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Definitions of maximal differential operators

By Lars HORMANDER

Let P(D) be a partial differential operator with constant coefficients and Q
an open set in R* (for notations and terminology cf. Hormander [2], particularly
pp. 176-177). In [2] the following two operators defined by P(D) in L2(€2)
were studied:

(i) The minimal operator P, defined as the closure of P(D) in C§ (Q).

(ii) The maximal operator P, defined for those u € L2(Q) such that P (D) u={
in Q in the distribution sense (or, which is the same thing, P, is the ad-
joint of the minimal operator P, defined by the formal adjoint P (D) of
P(D)). P, is also called the weak extension; it was denoted by P in [2].

There is an obvious lack of symmetry between these two definitions, one op-
erator being defined by closure and one by duality. The reason for choosing the
definition (ii) of the maximal operator is that it is important in some connections
that the adjoint should be easy to study. On the other hand, it would some-
times be important to know that the maximal operator can be obtained by
closing the operator P (D) defined in a set of smooth functions. One might thus
be interested in the following two ‘“‘almost maximal” operators also:

(iii) The strong extension P; which is the closure of P (D) defined for those
u € C* (Q) such that u € L2(Q), P(D)u € L2(Q).

(iv) The wery strong extension Pg which is the closure of P (D) defined for
those u which are restrictions to Q of functions in O§° (R").

It is obvious that we always have
PscP,cP, )
and it is natural to expect that they should all be equal if sufficient regularity

conditions are imposed on Q. The following results are known previously:

(i) For an arbitrary domain Q we have P,= P, if P (D) is an operator of local
type ([2], Theorem 3.12).

(i) If P(D) is homogeneous and not of local type (i.e. not elliptic modulo its
lineality space) there always exists a domain Q such that Ps# P,. (This has
been proved hy Schwarz [5] by extending an example given by the author.)

Concerning the very strong extension we shall prove here that Ps=|P,=P,
if Q is a bounded domain with a sufficiently smooth boundary (Theorem 2 be-
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low).! On the other hand, it is easy to show by examples that one can find to
every differential operator P (D) a domain Q such that Ps#P,. (Theorem 4.)
The smoothness condition we need is that of the following definition.

Definition. A domain Q is said to have the property T, if ) is bounded and
there exists a finite covering of ) by open sets O;, so that for given i and ¢>0 it
is possible to find a vector ¢t with |t|<e and

It is obvious that the definition is satisfied by every domain which is situated
on only one side of a continuously differentiable boundary. Also note that it
follows from the definition that the boundary I' of Q is of measure 0 if Q has
the property 7. For let Q, be the subdomain of Q consisting of the centres of
the spheres with radius ¢ contained in Q. For every ¢>0 we can find a vector
t such that (2) is valid and |¢[<e, hence

T ﬂOi—i—tCQ—QE,

and m(I' N 0)<m(Q—Q,) for every £>0. Since ), — Q when & — 0, it follows
that m (I’ N 0;)=0 and hence that m(I')=0.

Theorem 1. Let Q be a domain with the property T and P (D) o differential
operator with constant coefficients. Then, if w € I2(R"), P(D)u € L2(R’)in the dis-
tribution sense and the support of u is contained in Q, it follows that the restric-
tion of u to Q is in the domain of the minimal operator P, in L2(Q).

Proof. We take a finite covering O; of Q with the properties mentioned in
the definition and choose functions o € CF (0;) such that > a'=1 in a neigh-

bourhood of Q. Then we have
w=Xu, uw=cou. 3

Let Q' be a bounded domain containing Q. In virtue of Lemma 2.11 in [2],
the restriction of » to (' is in Dp, ('), and hence it follows from Theorem 2.10
in [2] that the same is true for u'. Thus P(D)u' € L2(R"). For every fixed : we
now choose a sequence of vectors £, n=1,2, ... such that (2) is valid with ¢ =,
for every n and #;, - 0 when n — oo. With these vectors we form the sequences

vn (2) =’ (z—tn). (4)

v, vanishes except when z—t €QnK, where K is a compact set in O;, i.e. ex-
cept when 2€Q nK +#,. This is a compact set in Q so that v, €D5 (Q) in
virtue of Lemma 2.11 in Hérmander [2]. ) )

When # — co we have v, > u' and P(D)v}, — P(D)+, with convergence in
L2(R"), hence also in L2(Q). Since P, is closed it follows that %' € Dp,(Q), and
since u=Xu' this completes the proof.

We next prove a dual theorem, which was mentioned in the introduction.

1 This result was given already in 1955, with the same proof, in a mimeographed manuseript

with the title “‘Some results corncerning general partial differential operators”.
2 Jf A is a set in B’ we denote by 4 +t the set of all vectors x +¢ with x€ 4.
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Theorem 2. Suppose that Q) has the property T and that P (D) is a differential
operator with constant coefficients. Then the weak and the very strong extension of
the operator P (D) are equal.

Proof. We only have to prove that Py>P,. Let u be in the domain of P}
and set Psu=jf. Denoting by %' and f° the functions which equal » and f in
Q and 0 elsewhere, we have by the definition of Pg

JwPDypdz=[fpdsz ¢eOf (R).
RY RY

Hence P(D)u = in the distribution sense, and Theorem 1 shows that u € D5, (Q)-
This proves that P§< P, hence that Pg=P%*> P§=P,. The proof is complete.

Remark. For elliptic second order equations with variable coefficients Theo-
rems 1 and 2 have essentially been announced by Birman [1]. However, the
above method ‘combined with the results of Hormander [3] or Malgrange [4] prove
that Theorem 2 holds for every operator with smooth coefficients which is for-
mally hypoelliptic in the sense of [3].

We next give an application to some problems discussed in [2], pp. 200-201.
First note that if P, and @, are two minimal differential operators in a bounded

domain Q we have
(P Q)< Py &y (5)

In fact, let f€Dpq), Then there exists a sequence f, € C§° (Q) such that f,—f
and P(D)Q(D)fn—> (PQ)of. Since P;! is continuous (Hormander [2], Theorem
2.1), the sequence @ (D)f, is convergent. Denoting the limit of @ (D)f, by g, we
have

f€Dq, Qof=g; g€ED»r, Pog=(PQ)].

This proves that f€D5z o, and that PoQof=(PQ)/.
J. L. Lions has proved by examples, as indicated on p. 201 in [2], that in
general we have Py # (P"),. However, we can prove

Theorem 3. Let Q be a domain which has the property T. Then, for arbitrary
differential operators P and Q with constant coefficients, we have

Po Qo = (P Q)o (6)
In particular, Py" = (P"),.

Proof. Let w€Dp,q, and set Qou=g and Pog=f. Denoting by %, f and g.
the functions which equal %, f and g in Q vanish elsewhere, we have Q@ (D)u =g,
P(D)g'=f in the distribution sense. Hence P (D)@ (D)w =f, and Theorem 1
shows that u €D (p g,

Finally, we shall provide examples which show that some restriction on Q is
indeed necessary in Theorem 2.

Theorem 4. Let v>1 and P (D) be any differeniial operator. Then there is o
domain Q such that

Ps#P,. (7}
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Proof. Let Q' be a bounded domain containing the origin and choose the co-
ordinate system such that the degree m of P(£) equals its degree with respect to &,,

PE)=cEl + ..., c5#0,

where the dots indicate terms of order at most m—1 with respect to £. Let
v be a sphere in the plane z!=0,

z21=0, |x|<s, £>0,

which is contained in Q' and set Q= —9. Then we have (7). Indeed, the
spaces L2(Q)) and L2()) can be identified with each other since y is a null set,
and the definition of Pg shows that Pg(Q)=Pgs(Q’) if this identification is made.
Now let @ be a function in C§° vanishing for |z|>¢/2 and =1 in a neighbour-
hood of 0, and set
{(p, 21>0
u= .
0, <0

Then u € C*(Q) and clearly « € Dp, (Q). However, u ¢ Dp, (') because the dis-

tribution P(D)u in Q' contains a multiple layer of order m in y. More explicitly,
if »€C§°(Q) and vanishes of order m —1 in y we get, if f is the function P (D)u
in Q and 0 in y,

fuﬁ(jﬁdx—ffﬁdx= —ci f wDP loda® .. . do”
o o

zi=0
and thus cannot vanish for all such » € 0§ (Q'). Thus we have
2 ¢ Dr () =Dr(Q)
and it follows that Ps(Q)# P, (Q),
which should be proved.
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