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Estimation and information in stationary time series 

By P. WHITTLE 

Summary 

Section (1) is devoted to a discussion of the model-fitting problem, which finds 
its explicit solution in equation (1.13). In section (2) the maximum likelihood, 
(ML), estimates of the model parameters are investigated, and for the class of 
series considered shown to possess the same optimum properties as in the case of 
independent series. Next, the covariance matrix of the parameter estimates is ex- 
pressed in terms of the spectral function of the generating process (eq. 3.7). The last 
section is concerned with certain working approximations to the ML statistics. 

(1) The ultimate objects of any time series analysis are rarely more than two in 
number: firstly, to estimate, for its own interest, the stochastic relation generating 
the terms of the series, and secondly, to obtain a forecast by the use of this relation. 
If the spectrum of the process is known, then both of these problems may be solved 
by existing methods, under the assumption that the stochastic relation is a linear 
one (refs. 3, 10). Thus, if we limit ourselves to the case of linearity, the analysis 
is reduced to the estimation of the spectrum. The word "estimation" is here used in 
a fairly wide sense, since we require to estimate a function, not merely ~ finite set 
of parameters. In general we must specify a definite kind of function, and it is this 
necessity which compels the analyst to use some sort of test or decision procedure. 
However, we shall consider this aspect of the problem only in passing, since it has 
already been treated in ref. 9. 

Suppse, then, that  we have a time series of N equidistant observations; 
xl ,  x2 . . . .  XN, forming an N • 1 vector X. We shall assume that  these observa- 
tions constitute a part realisation of a real, discrete, stationary process, and 
our aim is then to obtain the best possible estimate of this process. As above, 
the generating process will for our purposes be considered as determined when 
we known its spectrum, F ( y ) ,  defined by (see ref. 2) 

(1.1) 

If the spectrum is differentiable, we may define the spectral ]unction A (z) by 

A (e ~v) O F  (y) _ ~ vs e isv. (1.2) 
Oy s 
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In this paper we shall limit ourselves to the case when both A (z) and [A (z)] -1 exist 
on the unit circle, which implies amongst other things that  the spectrum is everywhere 
differentiable and increasing. Most of the calculations refer to the case of a Gaussian 
series, although this limitation may  be relaxed somewhat afterwards. The degree of 
approximation is such that  corrections for the mean do not affect the different 
formulae, and we may  thus suppose that  X has zero mean. 

The author has shown (ref. 9) that  the likelihood of X is under these assumptions 
asymptotically equal to 

N X '  [A (W)]- lX (1.3) 
](x) = (2~A) - ~  exp 2 

where A is determined by the equation 

1 f dz l o g A = ~  l o g A ( z ) ~ -  

c 

and W is the circulant matrix 

W ~  . . . .  

(1.4) 

"c" in (1.4) is the unit circle in the z-plane, positively described. 
A may be interpreted as normalised scale factor, or the variance of an appro- 

priately normalised disturbance variate, e~. For (see ref. 11), the x process 
may be represented 

xt = et + al e~-i + a2 e~ s + "'" (1.6) 

where the e,'s are uncorrelated, have zero mean and variance a s. Furthermore, 
we know that  on I z]=l 

A (z) = a 2 a (z) a (z -1) = a s e ~ (~)+~ (z-l) (1.7) 

where b(z)=~bjzJ=log~ajz s. From (1.4), (1.7) we see that  A=a2eSbo=a s 
since bo=log (%)= 0. Thus we see that  A is the variance of the disturbance 
variate et when e, is measured in such a scale that  the leading coefficient in 
(1.6) is unity. This is plainly the case whatever the distribution of the sample 
variate x, since the representation (1.6) is valid generally. 

We shall also define a normalised spectral function M(z)=A(z)/A. I f  be- 
sides A the model contains parameters 01, 0 s . . .  0~, then M(z) is a function 
of these parameters alone, and does not depend upon A. I t  is further obvious 
from equation (1.4) that  

21i f log M(z)?=O (1.8) 
c 

identically in 01, 0 2 . . .  0 ~ .  

424 



ARKiV FSR MATEMATIK. B d  2 n r  23 

We shall now use the criterion of maximum likelihood to obtain an estimate of 
A (z). To motivate this choice, we recall that  the ML criterion leads in the case 
of an independent series to estimates having certain optimum properties, which, 
it will be shown, are in most cases shared by the estimates arrived at in the present 
case. Furthermore, the maximum likelihood provides an asymptotically most powerful 
test function for discriminating between certain hypotheses (see refs. 7, 8 and 9). 

Maximising the likelihood, then, with respect to A and M(z), we obtain the equa- 
tion 

X' [M (W)] -x X 
=min.  =_~ (1.9) 

N 

where ~ is the ML estimate of A. The maximum likelihood,/(x), is further 
given by 

N 

](x) = (2~e/I) - u  (1.10) 

which is a function only of ~,  so far as the observations are concerned. 
We shall write the fitting equation (1.9) somewhat differently. Le~: 

a(z)=~ Csz" (1.11) 

where Cs is the circular autocovariance of lag s, (1/N) X'WSX, altaough to 
this degree of approximation it could a s  well be the ordinary covariance, 

N - S  

( l /N)  ~ xtxt+s. Then (1.9) m a y b e  written 
1 

1 (2(z) dz 
2 ~ i 3 M~-) -z = rain. = .~ (1.12) 

where M(z) is conditioned by (1.8). Combining (1.8) and (1.12), we see that  the 
essential fitting equation is 

1 f [ 2 ( z ) + l  log M(z)] d~Z-min. (1.13) 
2 ~ i  [M(z) or z -  

c 

where ~-1 is a Lagrangian multiplier. 
This equation was deduced for the Gaussian process on the criterion of maximum 

likelihood, but we would obviously have obtained the same relation, whatever the 
distribution of the individual sample variate, if the criterion had instead been that 
of least squares, i.e., that  the normalised variance of the disturbing variates be a 
minimum. We should still require, however, that  A (z) and [A (z)] -1 exist on I z l=  1. 

If we now minimise the expression in (1.13) freely with respect to the function 
M(z), then the calculus of variations gives the solution 

~M :r 
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or M (z) = ~ t (z), scarcely a surprising result. However, our minimisation has 
in general only a few degrees of freedom: that  is, M(z) is a specific function 
in which only the parameters 01,02 . . . .  0v are free to vary. (1.13)implies 
then that  

e~ f [~+l- log M] d~=o (1.14) 
eOj ~ z 

which equations will lead to the ML estimates of 0i, 02 . . . .  0v, if only the 
differential coefficients of M (z) with respect to these parameters exist on I z I = 1. 

One of the special cases of greatest interest is that  in which A (z)is rational 
in z, so that  we may write 

1-I (z - ~j) (z -1 - ~j) 
A(z)=r'~(z-flJ)(~-I-flJ)l.L I~,1~1, Ifljl<l (1.15) 

(see ref. 4). 
the form 

In this case (1.4) shows that  A = ~, so that equation (1.12) takes 

1 f 1 (z) 1-I (z -f l j )  (z -1 - flj) _ min. (1.16) 
2~i ,] 1-I (z-~j) (z-l-c~j) 

where minimisation refers to the parameters aj, flj. However, if [A (z)] -1 is to 
be developable in powers of z on l z l =  1, we must require that  ]~j]< 1 for all 
j, i.e., that  A (z) have no zeros on the unit circle. 

(2) The theory of ML estimators has been developed almost exclusively upon 
the assumption that  the sample consists of a series of independent observations, 
all of which are distributed in a like fashion. With some minor restrictions upon 
the common distribution function, it has been shown that the ML estimator is 
consistent, is efficient at least in the limit, and is in the limit normally distributed 
(ref. 5, and see ref. 6 for a survey and bibliography of the subject). By "in the limit" 
is meant "for samples of infinite size". However, whatever intuition would have 
us believe, it is by no means obvious that  these properties are conserved when 
the sample variates are no longer independent, e.g., in the case of a time series. 

Confining ourselves as hitherto to the Gaussian series, we shall prove in this 

section that if A (z), [A (z)] -1, and ~-~ A (z) exist on ]z I= 1, and if ~ A (z) is 

continuous in 0 at least in the neighbourhood of. the true value, 00, then the 
ML estimate of 0o, 0 ~, is consistent and asymptotically efficient. 

We shall use the author's result (ref. 9) that  the cumulants of a linear 
function of the autocovariances X'g(W)X are asyrhptotically given by 

K s = N 2 J - I ( i -  1)! f 2:,ti [g(z) A(z)]idZz (2.1) 
C 

if g(z) exists on I z ]=  1, and has a symmetric Laurent  expansion. 
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Now,  by  the above assumptions 

N~(O)= - 2 A  ~0 log ](x)=X'Jo [M(W)] -1 X (2.2) 

is just such a function, and ,p(0)has mean, 

A2 ( {MoM'~ 2dz 
~ i N z  ~ ] - ~ .  The subscript 0 indicates the 

that  E[~  (00)] is zero, since 

MoM' ~ dz, 
M 2 ] z and variance 

fact that  0 = 0  o. We see 

and also that it is increasing, as a function of O, since 

M 2 ] *jo~oo M 2 ] Y + ~ j M  zJo=oo 

f " 
[Mo\ dz ^ 

= I K ]  v > ~  (2.4) 

From this and the fact that the variance is of order 1/N, it is clear that the probability 
that ~v(0 o -  s) be negative and ~v(00 +e) be positive is asymptotically unity, for 
arbitrarily small e. That is, since ~v(0) is continuous in the neighbourhood of 00, 
at least one zero of 9(0) corresponding to a maxinmm of ](x) falls in the interval 
0o_+ s with asymptotically unit probability. Thus, the ML estimate 0 is consistent. 

Indeed, since E[~v(0)] is increasing in this neighbourhood, we can see in the same 
fashion that  ~v(0) has at least asymptotically only a single zero in the neighbour- 
hood of 0 o. Thus, for large samples 

Prob [0 ~ 0]= Prob [~o (0) ~ O] = const. - 2-:~i 

where ~b(s) is the characteristic function of ~v(0). Now, from (2.1), (2.2) 

N f [  MoMq ~b (s) = e x p -  ~ log 1 + 2 i s A - ~ ]  __.dZz (2.6) 

C 

Inserting this in (2.5) we have an expression for O's distribution function. We 
note, however, that  r  is of the form q~(s)= [6(s)] N, where 6(s) is a char- 
acteristic function independent of N. That is, 0 distributed in the same fashion 
as if the sample material had consisted of N independent variates with fre- 
quency function, p (x), defined by 

f i f  [ poe d x = e x p - ~ - ~  log l + 2isA --'z (2.7) 
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The case of a Gaussian time series has thus been reduced to that  of an independent 
series. With the aid of this equivalence, estimator properties such as efficiency etc., 
may be established simply by referring back to existing theorems for independent 
series. The generalisation Of (2.7) to the case of several parameters is immediate. 

I t  may be of interest to demonstrate in a direct manner the optimum character 
of the ML estimate in the present case. Suppose that the estimating relation is 

f g(z) Q(z) dz= 0 
M (z) z 

c 

(2.8) 

where Q is a function of 0 and z which exists together with its 0 derivative 
on Is I= 1, and its derivative is continuous in 0 in the neighbourhood of 0. 
To ensure consistence we require that  the integral in (2.8) have expectation 
zero for 0=00, all 00, so that  

f Qo (z) ? = 0 (2.9) 

f dz O. (2.10) 
0o Qo(~) T = 

We shall now search for that  Q which gives 0 ~ minimum asymptotic variance. 
Since the expression in (2.8) is continuous in the neighbourhood of 0 o and the 
estimate is consistent, we have that 

i o  M- VJ0:0. =~  (N-l) 

or, with the aid of (2.10) 

M o z f M'  
A Qo od_z 

( 0 -  0o) ~ /  Mo z 0 (N-l) .  (2.11) 

Thus, for large samples 

1 2 

E ( 0 -  00) 2 /,J Mo z . (2.12) 
[ A f QoM~dz] ~ [ 1 (QoMo?]2 
L~J Mo L~.J Moo 

We shall now omit the zero subscript for the sake of convenience. 
Differentiating (2.12) with respect to Q we see that  

f M'a =f  a fM'a  f Q_M Q T J z z 
(2.13) 
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M,, 
which the Schwarz inequality shows is only satisfied by Q = const. ~ almost 

everywhere. But this value of Q corresponds to the ML estimate, which must 
�9 M '  

then have asymptotically minimum variance. Setting Q = ~ -  in (2.12), we obtain 

1 1 
var (0)= N ( t M ' / 2 d z  IS l og / t  2 (2.14) 

4 ~ i 3 \ M !  z Ek ~0 ! 

anticipating the more general result of the next section. This treatment of 
the ML statistic will be recognised as analogous to Fisher's, for the case of 
independent variates (ref. 5). 

(3) If /(x) is the likelihood of a series of independent variates, depending 
upon a number of parameters 01, 0 2 . . .  0p, then the covariance matrix of the 
ML estimates of these parameters, 01, 0 2 . . .  0~, is (vjk) = (:gk) -1 where (~jk) 
is the so-called in]ormation matrix, whose elements are given by the relation 

f log/l log A.. '  ] r x" (3.1) 

However, we have seen from the previous.section that the Gaussian process we 
have been considering is, from the point of view of ML estimation, equivalent to a 
certain series of independent, like distributed variates. Thus, we may immediately 
conclude that in this case also the covariance matrix of the estimates is asymptotic- 
ally equal to the reciprocal of the information matrix, as given by (3.1). To evaluate 
the elements of the information matrix we shall use the fact that these are second 
moments of linear functions of the autocovariances, and, as such, may be expressed 
directly in terms of the spectral function with the help of formula (2.1). 

Thus, by (2.1), (2.2) 

E[alog,,x)]=2~i f [ 1 0 1 ]dz_  
-~-~ j AM(z) 2A ~0 M(zi z 

a N f l o g M ( z ) ? = O  ( i = 1 , 2  . . p )  (3.2) 
80 i 

by equation (1.8). In the same manner 

E[Sl~ O l~ / (x!] Ok [~ l~ / (x) O log / (x)] Oj ' 8 0k 

N ~'01ogM(z) ~logM(z)  dz 
(3.3) =(~i  J 80, ~0~, z 

Considering that n o w  A, we see 

O log / (z) N X'[M (W)]-I X 
8A 2A 2A 2 (3.4) 
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so that  

ftA-(z)l   0 
~A J ~ e2A 3 2 ~ i  ~ M ~ - !  z 

[~ log_](x)] 1 2N  ( [ A M i 3 d z  N (3.5) 
vat aA J 4A 4 ~ J ~ - - M ~ ]  z 2A 3 

(3.6) 
coy _ ~A ' aOj _ 2A2 2 ~ i _  _ 2A ~Oj J z - =  

(1= 1, 2 . . .  p )  

(3.6) tells us already that  .~ is uncorrelated with 01, 0 3 . . .  0p. Further, from 
(3.1), (3.5) we see that  it has variance 2A3/N, a result which may also be 
derived from (1.9), (2.1). Thus, .~'s sampling variance depends only upon A. 
Similarly, the covariance matrix of 01, 02 . . . .  0~ may be expressed independ- 
ently of A or -~ as 

211 f0 log M (z)0 log M ( z ) ? ] - x  ~ : O ~  a0~ ( i=  1, 2 . . .  p). (3.7) 

This is the required expression in terms of the spectral function. 
(3.7) takes a particularly simple form if 

M (z) = I zv + 01 z p-1 + " "  + 0v ]• = [ p (z) [• (3.8) 

i.e., if the model is an autoregressive or moving average scheme, which we 
shall assume chosen so that  P(z) has real coefficients and all its roots inside 
the unit circle. In this case 

N f O l o g M  ~ l o g M d z _  N f [ z j  z -j] [~_ z-~]dz  N f z j-" d z 
z IP 12; (3.9) 

the coefficient of z j-~ in the Laurent expansion of N I P  (z)1-3. I t  is rather remarkable 
that  although the estimates of 01, 02 �9 �9 �9 0p are obtained in such different manners, 
depending upon whether the scheme is a moving average or an autoregressive one 
(in the first case a function of all autocovariances, in the second an explicit function 
of the first p + 1), yet (3.9) indicates that the second moments of the resulting esti- 
mates are of identical form. This is another evidence of the symmetry between the 
two schemes. 

The results of this and the preceding section have been obtained on the assumption 
of a Gaussian series: but we may readily see that many of them are of much wider 
validity. Bartlett  has shown (ref. t) that the first and second moments of the sample 
autocorrelation coefficients of a series generated from a linear process are for large 
samples independent of the distribution of the sample variate. Thus, all proofs 
which depend only upon a discussion of the first and second moments of linear 
functions of the autocorrelations will hold also in the more general case. In this way 
we see that  estimates arrived at with the help of equation (1.13) have the following 
general properties: 
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(a) they are consistent, 
(b) they have asymptotically minimum variance among the class of estimates 

given by 2.8, 
and (c) their variances and covarianees are the same as those arrived at in this 

section for the ML estimates of a Gaussian series. 

Of course, the same restrictions apply to the spectral function as before. Also, it 
is not probable that  the distribution of the sample variate is entirely arbitrary, but 
we shall not enter in on this question here. 

Note that (b) states merely that the least square estimates have asymptotically 
least variance among the class of estimates provided by (2.8). In any particular 
non-Gaussian case, there is always for example the ML estimate, which will not be 
given by a relation of form (2.8), and which may very well have a variance asymptotic- 
ally less than that of the least square estimate. 

(4) One result of the previous section is that the parameters of the process fall 
into two well defined groups: A and the rest. The ML estimate of A is uncorrelated 
with those of 01, 0 3 . . .  0p, furthermore, the variance of ~ depends only upon A, 
the covarianee matrix of 01, 0~. �9 �9 0k only upon 01, 02. �9 �9 0p. We could perhaps express 
this by saying that  the information matrix of the process may be partitioned into 
two non-overlapping square matrices, one of which gives information on the disturbing 
variate, while the other gives information on the stochastic relation generating the 
series. 

However, while it is the values of 01, 02. �9 �9 0p which determine the model finally, 
it is the value of ~ which measures the plausibility of the model thus obtained. As 
we saw in section (1), the maximum likelihood is a function only of ~ (we restrict 
ourselves again to the Gaussian case). For different choices of model (i.e., for different 
kinds of function A (z)), one obtains different values of ~,  and according to the theory 
of refs. 7, 8, 9 the best test function for discriminating between the two models is 
the quotient of the corresponding ~ statistics. 

Moreover, ~ statistics corresponding to different models are directly comparable, 
a fact of value in the first stages of an analysis. That is, if we obtain values A1 and 
A2 for hypotheses H1 and H2, and ~1 < -~2, then we may immediately conclude that 
H1 is more plausible than H2, insomuch as that H1 "explains away" a greater propor- 
tion of the total variance than H2. This is obvious, if we consider the interpretation 
of A as the variance of the normalised disturbance variate, and the fact that the 
moments of _~ depend asymptotically only upon A. 

We see from the above that  the only statistics of direct interest in the early part 
of an analysis are the ~ statistics, but  these cannot be calculated without first 
calculating 01, 02. �9 �9 0~- This is regretable, since the solution of (1.13) can be very 
laborious. One is, of course, willing to take some trouble in calculating the parameter 
estimates of a model which one is convinced is best, but  it is a tedious task to reckon 
out the. ML estimates of a number of models which are only of a preliminary, hy- 
pothetical nature. What would be desirable, then, is a direct method of calculating 
-~ without the intermediate necessity of calculating 01, 02 . - .  0,- One is tempted, 
for example, to set simpler estimates of 01, 02 �9 �9 0p in the expression 

1 
x '  [M (w)] -1 x 
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and to use this instead of ~ .  A few practical examples are enough to show, 
however, tha t  such a procedure may  be attended with severe error, not to 
mention the fact  tha t  property (1.10) is now lost. 

Example .  Consider a first order moving average scheme with spectral func- 
tion A ( z - 0 ) ( z  - 1 -  0). The ML estimate of 0 is given by  the equation 

-~ 1 - ~ [ C o +  20C, + 20~C2~-...] =0 

and we can also obtain a simple estimate 0* from 

C 1 0 $ 

rl . . . .  c o 1 + 0 *- - - -~"  

Equat ion (3.7) shows tha t  var  (0) - 1 - 0 2  ~r- , while, using Bart le t t ' s  formula for 

the asymptotic  variance of r 1 in ref. 1, we see tha t  

Thus, for 0=�89 say 

1 + 02+ 4 0 4 +  06+ 0 s 
var (0") = N (1 - 0~) 2 

var  (0") = 3.8 
var  (0) 

indicating an enormous difference in efficiency. From an artificial experiment 
with O= 0.382 and N= 150 the following values are obtained: 

=0.407 A =0.8054 

0* = 0.634 A* = 0.8656. 

The imprecision of 0* is obviously reflected in the corresponding value of A, A*. 
We shall now describe a method by  means of which the precision of the estimate 

A* may  be improved without the need to recalculate the estimates of the remaining 
parameters. To do this, we shall make use of the fact tha t  if A(z) may be expanded 
in a Taylor series in 01, 02 �9 �9 �9 0v in the neighbourhood of their true values, then 

A(O) X'[M(W)]-IX 
N (4.1) 

is al:proximatcly parabolic in this neighbourhood~ and th~ls also i r  tha t  of 
01, 0 2 . . .  0v. Thus, since 07, 0* . . .  0* lie presumably also in this neighbour- 
hood, we may  write 
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A (0) ~ A* + ~ A~' (0~ 0* - , ) + � 8 9  E AS(0,-0*)(0,-0*) 

where 

to.4(o)  / 2A(0) i 
A t  = ~ e O~ 1o:o, A 5  = \ ~ l o = o , "  

Regarding the right hand side of (4.2) as a quadratic function of 

1, 01-0t ,  03 -0"3 . . .  0~,-0~ 

(4.2) 

we see from the well known theorem on the minimum of a positive definite 
Hermite form that  it has a minimum 

2 A ' A t  A~ . . . A~ 

At  A1"1 AI*~ . . .  A t ,  

Amin= A* A*I A*2... A*, :A,_�89 Q_~p (4.3) 
An AI~ �9 �9 . A1j, 

i A *  A* A* I 

lAp1 A , 2 . . . A v , [  

where P and Q are respectively the vector and matrix of first and second 
differential coefficients of A (0) at  0 = 0". The quantities used to calculate A* 
may also be used to calculate A* A* with relative ease, so that  the calcula- t , t t~  

tion time3 for A*, A~n, are of the same order of magnitude. We see, how- 
ever, that  Amin departs from 4 ,  the ML estimate, only by so much as A(O) 
departs from parabo]ism in the neighbourhood of 71, 03 �9 �9 �9 0v, so that  we may 
expect the estimate of A to have been considerably improved. Moreprecisely, 
it can be readily shown tha t  if O~-~=O(Na), (i=l, 2 . . . p ;  a < 0 ) ,  so tha t  
A* - A = 0 (N3a), then Amin- ~ = 0 (Nan). 

To explicitly calculate the variance of A~n  is no easy matter,  but  numer ica l  
examplea would seem to indicate tha t  its efficiency is not greatly inferior to 
tha t  of the ML estimate. 

Example .  The same as the preceding one. A was calculated from the formula 

12  

A(0)= [00+2 Y CVj]. 
1 

With 0*=0.6343 we f ind  tha t  A*=0.8656, Amln=0.8105. Comparing these 
with .~ = 0.8054, we see that  Amin has an error of 0.6 %, while A*'s is 7.4 %. 
In the case of the autoregressive process, .~ a n d  Amin actually coincide, for if 

A(z)=A[zv+OxzV-~+... + Ov[- ~ 
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it may be shown that  

- C o  C1 . . . C ~ - ~ -  

A(O)= .~+(O-  0)' Cl Co . . .  Cp-2 (0-0) 

i.e., A (0) is parabolic in O. But, of course, it is in just this ease that  A is 
explicitly calculable, so that  recourse to the method above is unnecessary. 

University Institute of Statistics, Uppsala. 
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