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On the nonexistence of uniform homeomorphisms 
between L~-spaces 

B y  P~.~ ENFLO 

The main result of this paper  shows tha t  an infinite-dimensional L~l(/zl) is not uni- 
formly homeomorphic with L~,(/%) if :Pl ~=i02, 1 <~p~<~2 (our conclusions will in fact 
be stronger). This gives an affirmative answer to a conjecture by Lindenstrauss [1]. 
The method used here is quite different from that  suggested by Lindenstrauss. We 
will use the terminology of [1]. In  the sequel we will consider L~,(0, 1) but  it is easy 
to see tha t  with slight adjustments of the proofs the results hold for Lp,(/~l) and Lp,(/z,) 
as well. 

1. A geometric property of L~ (0,1) 

We shall say tha t  a metric space has roundness p if ID is the supremum of the se~ 
of q:s with the property:  for every quadruple of points %0, %1, an,  ale 

[d(aoo, aol)] q + [d(aol, an)] q + [d(al l ,  ale)] q -~- [d(alo, aoo)] q 

>~ [d(aoo, a11)] ~ + [d(aol, alo)] q (1) 

The triangle inequality shows that  (1) is always satisfied if q--1.  If  the metric space 
has the proper ty  tha t  every pair of points has a metric middle point, (1) is not satis- 
fied for all quadruples if ff > 2. We see this by  choosing %1 as the middle point between 
%0 and a n and choosing %1 =ale. Of course (1) is also satisfied for q=p. 

Theorem 1.1. Lr(0, 1), 1 ~<p~<2, has roundness p. 

Proo/. We first prove that J' (ltoo-to l +lio -l ll + 1/lo-/ool 
I too - 111 l" - ] 1ol - he 1") dt >>- O. We observe tha t  it is enough to prove tha t  the integrand 
is nonnegative. This is an inequality involving four real numbers and we can assume 
tha t  the least of them is 0. Thus we have to prove x P + ] z - x l r + y ~ + l z - y [  ~ -  
z ~ -  [y-x[~>~O. We observe that  it is enough to prove this inequality for 1 <1o<2. 
The inequality holds for z = 0, z = x, z = y. The derivative with respect to z of the left 
side is not positive in the intervals [0, rain (x, y)] and [rain (x, y), max  (x, y)]. Thus 
we can assume O<~x<~y<~z. We keep z fixed and observe tha t  the inequality holds 
for x =0, x =y and y =z. We then form the partial derivatives with respect to x and 
y of the left side and observe that  both of them equals zero only when x =y =z/2. 
We finally observe tha t  the inequality holds under this assumption. Thus the ine- 
quality is proved. 
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By choosing /oo-~0, /0x(x)=l on the interval 0~<x~<½, and 0 on the interval 
½~<x~l,  /10(x)=0 on the interval 0~<x<~, and 1 on the interval ½~<x~<l, /xl-----1 
we see tha t  L~(0, 1) has not roundness larger than  p. The theorem is proved. 

2. Spaces with roundness p 

We shall say tha t  a set of 2" points (not necessarily different) in a metric space 
is an n-dimensional cube, if each of the points is indexed b y  an n-vector whose com- 
ponents are 0 and 1. There are 2 ~ n-vectors of this type. We shall say tha t  a pair of 
points in an n-dimensional cube is an edge if the indexes of the points differ in only 
one component. We shall say tha t  a pair of points is an m-diagonal if the indexes 
of the points differ in exactly m components. We shall say tha t  the set of points where 
m components of the indexes are fixed is an (n-m)-dimensiona]  side. 

Theorem 2.1. I n  an n-dimensioual cube in a metric apace with roundness p, Z 8~ >/ 
Z(d~..) ~ where s~, runs throuqh the lengths of all edges and d~.. runs through the lengths 
o /a l l  n-diagonals. 

Proo/. The theorem is true for n =2  by  definition of roundness (n = 1 is qhite trivial). 
We assume tha t  it is true for n - 1 and shall prove it for n. 

We consider the two (n-1)-dimensional  sides S 1 and $2 which are characterized 
by a fixed first component  of the indexes. We then consider an n-diagonal. We 
construct a two-dimensional cube by  letting two of its points be the points of the 
n-diagonal and two of its points be the points we get when we change the first indexes 
of the points of the n-diagonal. 

For this two-dimensional cube we have 

s~ + 8~ + d [ ._ l  + dr.._1 >~ dr.. + d~.. (2) 

where st are the lengths of the edges we get, dt,.-1 the lengths of the (n - 1)-diagonals 
and d~..the lengths of the n-diagonals. 

We now make a series of such constructions, so tha t  every n-diagonal appears 
once on the right side of an inequality of type (2). Then every edge where the first 
components of the indexes differ will appear  once on the left side and every 
(n -1) -d iagona l  of S 1 and S~ will appear  once. On $1 and S 2 we have by  the in- 
duction hypothesis Z~,s~ ~> Z~.~d~.._~ and thus for the n-dimensional cube we have 
Z ~ 1> Z d~... The theorem is proved. 

Since in an n-dimensional cube there are n .2  "-x edges and 2 "-x n-diagonals we 
get n . .  o~.~ ~ -  ~,.~t~ which gives the 

Corollary. I n  an n-dimensional cube in a metric space with roundness p we have 
n lIp "8max ~ tin,rain. 

We can now state the main theorem of this paper. I t  is also related to Smirnov's  
question: Is  every separable metric space uniformly homeomorphic with a subset of 
12, and gives a stronger partial  negative result than  Theorem 12 in [1]. We shall say 
tha t  a map  T from a metric space into a metric space satisfies a Lipschitz condition 
of order ~ for large distances, if for every e > 0  there is a C such tha t  d(T(x), T(y)) <<- 
C. (d(x, y))~ if d(x, y) >e. We recall the lemma from [1], tha t  a uniformly continuous 
map from a convex set in a Banach space into a metric space satisfies a first order 
Lipsehitz condition for large distances. (3) 
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T h e o r e m  2.2. I /L~(O,  1), 1 ~<Pl ~2,  is uni/ormly homeomorphic with a metric space 
with roundness p~ >Pl, and T is a uni]orm homeomorphism, then T -1 does not satis/y 
a Lidaschitz condition o/order less than P~/Pl/or large distances. 

Proo/. Put  supd(x.~)<ld(T(x), T(y))= K. We construct an n-dimensional cube in 
L~,(0, 1) i~ the following way. We divide [0, 1] into n intervals of length 1/n and let 
the functions in the cube be either n l/~' or 0 on each interval. We give a function 
index by  letting the ruth component of the n-vector be 0 if the function is 0 on the 
ruth interval and 1 if the function is n l/~' on this interval. In this cube every edge has 
length 1 and every n-diagonal length n 1/~'. In  the image under T of this cube every 
edge has length ~<K and thus the shortest n-diagonal has length <~K.n 11~, by the 
corollary of Theorem 2.1. But for every C, C. (K.nl/~') ~ < n  1/~1 if ~ <P2/Pl and n is 
sufficiently large. This completes the proof of the theorem. 

Theorem 1.1, Theorem 2.2 and (3) give the 

Corollary. Lp~(O, 1) and Lp,(O, 1) are not uni]ormly homeomorphic i /Pl  ~=P2, 1 <~ p~ <. 2. 
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