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On the joint distribution of crossings of high multiple levels
by a stationary Gaussian process

By CriFrorp QUALLS

1. Introduction

Let {£(f), —co<t<oo} be a real stationary Gaussian process with zero mean
function and baving continuous sample paths with probability one. Denote the
covariance function by r (taking r(0)=1 for convenience), and the corresponding
spectral distribution function by F. Let x be the expected number of upcrossings
of the level u by &(¢) in a ¢-interval of length 1.

Under certain conditions, H. Cramér [2, pp. 258 ff.] has shown that the number
of upcrossings by &(¢) during a {-interval of length 7' of a single level tending to
infinity is asymptotically Poisson distributed with parameter 7, provided 7' is chosen
tending to infinity according to 7' =7/u. Cramér’s conditions for validity have been
weakened, in slightly different directions, by Belayev [1] and the author [3].

In this paper we show that a multivariate Poisson distribution is obtained in the
analogous situation for upcrossings of multiple levels. The conditions for validity
are the weakened ones of [3]. For the following precise statement of the result we
need some notation. Let 0<p,<p, ;<..<p,<p,=1, and consider the levels
u, u—(In py)u, ..., w —(In p;)/u, and the t-interval (0, T') where T =7/u, 7>0.

Let Ny, Ny, ..., N, be the numbers of upcrossings by &(f) during time 7' of these
1+1 levels in the order listed.

Theorem 1.1. If the stationary Gaussian process &(t) satisfies

s
(1) Ag= —1"(0) exists and J (A +7" (1)t dt < oo, for some § >0,
0

or equivalently, f log (1+4) 2dF(A) < oo, and
0

(2) 7(&)=0("") as t— oo for some a >0,
then
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!
plko; 7) Eb(ki; ki-1, PilPs-1)

uh—fgo PN~k i=0,.... = (Gf 0<k,<...<ky and k; are iniegers)

0 otherwise

In this theorem p(k; v) and b(r; n, p) are Poisson and binomial probabilities respectively.

The proof of this theorem is accomplished by dividing (0, T') alternately into two
types of subintervals. The {,-intervals are chosen long enough to have one upcrossing
of the different levels with appropriate small probabilities, but not more than one
uperossing. The interspaced £,-intervals are chosen short enough to have no upcross-
ings, but long enough that the upcrossings of different ¢,-intervals are asymptotically
independent. This binomial situation leads to the Poisson distribution in the limit.
This is the method of proof used by Cramér.

In the concluding remarks we note that the multiple levels given above are the
only meaningful choices.

2. Preliminaires

Choose B such that 0<(ky+..+k,+4)f<a<l. Let M =[Tyu5] where [] de-
notes the greatest integer function, ¢=T/M. Let m,=[u], t;=myq, my=[uf],
ty=myq, and n=[M/(m,+my)]+1. Note that as u—>oco, g~uf—>0, t; ~uf-1l->oco,
ty~u2b1>00, and n~TuF—>oco. Let £,(t)=&(t) for i=kg, k=0, .., M and be the
linear interpolation between the &(kg). Let N{ be the number of upcrossings of the
tth level by &,(t) during (0, 7).

Lemma 2.1. If £(t) satisfy the condition that r"(0) exists, then lim, ., (P{N,=k,;

1=0, ..., [} —P{N{ =k, i=0, ..., I}) =0. The proof follows easily from the single level
proof [see 2, p. 260].

Lemma 2.2. Under conditions 1) and 2) of Theorem 1.1, we have as u— o
P{N{(t,) =0} =1-pig+olg)
P{N{(t,) =1} =p.g+o(g)-
Proof. For any non-negative integer valued random variable », we have
Ev—Eyy—1)<P{y=1}<1-P{r=0}< Ey.

Take »=N7(,), and divide the above string of inequalities by p;q. Note that a
modification of lemma 2.1 of [3] gives EN{(q) =p,qu +o(qu) and therefore

EN{(t)) =p:q +0(q),

as 4—>oo. The final and crucial step is to apply a modification of theorem 2.2 of [3],
whichstates (1/g) Ev(v—1)—o0 as u->co. Q.E.D
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We shall need the following additional notation.
On the (0, T') interval mark off intervals of lengths £, and ¢, alternately, beginning
with a t,-interval. Define for r=1,2, .., n and =0, ..., ]

& ={exactly one &, upcrossing of the ith level in the rth ¢ -interval}

d, ={at least one £, upcrossing of the ith level in the rth #-interval}
& ={E(»q)>u—In p,Ju for at least one vq in the closed rth ¢,-interval}

Crs ={ic, occurs in exactly &, of the n f,-intervals of (0, 7') and ,cf occurs in the
remaining n —k, ¢,-intervals}

g

1k,

} similarly defined.

3. Proof of Theorem 1.1

Lemma 3.1. Under conditions 1) and 2) of theorem 1.1, we have

I
lim [P{N{=Fk, i=0,...,}—P(N E,)]=0.
i=0

Um> OO

Proof. We shall proof
i
A1=P{Nq=ki, ’l/=0, ...,l}_‘P( r‘o iok‘),

1 ?
AzzP(iQ) 101:,.)_1)( 1_00 ka,.),

) !
and A3=P(i00 Dr) — P( ioo "

all approach zero as u—co. First, we need only consider upcrossings in the £,-
intervals. Since

1 —P{N{(ty) =0} SEN{(ty) =pita pp +0(ts u) =0(ts 1),

P{at least one &, upcrossing of at least one level in at least one of the n {,-intervals
of (0, T)} =0(n-1-t, u) =0(u?), which approaches zero as u— co. Second, P{more than
one &, upcrossing in at least one of the n- (I 4-1) ¢;-intervals} =n-(1+1)-o(g) =o(ng) =
o(1) as u—>oco. These facts show that A;—+0 and A,—~0 as u—>oo.

To evaluate A,, we see that the event Ni_y ;B is the union of (;: ) (: ) (;:)

0 1 1

different combinations of the more elementary events ,e,. Without loss of generality
consider the particular combination

* * * *
G'=1 -+ 08o 0€ko+1 ++= 0€n ++- 1€1 ++» 1€k, 1€hey+1 +-+ [En-

The event i-o 1Dy, can be similarly decomposed with H corresponding to the
event G with ¢’s replaced by d’s.

Now" d,< &, & < dr, and d; — o7 =, — d,, so it is easy to show that e, 4—
4, B<(e,—d)U(A—B), e A~ d;B<A—B,d; A— e, B<(¢e,— d,)U (4 — B), and
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@, A—e,BcA—B. Therefore G—H<U!, U¥, (&,—d,), and H—G< Ui~
U k10, — ;). Consequently

| PH — PG| < P(H - @)+ P(G— H)

<> 3 P(e,— d)<(+1)nP(g,),

i=0 r=1
where g,={&(v,9)=>u—In p,/u}, v.q is the left end point of the rth ¢,-interval, and
ilr— idrc /e
n

Finally since P(g,)=0(u"" exp { —4%/,}) and ( ) = 0(n*) we have

k,

Ay =0(nEk* "t exp { —u?/2})

=O(exp{_1—(21;+1),3u2})

which approaches zero as u— oo by the choice of §. Q.E.D.
The events ,E), have the important simplifying property that e,<,e,, if x <.
Therefore we need only consider the case when 0 <k,;<...<k,, since G@=¢ otherwise.
Further, in light of Lemma 2.1, Lemma 3.1, and the fact that Theorem 1.1 has been
established for the single level [3], it suffices to show

Lemma 3.2. For 0<k,;<...<ky, k, iniegers, we have
i-1
P[iEk,./joo /Ek'f]*b(kﬁ by, pilpi-1) a8 wu—>oo.

Proof. Since ,e,< e, for k<j, the conditioning event 1,2} ;B simplifies to a
union of (]:L ) (;:o)...(;:‘_z) disjoint events G4 where G4 =7 .1 g, and ¢, equals oo
] 1 i-1
for n—k, of the n r-subscripts, and equals s, ;e for k;—k;,, of the remaining
k; r-subscripts (0<j<¢—2), and equals ;_,e, for the remaining k,_, r-subscripts. Now
suppose P[,Er,/G;]>b as u—co uniformly for all permutations (or better partitions)
¢. Since ;23 ;Bi= 4 G4 and

3 (P18, )]~ b} PG,
> PG, ’

P [iEk;/ 9 Gs]—-b=

it follows that |P[,E,,/Gs]—b| <& for all ¢ implies | P[.E, [, G;]—b| <e.
Therefore we need only show P[,Ei,[G;]->b(k; ks, p,/p;_,) uniformly in ¢, For
convenience in notation in the remainder of this proof, we show

P[Ex|/G)~blky; ky_y, pifDiy)
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for the particular G = ;.1 g, where g, is ;_i¢, for r<Fk.,, &, jaer for k;,<r<k;
(0<§<1-2), and ¢ for r>k,; and then note these calculations apply in a uniform
manner to all G4. One other reduction can be made along these lines. Since ,Ex, N @

k-
I]:‘__l) disjoint events and b(k;; &,_,, p:/p;_y) is the sum of (k: l)
equal probabilities, we show without loss of generality that

is a finite union of

(1) PlLies-.. i€, i-1041 €541 o i-1%i_, €k, Jr,_y+1 -+ §n)/ PG
= (@il pi-1)" (1 — pyf 1)1 774
Since the events g, that determine both the numerator and denominator of (%)

depend only on two levels at a time, it turns out that all calculations typical of (7}
are shown even if we only demonstrate (1) for ¢ =1. Therefore consider

A=PK - 7'5]{1 (7w — 731)%_10l (1- 7To)n—k”;
where the event

_ * % * *
K =16 ... 161, 0k+1 18k:1+1 - - - 0%k 1€k0 0%k+1 - -+ 0n

and 7t,=P{.e,}. Stationarity of &(f) assures z, is independent of r. Suppose there
are L points of the form vg belonging to the n closed ¢,-intervals of (0, T'), then
(n—1)(m,+1)<L<n(m,+1). The corresponding L random variables &(»g) have a
Gaussian density f,{yy, ..., ¥;) and covariance matrix A;. So

PK = fol(yl, v ¥ Ay, .. dy =F(1).

Now if the random varjables &(»q) corresponding to points vg belonging to different
t,-intervals were independent, the corresponding covariances would be zero. Let A,
be the resulting covariance matrix obtained from A, by zeroing out these covariances
and fy(yy, ..., yz) the corresponding Gaussian density. Now, by independence, f,
factors and

F(0)= f ol U B B

= P(1e1) ... P(161,) Plo€iy+119%+1) -+ Plo€rs 1€%,) P(Oe;:u‘f'l) oo Plger)
— TK{“ (7.50 — nl)ka—kx (1 — no)n—ko.

Actually P(,e}) =1 —P(se,) +1 —n, since the nth ¢,-interval may be incomplete; but
both approach 1 as u-—>co, therefore we may take A = F(1) — F(0).

Now define F(h) =g fulyy, s Y1)y ... dy;, where f, is the Gaussian density
corresponding to the symmetric positive definite matrix A,=hA;+(1—h)A,,
0<h<1. So we have
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2

’ cf o°f
* F(h)= =z = ; h
™ (h)=2. ] fx EYm dy, ... dy; 2 Qij f < 0: 2y, ayy ... dyy,

where A;=(g;), An=(4;), and T extends over all 4 <j for which the corresponding
vq points belong to different ¢,-intervals. The identity of,/04,;=0%,/0y,0y; can be
checked by differentiating the Fourier transform inversion formula for f,.

In order to estimate the summands of F'(h), we wish to carry out the integration
over K with respect to ¥, and then y;. There are three cases for the first integration.

. ath ’ Ofn(y; =)

(1) f —— dy;dy,d =f o dy'.
,e;K 3:'/{ dyi Y yj y ne:K ayi yj Y

. 32fh ’ afh(y'=u ) !

(ii) f d,.dd=—f_——1—-id.d,
i . oy, Yi0Y; Y ek EM Y; oy

since the Lh.s. (left-hand side) minus the r.h.s. is an integral equal to zero.

&t . Ofn(ys =) :
(i f * d,.dd=f‘—-———dd
) e@riet K ayi ay]' Y10y, % 1K ayi Yi?y

af h(yi = u) ’
- = dy,d
J‘.e"k , Yoy

since the 1.h.s. plus the second term of the r.h.s. with the use of case (i) and ofr =

oér 167 is equal to the first term of the r.h.s. Here dy' =dy, ... dy; ... dy; ... dy;, uy =
%—Inp,fu, K is the event K with the e factors referring to the rth #,-interval being
deleted, and y, corresponds to a &(vg) belonging to the rth #,-interval, and y, cor-
responds to a different ¢,-interval.

For the double integration with respect to y; and y;, there are six different cases.
With y,; corresponding to the rth £ -interval and y, to the sth (s+r7), the cases are,
according to the event being integrated:

— ok * — . e * — % * _ *
A=ef o5, B=1e, 165 O=e,485,D =€, 167 o5, B = 16,8165,

and F=e, ,ef o, ,¢F. Cases A, B, and O are treated by Cramér [2, p. 268] for a
single level. Applying cases (i), (ii) and (iii) and similar techniques for the second
integration with respect to y;, we obtain

il
Case D f " dy,d .d’=f Fulty =, 9= ) Ay’
i 001 09, Y:0Y;0Y erask Y11= U Yy Y

r's

—f . =,y =u) dy,
[adlsd. o
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| & , f ,
C E d id d - 1= U, ] d
ase Lk 5, 0, Yy:dy, dy o fa(yi=w, y;=u) dy

- f =y, yy=w) dy,
€3 e K

62 f 13 ’
Case F dy; dy,dy’ =
F

=y, Y =uy) Ay’
= oy, dy, &jh(y v Y =up) Y

167267

—f Iy =y, yy=u) dy’ _f . falyi =, 9= uy) &y’
167625 K 0efietK
+J yi=w, Y= ) dy'.
oeF e K

Here K is the event K with factors in both » and s deleted. In all six cases

ath r‘ J'oo fw ’
d d d <4: cee i = U, s =U d
fxay,6y~ Y dy, dy ) s wy=u)dy

<_i__exp{__“2__}
T 2nl1—hEg 1+hoyl

where p,; was replaced by |o]-
Now by condition 2) of Theorem 1.1, we have

loi;} = |r(vig—v;q)| <Ctz* for sufficiently large u,

since v,q and. y,q are separated by at least a f,-interval.

u2

Also _ {—____
sVl —Rgs T T+l

-yt
~— e as u—>oo.
7T

Since there are less than L2 <n2(m, + 1)? covariances g;;, we obtain from the equation
™)

|F'(R)| < O"n¥mitze™™ < O u**,

for u sufficiently large.

In order to see that the constant ¢’ does not depend on which G4 was used, con-
sider equation (*). The summation was over all ,-intervals and p;; was estimated
independent of which pair of ¢-intervals were referred to by ¢ and j, so neither de-
pends on the permutation ¢ of the ¢;-intervals. For the integration over K, which
depends on which G4 was used, cases 4 through D are estimated in terms of gy
but otherwise the estimates are independent of K.
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Therefore |A|=|F(1)—F(0)| =|f5 F'(k)dh| <C'u=~*4, which approaches zero as
%— oo for our choice of §, and ¢’ does not depend on ¢. Finally, the Lh.s. of state-
ment () with :=1 is equal to PK/P[se; ... o€k, o€ho+1 - ofn)> and can be replaced by

n{tl(ﬂo _ nl)"“"“(l —_ Jto)"_k" + 0(/,&“—4ﬂ)
n(l)co(]_ —_ no)n-ko + 0(‘“«1—4;‘3)

Since 7, =P{.,} differs from P{d,} by less than P{g,} =0(u"? exp {—?/2}) as in
the final lines of the proof of Lemma 3.1, we have n;~p;q as 4— oo by Lemma 2.2.
Since n~Tu=b, g~ub, (1 —m)"~e~%, and mg°~uf*, we divide the above expression
by 7§ (1 —m)"* to obtain

T, To
1 +0(Il, —(kn+4)ﬂ)

Now 7;/7;_y—~,/p;_, and by our choice of 8 the error terms approach zero as 4—>co
to establish statement () with =1 uniformly in ¢.

The general case ¢+>1 differs slightly from 1=4 in cases 4 through D by added
notation and in the fact that the density f, is evaluated at differing levels u;. In
estimating formula (*) we replace all levels by the least one u, and consequently
the Lh.s. of (1) can be replaced by

T (u-g = )M (71 — ) TR (1 — )" + O™ 4P)
n:ci—ll(ni_z — ni_l)ki—e—ks—1 . (n,o __nl)lco-lcx(l — no)n—k. + 0(‘“4—4,8)

where the error terms again imply a constant ¢’ which doesn’t depend on ¢. Since
(70; =754,y ¥—1~ C"g*"¥i-1, the above expression becomes

S

Tri-1 i1
1 + O(nz—(ko-i-&)ﬁ)

Taking the limit, one establishes statement () uniformly in ¢, Lemma 3.2, and
consequently Theorem 1.1. Q.E.D.

4. Comments

Note that the choice of levels in the form « +%fu is comprehensive. If the levels
were written as u-+f,(u)/u, f(u)>0, then we would consider the limiting behavior
of f(u) as u—co. For f,(u) having a limit and treating degenerate cases separately,
we may replace f,(u) by its limit in Theorem 1.1. If f,(u) oscillates, then there is no
limiting distribution of the number of upcrossings.

In the particular case of two levels « and u +¢, £>0, there are asymptotically no
uperossings of u+¢ during (0, 7). This is easily proved by showing the expected
number of upcrossings of the level 4 +¢ during time T approaches zero as u-—>co.

136



ARKIV FOR MATEMATIK. Bd 8 nr 15

It is easy to check that the number of downcrossings is equal to the number of
upcrossings, and consequently, the limiting multivariate distribution of the numbers
of downcrossings of multiple levels is also given by Theorem 1.1.
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