels T€lz

and therefore
sup |[f*"P@)|<|e—|sup |[f* ()], k=1,2,3,...
teLz teLy

Repeated use of these inequalities yields
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lfz)| <|z—¢|" sup |[f™ ()] <|z—¢|* sup 1”@, »=0,1,2,..., 2.1)
teLy teSz (L, %)

where ' 8.5, ) =8, ) n{t||t—¢|<|z— |}
It follows from (2.1) that
(log|f@)|)/log|t —2|> + o as z—(,2€8(L, a)

and therefore, since «, 0 <« <1, is arbitrarily chosen, we have Dy(f) < Lg(f). Also,
by the first part of (2.1), with z=rZ, we have D(f)< L(f).
(i) L(f)=Ls(f)y if f€3I,

In the proof of this step, we will use the following lemma, which follows easily
from Harnack’s inequalities (cf. [3], p. 295).

Lemma 2.2. Let w be a nonnegative function harmonic in the open unit disc and
let C, be a circle with center z, |z| <1 and radius a(l—|z|), 0<a<1. Then

l—« <l+oc
1—«

u(2)
for every t€C,.

We will also use the mappings (cf. [3], p. 295)
Teow:8(C a)>{r|0<r<1}, L€80, 0<a<l

defined in the following way: if 2€S(, a) let T;,z be the point closest to ¢,
such that

argT; ,z=arg{ and |2—T;.2|=a(l —|T¢ .2]).
Obviously (I—a) (1= |Tra2)) <|C—2|<(L+a) 1 —|Tzq2]) (2.2)

and therefore z—{, 2€ . 8(, «) if and only if 7, .z—(.

Now let f€, Then f=|f||-B-E, where ||f|| denotes the supremum norm,
B is the normalized, finite Blaschke product of f and E is analytic and zero-
free in C. Moreover, |E| <1. Obviously Lg(f)=Lgs(E) and L(f)=L(E). Thus it
suffices to prove (iii) when f=E. Suppose that [ € L(E). Then by Lemma 2.2,
with w= —log|E| and by (2.2)

log |E(z)|> 1 1—a log|E(T:.2)|

log|z—¢|” 2 1+« log(1—[T¢.z2|)

for all z€ 8({,«) such that |7 ,2|>«, and thus L(E)< Lg(E). These three steps,
together with the obvious inclusion Dy(f) < D(f), prove Lemma 2.1.

Let f=|f||-B-E be the decomposition of a function in . Then if B(f) is the
set of {€oC with the property: there exists a >0, such that

|B(z)| <27%z—¢| forall z€S8(;,27%) with |z2—(]<3,
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and if L(f) is the set defined by

E(f)-‘-{CICGaO,E log | B(rE)| +oo}

r—1-0log (1 —7)

we have the following result.
Lemma 2.3. If f€J and {0, then

Ls(f) = B(f) U L(f).

To prove this, suppose that L€ Lg(f) but { ¢ B(f). Then there is a sequence
{2}, 2€ 8(2,27%), 2, ¢ as v—>+ oo, such that

log | B(z,)]
0< lim ———-———<1,
vso0 10g |2, — CI

and therefore (log | E(zy)|)/log |2z, — [~ as -+ oo,

However, by Lemma 2.2 with u(z)= —log|E(z)] and «=2"% and by (2.2), we
have
log,E(TC.mzv)' > -« IOglE Z,,)'

log(1— Tz u2)) 2 1+¢ log]zv é‘]

if {2,—¢|<(1+a)t. Hence

i log|B(D)| _

r—>1-0 log (1 — 1)

and ¢ € L(f). This proves Lemma 2.3.

3. A uniqueness theorem

In this section we prove that for all f in J, such that f=0 the set Dg(f) is
of Hausdorff measure zero. By Lemma 2.1 and Lemma 2.3 it suffices to prove
that the two sets B(f) and L{f) are of Hausdorff measure zero. The fact that

L(f) is of Hausdorff measure zero is an immediate consequence of the following
theorem.

Theorem 3.1. If w is harmonic in the open umit disc C and
2n '
f |u(re®)|de=0(1) as r—>1-0,
0

then u(rl)=0(—log(l—7r)) as r—>1-0
for all [ €20, except possibly jor a set of Hausdorff measure zero.
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Under the hypotheses of the theorem there is a function y of bounded varia-
tion on [0, 27], such that ([2], p. 198)

) 27 1_7,2
)= dult <r<l.
ufre™) fo 1+72—2rcos (x—f) pl), O<r<

3n 1__7,2 »
i )| < <r<l,
Since | u(re'®)) fo 177 =27 oo (m—t),dl’ul(t)’ 0<r<

where |u|(t) is the total variation of u on [0,£], it suffices to prove the theo-
rem for a nonnegative harmonic function u, i.e. the corresponding function u is
nondecreasing.

In [3], p. 290, we proved the inequality

— u(re’®) < iim p(et ) —u(x—1)

, O0<z<2nm,
r—>1-0 *‘10g (1 —T) t—>-+0 h(t)

where £ is the function given by (1.1), and therefore it suffices to prove that
the set

M={eu|0<x<2ﬂ,ﬁ—m;w= +m}
t—+0 Il(t)

is of Hausdorff measure zero. We will prove this using a covering principle due
to Besicovitch ([1]).

Definition (Besicovitch): If G is a set in the plane and I' is a class of discs,
such that to each point z in G there correspond discs in I', with center z
and arbitrarily small radii, then we call I' a covering of ¢ in the Vitali
narrow sence,

Theorem (Besicovitch): Let G be a bounded set of the plane and I' a cov-
ering 0£ G in the Vitali narrow sense. Then there is a subcovering I’ of @,

where I' can be split into 22 countable subclasses I'; (k=1,2,...,22), such
that no pair of dises in the same subclass meet.

Let ¢ and g be two positive numbers and consider for each ¢ € M those open
dises C(e”, 1), with center ¢ and radius t<p, such that

o platt)—p—9 B
k(t)<22 2 2) = 1(0) and (x—¢,xz+1t)<(0,27).

This class of discs in then a covering of M in the Vitali narrow sense, and
by Besicoviteh’s covering principle, there is a subcovering I' = U*T', such that
no pair of discs in the same subelass I'y meet. Then, if

L= UC(E™, ¢, ,), k=1,2,...,22,
v

the corresponding intervals (wy, ,~ ;. », Zi.» T tr.») are disjoint and
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z (ﬂ(xk, v tk,v) - ,u(xk,v — b, v))
2 hlhen) 35" p(2n) — (0) <22

Thus >, 5 bt <e

and, since ¢ is arbitrarily chosen, we have proved that M is of Hausdorff measure
zero. This completes the proof of Theorem 3.1.

Corollary 3.1. If f€X and [0, then L(f) is of Hausdorff measure zero.
Proof. Apply Theorem 3.1 to the nonnegative, harmonic function ,
u(z) = —log | E(2)|.

For a function fin {, the set B(f) is empty. Therefore, by Corollary 3.1, Lemma 2.3
and Lemma 2.1 we have the following theorem.

Theorem 3.2', If f€T,, then D(f) is of Hausdorff meazure zero.
The corresponding result for a function f € JJ is given in the following theorem.
Theorem 3.2. If € and 30, then Dg(f) is of Hausdorff measure zero.

The proof of this theorem follows immediately from Corollary 3.1, Lemma 2.3,
Lemma 2.1 and the following lemma,.

Lemma 3.1. If f€J and f=+0, then B(f) is of Hausdorff measure zero.

Proof. Let {r,,}l be a sequence of real numbers, such that 1 / V2 < r,<1 and
lim, . 7,=1. Then B(f)= U;* B,, where

B,= {e” IB(ZLI <L foran : €8 (e”, —1:) with |z]> rn}.
|2—e| " V2 V2,
Obviously it suffices to prove that B, is of Hausdorff measure zero forn=1,2,3,.

Choose any ¢ such that 1>p>max {r,, 1 —e *}. Then, since |¢” —ge*| < V2 1- @)
for |x—¢|<1—p, we have for e*€ B,

3 J‘x-l—(l g)l Ie _Qezt,d
l-0)=—1Q—-p)log(l—p)< -1 o) t
(I-9) (1—g)log(1—p) p -

z—(1-0)

N

z+1A-0) )
-1 f log | B(ge®)| dt.

z—(1-0)

o

Cover each point ¢ € B, by an open disc with center ¢ and radius 1 —p. From
this cover we can extract a finite subcovering, such that each point in B, is
covered by at most two dlSCS Therefore 1f N (@) is the number of discs in this
subcovering, ’
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2n .
N(@)h1—)< ~ [ “loglBleeh |

and, since the limit of this integral is zero as g approaches 1 ([2], p. 207), we
conclude that B, is of Hausdorff measure zero. This completes the proof.
Combining Lemma 3.1 with the inequality (2.1.) we have:

Theorem 3.3. If B is a Blaschke product, then the set

{¢|ceacC, 1im; B(z) = lim® B'(z) =0}

2=

18 of Hausdorff measure zero.

Proof. By (2.1) the set in Theorem 3.3 is a subset of B(B).
We are now able to prove the uniqueness theorem.

Theorem 3.4. If f,g€J and

lim® {® (z) = limS¢® (2), k=0,1,2,...,
2->{ .

for a set of points { €0C of positive Hausdorff measure, then f=g.

Proof. Suppose that h=f—g=+0. Then Dg(h) is of Hausdorff measure zero
(Theorem 3.2), violating the assumption of Theorem 3.4. Therefore, A=f—g=0.
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