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On modifications of  Riemann surfaces 

By H. RENGGLI 

I. Introduction 

1. The first to introduce modifications into the theory of several complex variables 
were H. Behnke and K. Stein [4] and H. Hopf [7]. Meanwhile modifications have 
been generalized, and they developed into an important tool in the study of complex 
spaces ([3], 23-27). 

2. I t  is the aim of this paper to define and study modifications of Riemann sur- 
faces. They will be explained in an intuitive way first. A formal definition (Defini- 
tion 1) will be given later. 

Let R be a Riemann surface, and let N be a closed subset, such that S = R - N  
is non-empty and connected, hence a Riemann surface. The idea of modification of 
R in N consists of removing N from R, thus getting S, and then inserting a set N* 
instead of N, such that S U N* will be a Riemann surface R*. I t  is understood that  
N* should actually replace N; more precisely each component of N is replaced by 
a non-empty set, and furthermore the union of all such replacements is exactly N*. 

Hence it is possible to invert the process, i.e. one can start with R*, then remove 
N* and insert N instead, in order to get R. 

3. In this study of modifications of Riemann surfaces we want to find relations 
between N and R* assuming R given. We are able to characterize a class of sets N, 
such that for every modification of R in N, R* is topologically equivalent to R 
(Definition 2 and Theorem 1). Similarly another class of sets N will be discussed, 
such that for every modification of R in N, R* is conformally equivalent to R 
(Definition 3 and Theorem 2). I t  will turn out that  the sets in question are simple 
generalizations of the sets NsB and No, which were defined and studied by L. Ahlfors 
and A. Beurling [2]. 

We shall also deal with the converse question, namely what can be said about N, 
if for every modification of R in N, R* is topologically, respectively conformally, 
equivalent to R. But this seems to be a rather delicate problem. 

4. Nevertheless we are able to show that  converses (to Theorems 1 and 2) hold 
for some restricted classes of Riemann surfaces. First mention has to be made of 
the few exceptional cases where we know that the converse (to Theorem 2) is incorrect. 
Then the problem will be settled for the class of compact Riemann surfaces (Theo- 
rem 3). Here use will be made of a theorem by K. Oikawa [8], stated for prolongations 
of Riemann surfaces. I t  will be shown that  his problem enters into the theory of 
modifications. 

We shall also define a second class of Riemann surfaces (Definition 4), for which 
complete converses can be proved (Theorem 4). 
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II. Modifications 

1. In  the introduction an informal approach to modifications of Riemann surfaces 
was given. Before we can formalize it, we need a few notions ([6], 63). 

Let N be a closed subset of a Riemann surface R, such that S = R - N  is non- 
empty and connected. Let n be a component of iY, and let ~/ be the filter of the 
neighborhoods U of n in R. The family whose elements are the sets V = U N S is a 
filter in S, but only a filter base in R, denoted by ~. Furthermore, if B is a filter base 
in a Riemann surface Z and _M denotes the closure of an element M of B, then the 
set of adherent points of B in Z is defined as f'l 211 ([6], 78). 

Me y 

2. The following definition of modifications of Riemann surfaces is a modification 
of the definition found in ([3], 1.c.). 

Definition 1. A modification o / a  Riemann sur/ace R in N is a quintuple ( R , N , S ,  
N*, R*> where 

(i) S, R and R* are Riemann sur/aces, such that S c  R, S c  R*, and N = R - S ,  
N* = R* - S; 

(if) ]or every component n o] N, the set o/ adherent points in R* o/ the filter base 
is not empty. Here ~ consists o] the elements V = U N S, U being a neighborhood o /n  in R; 

(iii) /or every component n* o/ N*, the set o/adherent points in R o/ the filter base 
~* is not empty. Here ~* consists o/ the elements V* = U* N S, U* being a neighborhood 
o] n* in R*. 

All the conditions, especially (if) and (iii), are completely symmetric. Since the 
set of adherent points in R of the filter base ~ is obviously the boundary of n in R, 
condition (if) states that  every component n of N has been replaced by a non-empty 
subset of N*. But (iii) adds that conversely every component n* of N* is the replace- 
ment of a non-empty subset of N. 

I t  is possible that a single component of N is replaced by several components of 
N*, but also conversely several components of N might be replaced by a single com- 
ponent of N*. 

If  (R, N, S, N*, R*> is a modification of R in N, then (R*, N*, S, N, R )  is evidently 
a modification of R* in N*. 

3. Let ( R , N , S ,  iY*,R*) be a modification of R in N. Since S c R  and S c R * ,  
the Riemann surface S is imbedded in both R and R*. Or R and R* can be con- 
sidered as extensions (or prolongations) of S. The study of extensions of Riemann 
surfaces is therefore related to the study of modifications. 

Let S be a Riemann surface of finite genus, and let R and R* be compact Riemann 
surfaces of the same genus, such that  S c  R and S c  R*. With the notations N = R - S  
and N * = R * - S  one finds easily that  (R ,N,S ,N*,R*> is a modification of R in N. 
In  order to study the compact extensions of S to Riemann surfaces of the same genus, 
it suffices to start with one such extension R and then study the modifications of 
R in N in which R* is compact and has the same genus as R. 

III. Main results 

1. In  this section the theorems are assembled. But their proofs will be given later. 
In  the following T will always denote a simply connected Riemann surface of 

hyperbolic type, and z will always stand for a conformal mapping z: T-+D of T 
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onto the unit disc D = {z complex: ]z] < 1}. Also N shall be a totally disconnected, 
closed subset of a Riemann surface R. 

2. All our theorems are built on the following generalizations of the sets NZB 
and N D �9 

Def in i t ion  2-3. N is said to be a set NSB in R [a set ND in R], i[ and only i/ /or 
every subset T o / R  and every ~ any compact subset o/ T(N N T) is a set NsB [a set ND] 
in the sense o]L. Ahl/ors and A.  Beurling [2]. 

As it follows immediately from the definition of the sets NsB [2], one could equi- 
valently require that for every T and every conformal mapping a of T - N  into D 
any bounded component of the complement of a(T-_N) consists of a single point. 

Another, still equivalent characterization of the sets NsB in R would be the condi- 
tion that for every T any conformal mapping of T - N  into D admits a continuous 
extension to T ([10], Corollary 4). 

Similarly one could demand for the definition of the sets ND in R that for every T 
any conformal mapping of T - N  into D admits a conformal extension to T ([10], 67). 

I t  follows from [2] but also from above that every set N D in R is a set NSB in R. 
On the other hand, there are sets ~VsB in R which are not sets N D in R ([2], Theo- 
rem 16). 

Theorem 1-2. Let R be a Riemann sur/ace. 
I / N  is a set NSB in R [a set N D in R], then/or every modi/ication o/ R in N, R* 

is homeomorphic [con/ormally equivalent] to R. 
In  addition N* is also a set Nss in R* [a set ND in R*], and one such homeomorphism 

[one such con/ormal mapping] is represented by the uniquely determined extension o/ 
the identity mapping o / S  onto itsel/ to a continuous mapping o/ R onto R*. 

3. I t  has to be noted that  for the converses to Theorem 1 and Theorem 2 we only 
require that  R and R* are homeomorphic respectively conformally equivalent; we 
do not demand that one such homeomorphism respectively conformal mapping can 
be obtained as the continuous extension of the identity mapping of S onto itself. 
Because otherwise converses would be quite trivial. 

In order to list the exceptional eases where we know that  complete converses 
fail to exist, the class R-  of Riemann surfaces will be defined. I t  consists of the 
l~iemann surfaces which are conformally equivalent, either to the l~iemann sphere, 
to the complex plane, to the unit disc, to the punctured disc, to the punctured 
plane, or to the doubly punctured plane. In  all those six cases the converse to Theo- 
rem 2 is not correct. Because any modification of R in N, where R E R- and N is a 
compact set NsB in R, will lead to a Riemann surface R* which is not only homeo- 
morphic, but also conformally equivalent to R. On the other hand, the converse to 
Theorem 1 will be shown to hold also for the class N-. 

4. Our first partial converse is 

T h e o r e m  3. Let R be a compact Riemann sur/ace di//erent /rom the Riemann sphere, 
and let N be a closed subset o / R ,  such that S = R - N  is non-empty and con-nected. 

I / ]or  any modi]ication o/ R in IV, R* is homeomorphic [con]ormally equivalent] to 
R, then N is a set NZB in R [a set N D in R]. 

5. A boundary component fl of a Riemann surface R is said to be an isolated 
planar boundary continuum, if and only if there is a Jordan curve C partitioning R 
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into three sets R', R" and C, such that  (i) the boundary of R'  consists of fl and C 
and (ii) R'  can be mapped conformally onto a non-degenerated annulus {z complex: 
0 < r  < l z l  < 1}. Furthermore we recall that  a planar Riemann surface is by defini- 
tion coD_formally equivalent to some domain in the complex plane. 

Definition 4. The class ~+ cowsists o/the planar Riemann sur/aces which have/initely 
many but at least two isolated planar boundary continua. 

Theorem 4. Let R be a Riemann sur/ace o/ class ~+, and let N be a closed subset 
o /R ,  such that S -  R -  N is non.empty and connected. 

I / /or  any modi/ication o/ R in N, R* is homeomorphic [con/ormally equivalent] to R, 
then N is a set NSB in R [a set N D in R]. 

IV. Proofs of Theorems 1 and 2 

1. The proof of Theorem 1 relies essentially upon [10] and [11]. Therefore we 
shall first give a summary  of the results we shall have to refer to. 

Let S be a Riemann surface, and fl be a boundary component of S. We say tha t  
S is conformally imbedded in a Riemann surface Z and tha t  fl or a par t  of fi is real- 
ized in Z, if there is a conformal mapping of S into Z and fl or a part  of fl corresponds 
(in the induced boundary correspondence) to a non-empty subset of Z. The boundary 
component fl of S will be called point-like if and only if there exists a realization of 
fl or of a par t  of fl in some Z, and for every such realization, fl is realized as a point. 

A boundary component fl of S is said to be planar, if and only if there exists a 
Jordan curve C in S partitioning S into three sets S*, S' and C, such that  S* is 
homeomorphic to a domain in the complex plane and its boundary contains ft. 
The family of the closed curves y lying in S* and separating the two boundaries 
C and fl will be denoted by F. 

The main result in [11] states that  a boundary component fl of a Riemann surface 
S is point-like if and only if (i) fl is planar and (ii) the extremal length ~(F) of I ~ 
is zero. 

2. Furthermore we have to make appeal to ([10], 66) in  order to show that  the 
concept of point-like boundary components is very closely related to the generaliza- 
tion of the sets NSB given in Definition 2. Let  Z be a Riemann surface, and let 
according to Definition 2 the set N be a set NsB in Z. Then obviously every point 
of N is a planar boundary component of S, S = Z - N .  And by Proposition 1 and 
Corollary 2 of [10] the extremal length condition mentioned in IV.1 is fulfilled in S 
for every such boundary point. Hence every point of N considered as a boundary 
component of S is point-like. But  also conversely let Z be a Riemann surface, and 
let N be u closed subset of Z. If  every component of N is point-like with respect 
to S, S = Z - N ,  then tracing all the steps backwards one concludes easily tha t  N 
is a set Ns~ in Z. 

3. Let  us now assume the hypotheses of Theorem 1 and let (R,N,S,N*,R*> be 
a modification of R in N. We want  to extend the identity mapping i of S, S c  R, 
onto S, S c R * ,  to a continuous mapping of R onto R*. Since N is a set NsB in R, 
every point p of N, N -  R - S ,  considered as a boundary component of S, is point-like 
as emphasized in IV.2. But  S is also imbedded in R*. Hence using IV.1 to each point 
p,p EN, corresponds either a point p* in R* or no subset at  all. However, the latter 
is excluded by condition (ii) of Definition 1. Therefore the mapping i can be extended 
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to N. Applying condition (iii) of Definition 1 one concludes that every component 
of N* consists of a point and that i (N)=N*. So i has been extended to a mapping 
of R onto R*. 

The mapping i is trivially one-to-one and bicontinuous at every point of S. Let p 
be a point of N, and let ~O be the filter base defined for p according to Definition 1. 
Obviously ~ converges in R to the point p, and in R* to the pointp*,p* =i(p). Since 
every V contains an element U, i is continuous at p ([6], 82). 

We shall indirectly prove that i is one-to-one. Let us therefore assume that  Pl 
and P2, Pl ~=P2, Pl E N, P2 E N, are mapped by i onto p*. Let U* be a simply connected, 
open neighborhood of p*, and let U =i-I(U*). U contains Pl and P2 and is open since 
i is continuous. Let C be a Jordan curve in U N S separating Pl from P2 in R. Let 
q E C. Then there are two open curves C1, C 1 c S - C, and C2, C2 c S - C, connecting q 
with Pl and P2 respectively, i(C) is a Jordan curve in U*, and i(C1) and i(C~) will 
connect i(q) with p*, lying entirely on different sides of i(C). This is impossible since 
U* is simply connected. Whence the desired contradiction. 

Similarly as for i one shows that its inverse i -1 is continuous at any p*,p*CN*. 
So i is a homeomorphism, and R and R* are homeomorphic. Using the filter base 19 
one also concludes that the extension of i to a continuous mapping of R is unique. 
Furthermore, N* is a subset of R*, and every point p* of N* considered as a boundary 
component of S is point-like. Hence N* is a set NsB in R* as shown in IV.2. Thus 
Theorem 1 is proved. 

4. Our next goal is the proof of Theorem 2. Since every set ND in R is a set NSB 
in R, it suffices to show that the mapping i: R->R* of IV.3 is conformal. Let T, T ~  R, 
be simply connected and let its boundary be a Jordan curve C, C c  R. Let ~: T->D 
map T conformally onto the unit disc D and let T*--i(T).  Then T* is also simply 
connected and of hyperbolic type since C~ R. Denote by ~* a conformal mapping 
T*: T*-+D. The restriction of i to T is thus represented as a homeomorphism of D 
onto itself which is conformal in ~(T--N) .  By Definition 3 and ([10], 67) the set 
~(T (I N) is conformally removable as we have already stated in III .2.  Hence i is 
eonformM in any such T and therefore on R. Obviously N* is then a set N~ in R*. 

V .  T w o  L e m m a t a  

Lemma 1. Let R be a Riemann sur/ace, and let IV be a closed subset o] R, such that 
S -  R - N  is non.empty and connected. 

I / N  i8 not a set NSB in R, then there exists a modi[ication o/ R in N, such that R* 
has, compared with R, one additional boundary component. 

Pro@ Let us first assume that N is totally disconnected. Since N is not a set 
YVsB in R, it follows by negating the definition of the sets NsB in R, that there exists 
a compact subset N o of N and a simply connected neighborhood U, U c  R, of N 0, 
such that  U - N  o can be mapped conformMly into an annulus A = { z  complex: 
2 <  Izl <r}, where some point p,pENo, corresponds (in the induced boundary 
correspondence) to the circle of radius 2 and the boundary of U to the circle of 
radius r. 

In  the second case where N is not totally disconnected, N contains a continuum. 
Choose a compact subcontinuum d and a neighborhood U', U ' c  R, of d, such that 
U ' - d  is doubly connected and admits a conformal mapping onto an annulus A ' -  
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{z complex: 2 <  ]z] <r'), where some subset of the boundary of 6 corresponds to 
the circle of radius 2. 

In  order to get the desired modification we shall essentially modify U and U' only. 
In  the first case U - N  o is conformally equivalent to a subset of A. Let B = 

{z complex: 1 < Izl <r) ,  and define R* = ( R - N o )  U B where the points in U - N  o and 
B which correspond to each other under the conformal mapping have been identified. 
If we put N * - R * - S ,  it is easy to check that  ( R , N , S , N * , R * )  is a modification of 
R in N. We remark that  the point p,pEN0, has been replaced by a set represented 
by B - A .  

Quite similarly we define B ' = { z  complex: 1<  Izl <r '}  in the second case. Pu t  
R * = ( R  6) 0 B' where the points in U ' - 6  and B' which are mapped onto each 
other have been identified. Let N* = R* - S. Then (R, N, S, N*, R*> is a modification 
of R in N. And the component of N which contains 6 has been replaced by a set. 
which contains in our representation the set B ' - A ' .  

In  both cases a modification of R in N has been constructed, where R* has, as 
it follows immediately, exactly one additional boundary component. I t  is represented 
by the unit circle, boundary of B and of B'  respectively. 

Lemma 2. Let R be a Riemann sur/ace, and let N be a closed subset o/ R, such that 
S = R N is non-empty and connected. 

I / N  is not a set Nz~ in R, then there is a modi]ication o / R  in N, such that R* is a 
Riemann sur/ace o/in/inite genus. 

Proo/. Let ( R , N , S , N ' , R ' >  be a modification satisfying Lemma 1. According to 
the proof of Lemma 1 one can assume that N '  contains a set represented by W = 
{z complex: 1 < I z I ~< 2}. Hence W will be regarded as a subset of R'. We shall prove 
Lemma 2 by removing part of W from R' and inserting in its place a Riemann 
surface of infinite genus. 

Let H be a Riemann surface of infinite genus, and let U be a simply connected 
subdomain of H. Suppose g maps U conformally onto {z complex: [z I > 1 or z = ~}. 
Let H '  be the surface H from which one has removed all points which are mapped 
by g onto {z complex: Izl >~2 or z = co}. We can consider g(U n H') as a subset of H'. 

Put  R* = R ' U  H',  where we agree to identify equal points in W and in g(U n H'). 
Let N*=  R * - S .  Then ( R , N , S , N * , R * )  is a modification of R in N which satisfies 
the requirements. 

VI. Proofs of  Theorems 3 and 4 

1. The proofs concerning the sets .NsB are based upon the lemmata. Let R be a 
Riemann surface, which is either compact or belongs to the class R-  defined in 
III.3. Let N be a closed subset of R, such that  S = R - N  is non-empty and connected. 
If  N is not a set .NSB in R, then by Lemma 1 there is a modification of R in N, such 
that R* is either not compact or is planar and has finite connectivity higher than R. 
Hence R and R* cannot be homeomorphic. The partial converse to Theorem 1 stated 
as part of Theorem 3 is thus proved by contraposition. Furthermore, the converse 
to Theorem 1 holds also for the class R-. 

In  the case of the class R+ given by Definition 4 one concludes similarly using 
Lemma 2, that  the converse to Theorem 1 stated as part of Theorem 4 is valid. 

2. We shall now prove the second part of Theorem 3. Let R be a compact Riemann 
surface different from the Riemann sphere, and let N be a closed subset of R, such 
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that  S = R - N  is non-empty and connected. If for any modification of R in N, R* 
is conformally equivalent to R, then R* is a compact extension of S = R - N .  Hence 
it suffices to assume that  all compact extensions of S are conformally equivalent. 
As K. Oikawa has proved ([8], Theorem 1), S is then a Riemann surface of class 
OAD. But H. L. Royden has shown ([12], Theorem 2), that  such a Riemann surface 
of class O~D is conformally equivalent to a compact Riemann surface--which we 
can identify with R-- f rom which one has removed what in our terminology is a 
set N D in R. Hence the second part of Theorem 3 is proved. 

3. What  remains is the proof of the second part of Theorem 4. I t  will be done 
by contraposition. As it follows from III .5,  it is permitted to confine oneself to domains 
G in the complex plane which have a finite number of isolated boundary continua. 
Since the first part of Theorem 4 is settled, one can assume that N is a set NSB in 
G which is not a set N D in G. Such sets exist ([2], 1.c.) as already mentioned in III .2.  
Put  S - G - N .  Hence our task is to get a modification (G,N,S,N' ,G')  of G in N, 
such that G' is planar, but not conformally equivalent to G. 

(~) We shall make use of the following general observation. Our goal is to con- 
struct a modification of G in N such that G' is not conformally equivalent to G. 
Let us assume that a modification (G, No, So, No, G' ) of G in No, where N o is some 
closed subset of N, will lead to such a G'. In  this case it is permissible to modify G 
in N o only in order to get the desired G'. Because one arrives at a modification 
(G,N,S,N' ,G')  of G in N with the same Riemann surface G' by simply putting 
S = G - N  and N ' = G ' - S .  

(fl) Consider a compact subset N o of N which is not a set ND. Put  S o = G - N  o. 
Map the complement of No--with respect to the complex p lane--by  a function 7~ 
conformally into the complex plane, such that the induced image re(N0) of the bound- 
ary N O has positive area. Since N O is not a set ND, such mappings exist by ([2], 

�9 Theorem 4). Let No -re(N0), identify S o and its image re(S0), and put G' =z(S0) U 7e(N0). 
Then (G, No, So, No, G' ~ is a modification of G in N 0. If  G' is not conformally equi- 
valent to G, we are through. 

(~) Otherwise we continue to modify G' in No, where No is compact and has 
positive area. By hypothesis G and hence also G' have at least two but only finitely 
many isolated boundary continua. We single out two, and denote by F the family 
of the open curves lying in G' and connecting the two selected boundaries. With 
each pair of isolated boundary continua we thus associate an admissible family F. 
We get at least one but only finitely many such F. The extremal length 2(F) of 
each F is a conformal invariant. 

Take a family F0, such that  ~(1 ~) ~ ( F 0 )  for every admissible family F. Call E o 
and E 1 the two selected boundaries which F 0 refers to. Let F0 be the subfamily of 
F 0 which consists of the curves lying in S o =G'-No.  Since No has positive area, 
by ([9], w 4.1. and Theorem 2) the family F0 is not normal relative to F 0. Therefore 
~(Po) <~(ro). 

Let ~ map S o conformally into an annulus A ={z complex: ro< Iz[ <rl} such 
that (i) E~ =(,(Eo) and E~ =a(E1) are the circles of radii r 0 and r 1 respectively and 
(ii) the image (~(S0) of S o is a minimal radial slit domain in A. Identify S o and a(S0); 
delete from A the set which corresponds to the boundary of G' and call that  deleted 

t P * G*-(I(So). Then (G ,No, So, N~,G*) is a modifica- domain G*. Put  in addition N O = 
tion of G' in No. 

The family P~ which consists of the open curves lying in G* and connecting E~ 
with E* has by construction an extremal length ~(F~') equal to ,t(Fo) and hence 
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distinct from every 2(F) defined in G'. So G* cannot be conformally equivalent to 
G', because the 2(F) are eonformal invariants. 

Since G' was supposed to be conformally equivalent to G, G* and G are not con- 
formally equivalent. To finish the proof, it suffices to remark that <G, No, So, No, G*> 
is a modification of G in N o such that G and G* are not conformally equivalent. 

VII.  R e m a r k s  

1. In  the Lemmata we proved more than we actually needed for getting the con- 
verses stated as parts of the Theorems 3 and 4. Therefore one concludes from Lemma 
1 and Lemma 2, that  the converse to Theorem 1 holds for the class of Riemann 
surfaces having only a finite number of planar boundary components as well as 
for the class of Riemann surfaces of finite genus. 

2. In  the proof of the second part of Theorem 4 we needed that there was a family 
F 0 such that ~(F)~<~(F0) and F0 was not normal relative to F0. Using ([9], w 8.1.) 
it is possible to generalize the converse to Theorem 2 to the class of Riemann surfaces 
which are planar and have at least two but only a finite number of boundary continua 
which possess free subarcs. 

3. We have so far treated the cases where the two l~iemann surfaces R and R* 
were either homeomorphic or conformally equivalent. One might consider quasi- 
conformal equivalence too. Using I I I .3  and Theorem 1 combined with Teichmfiller's 
theorem (e.g. [1], 50; [5], 107) one gets the following result: If R is a compact 
Riemann surface and N is a set NsB in R, then for every modification of R in N, R* 
is quasiconformally equivalent to R. 
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