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1. Introduction 

In  1939 N. V. Smirnov proposed the following rank-order test  for the two-sample 
problem. Let  x 1 . . . .  , xm and Yl . . . . .  Yn be samples of independent observations f rom 
populations with continuous distribution functions F and G, respectively. Form from 
the samples the empirical distribution functions Fm and Gn; tha t  is, mFm(u) is the 
number  of the observations xl, ..., x m which do not exceed u, with nGn(u) defined 
analogously. To test  the hypothesis _P = G we use the statistic D = sup lF~(u) - 

U 

G~(u)[, large values of which are significant. We may  without loss of generali ty 
assume m ~ n. 

I t  is clear tha t  the signficance probabil i ty Pr {D >= d [ F = G}, which we shall denote 
throughout  by  P, ,  is independent of the common value of F = G; tha t  is, the test  
(like all rank-order tests for the two-sample problem) is similar over the class of 
all continuous distributions. Further,  the fact tha t  sup [F~(u) - F ( u ) [  tends to 0 

in probabil i ty as m - ~ c ~  implies tha t  the test  is consistent against all alternatives 
F ~= G. These properties of similarity and consistency, together with a certain mathe- 
matical elegance, give the test  wide appeal to mathematical  statisticians. A consider- 
able literature has developed, the proposer of the test  has been awarded a Stalin 
prize (Kolmogorov and HinOin 1951), and the test  has begun to appear  in applied 
handbooks. The test  is not very powerful against specific alternatives such as shift 
(van der Waerden 1953), but  this could hardly be expected in view of its consistency. 

Smirnov's test  was suggested by analogy with the earlier test  of Kolmogorov (1933) 
for the one-sample problem. In  fact, Smirnov's test  generalizes Kolmogorov's ,  for 
when n--> c~ we may  replace G~ by  G, and D becomes Kolmogorov's  statistic for 
the hypothesis that  F equals a completely specified G. Thus general results on the 
Smirnov test  usually give (by the limit passage m-+oo)  results on the Kolmogorov 
test. We shall not however a t t empt  to discuss the significance problem for Kolmo- 
gorov's test, nor shall we take up the many  variants  of Smirnov's  test  which have 
been suggested. 

Smirnov's  test  also appears in a one-sided version. We m a y  use D e = sup [F~ (u) - 
U 

Gn(u)] to test  the hypothesis tha t  F(u) ~_ G(u) for all u. This form of the test  is in 

'1 This  p a p e r  was  w r i t t e n  whi le  the  a u t h o r  was  a fel low of the  J o h n  S imon  G u g g e n h e i m  m e m o r i a l  
founda t ion ,  a n d  a gues t  of S t e c k h o l m s  hOgskola. I t  is a p leasure  to  record  a p p r e c i a t i o n  for t h e  
cour tes ies  e x t e n d e d  to  m e  b y  t h e  hOgskola a n d  i t s  rec tor ,  Professor  H a r a l d  CramOr. 
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fact  often appropriate when we wish to know whether a new method of t rea tment  
(producing the population G) gives larger values than the standard t rea tment  (popula- 
tion F) for some quantile. We shall denote by P1 the quant i ty  P r {D + > d [ F = G}, 
which is the size of the one-sided test. One can also define a non-symmetrical  two- 
sided test  statistic, which includes D and D + as special eases. While no essential 
difficulties appear  in doing this, we shall not discuss the general statistic as its 
usefulness does not  appear to justify the considerable notational complication 
required. 

In  spite of the fact tha t  the Smirnov test  has been in use for nearly twen ty  years, 
the computat ion of P1 and P2 has not been satisfactorily dealt with, nor does it  
even seem to be widely realized tha t  a computational  problem exists. We review 
in Section 2 the methods now available, and give in Section 3 the results of a brief 
numerical investigation showing the inadequacy of those methods. In  Section 4 we 
present a technique which is useful when m - n is small, and which serves to illuminate 
the complexity of the problem. Among the remarks in the concluding Section 5 is 
an interpolation formula which appears to give considerably bet ter  values than  
the currently s tandard technique. 

2. Methods for  obtaining values of  P1 and P2 

The user of Smirnov's  test, faced with the problem of obtaining a value of P1 or 
Pg. corresponding to the observed value of D + or D, has available a var ie ty  of methods, 
which we shall now review. 

(a) Direct computation 
As the distribution F = G is continuous, we may  assume tha t  the m + n observa- 

tions are distinct. Since the samples are drawn from the same population, we m a y  
imagine tha t  they  were obtained by first drawing ra + n observations, and then select- 
ing a t  random m of these to form the first sample. Thus, under the null hypothesis 

/ - -  \ 

F = G ,  each o f the  I r a :  n)  possible orderings of the samples with respect to each 

otherhasthcsameprobabilityl/(m:n).Aswithallrank-ordertests, theproblem 
of computing P1 and P2 reduces to a purely combinatorial one. 

The solution of the combinatorial problem, and incidentally the calculation of 
the values of D+ and D, is aided by  a graphical device. We arrange the m q- n observa- 
tions in increasing order on a common sequence, and associate with this arrangement  
a pa th  in the x ,y  plane. We begin at  the origin, and (reading the observations from 
smallest to largest) take a unit step to the right for each x-observation, and a unit  
step up for each y-observation. The pa th  terminates a t  the point (m, n), and from it  
we can reproduce the ranks of the two samples in their common array.  Figure 1 
illustrates the process for samples in the order indicated by  xyxyxxyyxx. 

Such a graphical representation is of course a standard method in classical prob- 
ability, for example in the problem of gambler 's  ruin. I t  is usually presented with 
steps to the right and left instead of to the right and up (Korolyuk and ¥aro§evs 'k i i  
1951, Gnedenko and Korolyuk 1951) but  the present version, which is used by  Drion 
(1952), is more convenient for use with ordinary graph paper. 
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Suppose that  of the first x + y observations in the common array, just x come from 
the first sample. Then between the (x + y)th and (x + y + 1)st observations, we shall 
have F,~(x) - G~(x) = x / m  - y /n  = (nx - mY)Iron, which is proportional to the 
distance of (x, y) from the diagonal of the rectangle with corners (0,0) and (m, n). 
Therefore to determine D + (D) we need only locate those points Q+ (Q) on the path  

which are farthest below (farthest from) the diagonal. In  Figure 1, D ÷ = 61, corre- 
sponding to either of the points labelled Q÷, while D -~,- 1 corresponding to the point 
labelled Q. 

To compute P~ for an observed path, we may count those paths which never get 
as far from the diagonal as the farthest point on the observed path. Construct 
boundaries (Figure 2), parallel to the diagonal and at the same distance from it as Q. 
The number A (x,y) of ways to go from (0, 0) to (x, y) while staying strictly inside 
the boundaries satisfies the recursion formula 

A (x, y) = A (x - 1, y) + A (x, y - 1) (2.1) 

with starting values A (0, y) = A (x, 0) = 1. The desired value A (m, n) can be computed 

by simple additions, asillustrated on Figure2, w h e r e P ~ = l - A ( m , n ) / ( m : n ) =  

97/105. This technique, which will be referred to as the inside method, is effective for 
small sample sizes but becomes rapidly less so as m and n increase. For fixed values 
of P2 the number of additions increases as n '/' and the size of the numbers increases 
exponentially. 

The work can be substantially reduced by two devices: (i) Until the boundary is 
reached, we are simply generating combinatorials by Pascal's triangle, so that an 
initial part  of the work is unneeessay. (ii) By symmetry, we need carry on only until 
x + y => ½(m + n), and use the fact that  the number of paths through (x,y) is the prod- 
uct of A (x, y) and A (m - x ,  n - y ) .  Finally, when m and n have a large common 
factor, and P~ is large, Polya's  (1948) method for exact sequential analysis may be. 
useful. 

471'. 



J. L. HODGES, JR. ,  The Smirnov two-sample tes t  

This inside method can also be used for P1, but  since the number  of additions now 
increases as n ~, the alternative outside method is usually preferable. We count the 
paths which reach the (lower) boundary, classifying them according to the point 
(x,y) a t  which they first reach (or pass) it. I f  B(x,y) is the number of ways to go 
from (0, 0) to x,y) without previously reaching the boundary, then the to ta l  number  
of paths reaching the boundary is 

~ B ( x ' Y ) (  m + n - x - y ) y  n - y  (2.2) 

W e m a y  eomputeBsuccessivelyfory=O, 1,...,byobservingthatB(x,y)is(X+y y) 

diminished by  the number  of those ways of going from (0,0) to x,y)which previously 
reach the boundary.  The lat ter  number  can easily be found with the aid of earlier 
B values. This process, proposed by  Korolyuk (1955a), is illustrated below for the  
problem of Figure 2. 
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(x+y) B(x,y) (re+n-x-y)  
y x ~ y l \ n-y  

0 2 1 3 10 1 70 
1 4 5 2 2 l 0  
2 5 21 7 3 

Thus, B ( 4 , 1 ) = 5 - 3 ,  where the 3 represents the number  (~)  of ways to go from 

(2,0) to (4,1). The sum of products of the final column is 111, the number  of paths  
reaching the boundary,  so tha t  P1 = 111/210. 

We note tha t  the outside method can also be used for P~ when the boundaries are 
so far apar t  tha t  a pa th  cannot reach both, in which case P2 = 2P1- Even  if a few 
paths  can reach both boundaries, i t  may  be best to allow for these separately and 
use the outside method. 
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(b) T a b l e s  

Massey has publ ished two tables of P~, bo th  computed  by  the inside method.  
(i) I n  Massey (1951) we are given 1 - P 2 ,  t o  f rom 2 to  6 significant figures, for 

m = n = 1 (1)40 and  for a = 2 (1)13 where d = a / n .  At  m = n = 40 the  last decimal is 
no t  reliable. This table is a useful complement  to formula  (2.4) below. 

(ii) Massey (1952) gives 1 - P2 to 5 decimals, for all n < m < 10 and all d, and for 
selected values  of n <  m and d for m >  10. Unfor tuna te ly  this table does no t  seem 
to  be reliable. I n  checking abou t  125 values, using the  method  of Section 4, I found 
the  following 16 instances in which I could no t  ver i fy  Massey's  value of P2- The 
first  of the given values is taken  f rom Massey (1952), while the  second is mine. 

T a b l e  1.  

, n  m d P r ( D ~ _ d )  n m d P r ( D ~ _ d )  

10 

36 
21 
26 
27 
28 
35 
50 
53 

00874 00816 
00533 00466 
34297 31313 
28205 25221 
22238 19254 
06371 05594 
01584 01399 
01100 00946 

7 
8 

9 

12 

15 

10 
10 

10 

16 

20 

56 
22 
23 
54 
63 
30 
31 
31 

00607 00452 
09877 09511 
07683 07043 
03436 03027 
00719 00704 
00577 00525 
00376 00331 
01414 01363 

I t  seems unlikely t h a t  Massey's  second table will be ex tended in its present form 
to  cover very  large sample sizes, because the  number  of possible values of D increases 
so rapidly. I t  can be shown tha t  D has 1 + [½ r s] + (t - 1) r s possible values, where 
m = r t, n = s t ,  and r and s are relat ively prime. While 568 entires suffice for all 
n < m _< 10, 8707 would be required for n < m < 20, and  one can show (using known 
facts on the densi ty  of relative primes) t h a t  the number  of entries required to cover 
n <  m <  M is asymptot ica l ly  M412~(3) - $ ( 4 ) ] / 1 6  ~ ( 2 ) =  0.0502 M ~. While P1 and  
Pz could be p rogrammed for efficient electronic computa t ion ,  the cost of publishing 
an  adequate  table would be excessive. 

(c) C l o s e d  e x p r e s s i o n s  

I n  a few special cases one can obta in  expressions for P1 and  Pz which are relat ively 
easy to compute.  

(i) When  m = n our rectangle becomes a square, the boundaries have slope 1, 
and  we can use a reflectional method .  Le t  the  b o u n d a r y  be y = x - a ,  where a = 1, 
2, ..., m. A pa th  reaching the b o u n d a r y  will first do so a t  some point  Q. We reflect 
t h a t  pa r t  of the pa th  from (0,0) to  @ a b o u t  the  boundary ,  generat ing a pa th  f rom 

( a , -  a) to (n, n). As the number  of these is ( 2 n t ,  and as the  correspondence is one- 
\ ~ b - - a  / 

to-one, we have 

4 7 3  
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To compute P2, we must  allow for paths which reach both boundaries, which can 
be done by  repeated reflections. We find 

(2.4) 

The argument  is classical, and is given for example by  Gnedenko and Korolyuk 
(1951) and Drion (1952). 

(if) I t  has recently been pointed out tha t  similar results hold when m = n p, where p 
is a positive integer. Recall the quant i ty  B entering into the inside method. Korolyuk 
(1955a) noted tha t  of those paths to the point (x,y) on the boundary p y  = x - a  
which have previously reached it, exactly 1/(p + 1) approach (x,y) through (x,y - 1). 
From this it follows tha t  

B ( x , y ) = ( x ; Y ) - ( p + l ) ( x ; Y - 1  1 )" 

When this is substi tuted into (2.2) we see tha t  the number  of paths reaching the 
boundary is 

u=0 ( P + I ) y + a \  y n - y  

We then of eourse have P l=N (a) / ((P+nl )n ) .  

Two a t tempts  have been made to obtain a corresponding result for P2. Korolyuk 
(1955a, p. 86) produced a formula, but  it contains a parti t ional sum tha t  would be 
difficult to compute. The formula given in Blackman (1956) is unfortunately in- 
correct, and the revised formula (Blackman 1957) is not  suited for easy computation.  

(iii) A closed formula (4.4) for P1 when m = n + 1 is developed in Section 4 below. 

(d) Large-sample approximations 
(i) In  his original papers (1939a, b) Smirnov proved that,  as m and n - + o o  so tha t  

m/n--~q we have, for fixed z >  0, 

Pr{Vmen+n D+>=z} -+e-2z'' (2.5) 

P r { /m~ n+ nD > Z} ---> l - K (z) -- 2 [e-2~' -e-2(2~)~ + e-2¢3")' - ... ]. (2.6) 

The function K, which also appears in the limit theory of the Kolmogorov test, 
has been tabled by  Smirnov (1939 b, 1948) to 6 decimals for its argument  at  intervals 
of 0.01 over the entire range. Alternative proofs or heuristic proofs of (2.5) and 2.6) 
have been given by  Feller (1948), and Doob (1949). (See also Donsker 1952.) 

Smirnov's  theorems suggest the introduction of new random variables Z = 
Umn/(m + n)D and z + = Vmn/(m + n)D +. We shall hereafter always restrict z 
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to possible vMues of Z and Z+, and shM1 refer to z as the distance variable of the 
boundary.  I t  is clear that,  if z' and z" are consecutive possible values of Z or Z +  
and if z' > z => z", then P r {z (+) => Z} = P r {Z (+) _-> z"),  so we lose no generality by  re- 
stricting z. To permit  z to assume arbi trary values, as is customary in Che literature, 
leads to considerable and needless notational complication. Similarly, d will always 
denote a possible value of D or D +, with z = Vmn/(m + n) d, etc. 

I t  is a truism tha t  a limit theorem can be used to justify many  different large-sample 
approximations. For example, we might on the basis of (2.5) approximate Pr (D+ >= d) 
by exp { -  2mnd2/(m + n)}, but  this quant i ty  could with equal reason be used to 
approximate  Pr(D+> d), which in some cases is substantially different. 

I t  has been noted by  Drion (1952) tha t  good results are obtained, when m = n, 
if we approximate  P2 = Pr (D >= d) by the quant i ty  1 - K ( } / ~  d). The corresponding 
observation for P1 has been made by  H. E. Daniels (J. Roy. Stat. Soc. B (1956), 
V. 18, p. 22). These observations suggest the use of the large-sample approximations 

t5 l = e  -e~' and t 3 2 = l - K ( z ) ,  

for P1 and P2 respectively. This numerical finding can be reinforced by  an asymptot ic  
expansion of (2.3) and (2.4). Using Stirling's formula and expanding the logarithms 
involved, i t  is easy to show tha t  when n-->c~ and a = 0 (}/n), 

{a2 2 o4 (1)) 
- - - ~  ~ - 0  • P l = e x p  n 2 n  2 6 n  3 

The substitution a = z 2}/~ gives 

which shows tha t  the use of/31 as an approximation for P1 will lead to a relative error 
of order I/n, when m = n. Note tha t  in this case, the customary continuity correction 
would introduce an error of order 1/Vnn; but  see Section 5(a). A similar analysis 
shows tha t  

P2=e-2~'-e-~(2z)~+e-~(3~)~-"'+O = P 1 - P ~ + P ~  . . . .  + 0  n " (2.8) 

Essentially these expansions are to be found in Gnedenko (1952). (The version in 
Gnedenko (1954) appears to be in error.) 

(ii) Korolyuk (1954, 1955b) has recently developed asymptot ic  expansions for 
P1 and P2 giving the terms of order 1/~/n and 1/n for arbirary m, n. His formulae 
would appear  to provide means for dealing with the practical problem of determining 
P1 and P2. However,  their correctness has been challenged by  Blackman, in his 
review of Korolyuk 's  paper [Mathematical Rewiews 16 (1955) 839], and again in 
Blackman (1956). He  finds tha t  Korolyuk's  results are not consistent with earlier 
results of Smirnov (1944) on the one-sample problem, with some of Gnedenko's 
results for m = n, nor with Blackman's  own results for m = np .  
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As a consequence of the theory developed in Section 4, it follows that  

I/?z [e~ z'm.- P r  { z + >  ~ . n }  - 1] 

does not tend to a limit as m, n-->oo, Zm.n--->Z, m/n---->l. Thus, not only is the 
particular expression for PI  given by Korolyuk wrong, but no general expression of 
this simple character can be right. Korolyuk uses analytic machinery on a function 
of two discrete variables in a formal way, without verifying its applicability. In  
particular he ignores the lattice structure of the boundary of his region, and it fol- 
lows from the development of Section 4 that  the structure of the boundary in some 
cases influences the term of order 1//l/nn. 

3. Numerical examination of the Smirnov approximations 

The preceding section leads to this main conclusion: except for quite small m, we 
shall usually either have to carry out a rather heavy computation to obtain the signifi- 
cance probablility, or else rely on the approximations ~51 and/52 based on Smirnov's 
principal term hmit theorem. Although these have been in use for nearly twenty 
years, I have not been able to find any numerical examination of their accuracy, 
except when m = n. The present section presents the results of a brief numerical 
study, for n = 12, m = 13(1)18, and 0.05> P~>  0.002. 

We shall report our results in terms of the relative, not the absolute, accuracy of 
the approximations. This may be motivated from the point of view of the Neyman- 
Pearson theory, by observing that an error of given percentage in determining the 
significance level of a test will usually result in a percentage error of the same order 
of magnitude in the power fucntion generally. Again, from the Bayesian viewpoint, 
a percentage error in small P results in a posteriori odds in error by about the same 
percentage, without regard to the absolute error in P. 

In  the range studied,/~2//P2 and/~1//PI will be nearly identical. From (2.6) we see 
that  / 5  = 2~51[1 _/5~ +_~  . . . .  ] so that  the two-tailed approximation is almost 
exactly double the one-tailed approximation. Correspondingly, the actual value 
P2 is either exactly 2 P1 or else very nearly so throughout our range. The required 
values of P1 were computed by the method of Section 4 and by the outside method. 

The results are shown as Figure 3, which for each m gives loge(/~2/P2) against z. 
An examination of this figure reveals several interesting features. 

(i) The relative errors are perhaps surprizingly large. For comparison, for m = n = 12, 

the relative errors of the two values of P2, in the same range of P2, are 9 % and 23 %. 
When we add a single observation to one sample, the relative errors are increased 
to range from 38 % to 180 %. This example may serve as a useful warning against 
the common belief that  increased sample sizes always favor an asymptotic approxi- 
mation. 

(if) The relative error is by no means monotone in z; instead there are wild oscilla- 
tions at m = 13, which gradually subside as m is increased to 16, but which seem to 
reappear at  m = 17 only to vanish at m = 18. 

(iii) I f  we t ry to average out the oscillations by some sort of trend line, we see that  
the "average" relative error increases--perhaps linearly--with z. 
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(iv) But ,  for f ixed z, t he  average  is no t  mono tone  in  m. I n  genera l  i t  falls  as m is 
increased,  b u t  a t  m = 17 i t  is h igher  t h a n  a t  m ,-- 16. 

These  numer ica l  resul ts  raise bo th  p rac t i ca l  and  m a t h e m a t i c a l  problems.  The  
Smi rnov  a p p r o x i m a t i o n  is seen to  be  h igh ly  inaccu ra t e  for va lues  of m and  n which 
are  a l r e a d y  large  enough for d i rec t  c o m p u t a t i o n s  to  be arduous .  F u r t h e r ,  some 
m a t h e m a t i c a l  exp l ana t i on  is desi rable  for the  phenomena  jus t  observed.  W e  shal l  
in  t he  two fol lowing sect ions give pa r t i a l  solut ions for these  p rob lems .  

4. Nearly equal sample sizes 

Considera t ions  of eff iciency or s y m m e t r y  usua l ly  l ead  to  specifying m = n in the  
des ign of c o m p a r a t i v e  exper iments ,  b u t  one or more  obse rva t ions  is of ten  lost .  As 
a resul t ,  the  p rob l em of ca lcula t ing/ )1  and  P2 when m and  n are  n e a r l y  b u t  no t  e xa c t l y  
equal  acquires  p rac t i ca l  impor tance ,  especia l ly  since the  Smi rnov  a p p r o x i m a t i o n  is 
p a r t i c u l a r l y  bad  in  th is  case. W e  shall  now develop  a t h e o r y  a p p r o p r i a t e  when  
m - n = c is small .  W e  begin  b y  es tabl ish ing a genera l  lower  b o u n d  for P1. 

F o r  b r e v i t y  we shal l  refer  to  t he  line segments  y = x - a,  for a = c, c + 1 . . . . .  m 
a n d  y => 0, x _< m, as  mirrors. E a c h  p a t h  reaches a t  leas t  one mirror ;  of these,  t he  

477 



z. L. HODGES, Jm, The Smirnov two-sample test 

one wi th  l a rges t  a will be called the  end mirror. A p a t h  touches  i t s  end  mi r ro r  in a t  
l eas t  one poin t ;  t he  lowest  of these  is the  end point. The  r a n d o m  coord ina tes  of the  
end p o i n t  wil l  be  deno t ed  b y  (X, Y) and  we wr i te  X - Y = A.  W e  shall  use t h e  r a n d o m  
var i ab le  A to i ndex  the  mirrors .  

The  ref lec t ion  m e t h o d  (Section 2c) gives a t  once 

P r ( A ~ a ) ~ ( m + n ] / ( m : n )  • 
- \ n + a ] /  (4.]) 

F u r t h e r m o r e ,  i t  enables  us to  calculate  t he  n u m b e r  of ways  to  go f rom (0,0) to  
(a + y, y) w i t h o u t  p rev ious ly  touching  the  mi r ro r  A = a, which will  be de no t e d  b y  
I(a,y). This n u m b e r  is the  same as the  number  of ways  to  go f rom (0,0) to  (a + y - 1, 

( a + 2 y - 1 )  
y) w i thou t  touch ing  A = a. There  are  ways  to  reach (a + y - 1, y), b u t  

Y 

ref lec t ion  we see t h a t  ( a  ÷ 2 y - 1~ of these  have  touched  A = a. Hence  b y  \ y - 1  / 

I ( a , y ) = ( a + 2 y - l ]  ( a + 2 y - 1 ) .  
y ] - \  y - 1  

(4.2) 

Simi lar ly ,  the  n u m b e r  of ways  to  go from (a - y ,  y) to  (m,n) w i thou t  crossing (but  
poss ib ly  touching)  t he  mir ror  A = a is I (n + a + 1 - m, m - a - y). Thus  

( m : n ) p r ( A = a a n d Y = < u ) = ~ = o  ~ I ( a , y ) I ( n + a + l - m , m - a - y ) .  (4.3) 

Consider  now a lower b o u n d a r y  line L, corresponding to a mos t  d i s t a n t  p o i n t  (x +, y+). 
The  l ine L:  m (y - y+) = n (x - x +) will in te rsec t  a t  leas t  one mirror ;  le t  t he  h ighes t  
mi r ro r  which  L in tersec ts  be A = ~. Then ~ is t he  smal les t  in teger  g rea te r  t h a n  or  
equal  to  x+ - m y+/n. I t  is easy  to  show t h a t  t he  o rd ina t e  of the  po in t  of in te rsec t ion  
of L a n d  A = ~ ,  which  we shall  denote  b y  vn, is equal  to  n[1 -g (x+-my+/n)] /c ,  
where  g (u) denotes  t he  f rac t ional  p a r t  of u. The  va r i ab le  v thus  def ined  will  be called 
the  phase variable of L.  The o rd ina te  of the  p o i n t  of in te rsec t ion  of L wi th  A = ~ + i 
is t hen  n (v + i/c). Fina l ly ,  for t he  d i s tance  va r i ab le  z we have  the  express ion  

z= r e + n \  m 

so t h a t  
~=vc+zV (n÷c)(2n+c) 

C 

A n y  p a t h  whose end  po in t  lies on or below L m u s t  of course reach  or pass  L. There-  
fo re  

m n ply_ m+ + ~ ~. I (a ,y )  I ( n + a + l - m , m - a - y ) .  (4.4) 
m ÷  a=~ u=o 

478 



ARKIV FOR MATEMATIK. B d  3 n r  43  

We shall denote the right side of ( 4 . 4 ) b y ( m : n ) P ~ . P ~ i s t h u s a l o w e r b o u n d f o r  

P1, and equals, P1 if and only if L cuts a single mirror, which will always be the case 
when c = 1. Thus (4.4) provides an exact closed expression for P1 when m = n + 1. 
I t  is intuitively plausible tha t  P~ should be close to P1 when c is small, and it  is 
shown below tha t  P 1 - P ~  = 0 ( l / n )  when n -+c~  and c is bounded. 

The most  notable feature of P~ is t ha t  i t  depends in a simple way on a function, I ,  
of only two variables, while P~ itself depends on the four variables m, n, x +, and y+. 
We give a short table of I ,  suitable for computing Pa when m_-_ 30. From the 323 
values of Table 2, and a table of combinationals, one can easily obtain any of thou- 
sands of accurate estimates for P1. (As explained in Section 3, 2P* may  then be used 
to est imate P~ if the lat ter  is not too large.) 

As an example, we take m = 20, n = 16, and seek P1 corresponding to a pa th  
with farthest  point (17,6). The boundary L is 5 ( y -  6) = 4 ( x -  17), which cuts the 
mirrors A = 10, 11, so tha t  a = 10. The ordinates of the points of intersection of 
L with A = 10 and A =11 are respectively 2 and 6. As most  of the mirror A = 11 

lies below L, it is quicker to compute the complement of (4.3) with respect to (m : n) 

Pr (A = a). We have 

(36) p~ = (3:) -[I(11'7) I (8'2)+I (11'8)I (8'1)+I (11'9)I 

+ [I  (10, 0) I (7, 8) + I (10, 1) I (7,9) + I (10, 2) I (7,10)] 
= 9.1407 × 107 

This gives P~ = 0.01251. Massey (1952) gives P2 = 0.0251I, and since the probabil i ty 
of reaching both boundaries is negligible, this implies P1 = 0.01256. In  the range 
P 2 <  0.1, 2 P~ never differs from P2 as given by  Massey by  as much as 1% of P2. 
The accuracy of P~ will of course decrease as c increases, bu t  even at  n = 12, m = 20 
~P* is considerably superior  t o / 5  i. 

We shall now develop an asymptotic  expression for P1, correct to terms of order 
1 /~n ,  for what may  be called "nearly equal" sample sizes. Consider a sequence 
(mk,n~) of sample sizes, such tha t  nk-+c~ and m k - n k  = %  is bounded. With each 
(mk, n~) is associated a boundary L~ with distance variable z~, phase variable vk, 
and significance probabil i ty Plk. We assume tha t  zk is bounded and bounded away 
from 0, so tha t  ~k will be of exact order ~/~. To simplify typography  we shall omit  the 
subscript k hereafter. 

A straightforward application of Stirling's formula to (4.1) shows tha t  

/ P r ( A > _ - a ) = e x p  - - - + - - + 0  (4.5) 
n ~b 

when a = 0 (~n). From this it follows that  
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On substituting a = V~2--n z + vc + 0 ( 1 / ~ n ) i n t o  (4.5), we find 

P r ( A > ~ z + c ) = e x p  - 2 z ~ - ( 2 v c + c ) ~  n + 0  • 

Similarly 

P r ( A = ~ + i ) = 2 V 2 Z e - ~ ' + O ( 1 ) f o r i = O ,  1 , - -  . . . , c .  
Vn 

(4.6) 

(4.7) 

Since the  mirrors cut b y  L have probabili ty of order 1/Vn, it is enough to deter- 
mine pr(y<__ u n l A  =o~+i)  to constant order. From (4.2), it can be shown tha t  

I (a, y) = 2 ~ y+a-1 a exp {--  a2 (4.8) 

when y = 0 (n). When we substitute this into (4.3) and make the usual integral ap- 
proximation of a sum, we find 

(2 u -  1)] Pr(r<un[  + 0(1),  (4.9) 

where (I) is the normal distribution function. On substituting (4.6), (4.7), and (4.9) 
into (4.4), we obtain 

P ~ =  exp - 2z  z -  Vn ~ , f f i 0  ~ tFz v +  (4.10) 

[z(2u- where 

I t  remains to show tha t  P1 -P~ = 0 ( l /n )  in order to establish (4.10) as an expres- 
sion for P1 with error of order 1/n. The argument  will be given for simplicity only 
in the case m = n + 2. A path  counted in P1 but  not in P~ must  (i) reach but  not 
pass the mirror A = a for  x + y < n, and then (if) reach but  not pass the mirror 
A = a + 1 for x + y > n. Let  S be the point in which such a pa th  crosses x + y = n. 
For a given value of S, the behavior of the path  after S is conditionally independent 
of its behavior before S. As a consequence of (4.6), each of the events (i) and (if) has 
probabil i ty of order 1/Vnn, uniformly in S. 

The expression (4.10) has a number of interesting features. (i) Each of the three 
terms in the exponent has an interpretation. Thus - 2 z 2 corresponds to the Smirnov 
approximation P1. The second term - V2 z/Vnn represents the "average"  error of the 
Smirnov approximation; we note that  it is of order 1/Vn, and that  it is proport ional  
to z, as was suggested empirically in section 3. Further,  it does not depend on c. The 
third term represents the oscillatory component. This is also of order 1/~/n, which 

shows that  i t  is not possible to express P1 to accuracy 1 /~n  in a formula of the type 
proposed by  Korolyuk. 
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(ii) The function ~F was derived by Malmquist (1954), using the heuristic argument 
of Doob (1949), as the limiting conditional distribution of the ordinate of the furthest 
point, say Y+, given the value of Z +. Our argument, which is restricted to the case 
when c is bounded, permits this limiting distribution to be derived rigorously when 
Z+ is restricted to an appropriate interval, and also shows that  the result is not  
correct for arbitrary small intervals for Z +. We thus have an example of a problem 
in which the heuristic argument fails unless properly restricted. 

C--1 

(iii) From symmetry we see that  ~d~ (u) + ~F~ (1 - u) = 0. I t  follows that  ~ ~F~ 
i=0  

l/c 

v +  c = 0  for 2 cv aninteger, a n d t h a t  Y. | v + - | d v = O ,  so that  the oscillatory 
~=o \ c /  

o 

part  averages out to zero over a cycle of the phase variable v. Further, it can be 

shown from the Euler-Melaurin formnla tha t  max ~ ~I~ v +  --~0asc-~oo,  whieh 

"explains" the phenomenon, observed in Section 3, of damped oscillations as m is 
increased. A few values of the maximum oscillation are given in Table 3. 

T a b l e  3. m a x t ~  0~Fz(x+~) .  

z c = l  2 3 

1 0.13 0.04 0.006 
1.5 0.21 0.03 0.013 
2 0.26 0.10 0.011 

(iv) The formula shows that  the error of the Smirnov approximation may be quite 
large even for substantial values of n, particularly when c = 1. For example, when 

m = n + 1 and z = 1.5 corresponding to P~ = 0.022, the relative error of P~ at the 
least favorable phasing is about 3/Vnn, so that  the sample sizes must be about 900 to 
assure a 10 % relative error. The same goal is achieved at  n = 20 when the sample sizes 
are equal. 

We conclude with an extension of these results to the two-sided test. As remarked 
above, in practice the approximation P2 = 2 P1 will usually serve; and since the re- 
sults for P~ are considerably more complicated than those for P1, we shall give only 
an outline of methods. Corresponding to the end mirror A, we now have upper and 
lower end mirrors, say A 1 and Au. Instead of (4.1) we now obtain, analogously to 
(2.4), 

n ) r ( A ~ > = a o r A l ~ a - c  ) - - . 
= \ n ÷ a ]  \ n + 2 a ]  \ n ÷ 2 a - c ]  ÷ ' ' "  

(4.11) 
The first term on the right side of (4.4) is thus replaced by (writing~z + c for a in (4.11), 

m + n  

\ n + 2  ¢ ¢ + c ]  " 
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I f  we carry  out  work analogous t o  t h a t  which gave (4.6), we find 

P r ( A l  <=oc or A ~ > o ~ + c ) = 2 P r ( A > = o ~ + c ) { 1 - [ P r ( A > = o ~ + c ) ] a +  . - ' }  (4.12) 

a relation analogous to the f o r m u l a / 5  = 2/51(1 - ~ha + ...) of Section 2. I f  n or P2 
is ve ry  large, the  second te rm in (4.12) m a y  be wor th  using. 

A similar extension is possible for the second te rm on the r ight  side of (4.4). Ins tead  
of the funct ion I ,  we h a v e  J defined by  J ( a , y )  = the  number  of ways  to go from 
(0,0) to (a + y , y )  without  previously touching either A = a or A = - a. A n  application 
of the  reflection method  yields 

J (a,y)  = I (a ,y)  - l ( 3 a , y  - a )  + I (ha,  y - 2a)  - I (T a, y - 3a)  + .. .  

which enables one to compute  an analog to P~. Corresponding to (4.8), J (a, y) has an 
expansion consisting of the r ight  side of (4.8) multiplied by  1 - 3 e  -2 a,/~+ .... 

I f  we ignore pa ths  influencing P~ only to order I / n ,  we can classify the paths  
reaching one or bo th  boundaries into the  following sets. (a) Pa ths  reaching A = ~ + c 
or A = - ~  or both;  (b~) paths  reaching A = ~ + i below its intersection with the 
lower boundary ,  bu t  not  reaching A = ~ + i + 1 nor  A = - ~; (c~) a set of pa ths  analo- 
gous to  b~ bu t  with the  boundaries interchanged.  The set (b~) will contr ibute  to P2 
a quan t i ty  analogous to (4.9), bu t  with (4.9) replaced by  a series whose first t e rm is 

(4.9). The remaining terms will be of order 1/Vnn, bu t  in practice they  are usually 
negligibly small. 

5. Condu~on 

We conclude with three remarks or conjectures on the na ture  of the general problem 

of comput ing  P1 to  order 1/~nn. 
(a) I t  seems likely t h a t  the  oscillatory behaviour  demons t ra ted  above for m / n  

near  1, will also obtain  for m / n  near any  rational number  r / s ,  where r > s and r and s 
are relat ively prime. We shall give an heuristic a rgument  which also yields a quant i ta-  
t ive formula for the oscillation. I f  the lat ter  is correct, the oscillation will be of prac- 
tical interest in only a few cases. 

Suppose m is "nea r"  (r / s )  n. Analogously to the end mirrors of section 4, we define 
the  end l ine  of a pa th  as the line r (y - y+) = s (x - x+), and again index these lines by  
their x-intercept,  a. Now s a  takes on consecutive integral values, and consecutive z 

values differ by  1 / V n ~  + s) .  This suggests t h a t  the  limiting probabi l i ty  of an  end 

line is 4 z e - e Z ~ / V ~ r ( r  + s) .  This is Y 2 / r ( r  + s) t imes its value when m = n. 
We define the end point  of a pa t  h as the lowest (highest) point  which the pa th  

reaches on its end line, when m >  ( < ) r n / s .  Malmquist ' s  heuristic a rgument  suggests 
t h a t  the  limiting conditional distr ibution of the ordinate of the end point ,  given the  
end line, is again given by  (4.9); in fact, any  other  form for this dis tr ibut ion would 
no t  be reconcilable with the  result of Malmquist  cited above. 

Finally,  we notice t h a t  the  number  of end lines cut  b y  the b o u n d a r y  is, in the  
limit, (i) c s when m = r n / s  ++_ c, or (ii) c r when n = s m / r  + c. Combining,  we should 

find the  asymptot ic  magni tude  of the oscillation to be ~ 2 / r  (r + s) t imes as ~oTeat 
as it is when m = n + c s  in case (i), or m = n +  c r  in case (ii). I n  part icular,  the oscilla- 
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t ion at  (n = 12, m = 17) should be about  V2/15 = 0.37 times as great  as t h a t  at  
(n = 12, m = 14). The empirical results of Section 3 are in reasonable agreement  with 
this prediction. 

A compar ison of the  conclusion of this heuristic a rgument  with Table 3 suggests 
t ha t  the  oscillatory aspect  of P1 is likely to  be of practical  interest only when m and  n 
are near ly  equal, and to  a lesser extent  when m / n  is near ~. Thus, for m / n  near  ~, 

the oscillations should be a t  worst only ~/~ (4 + 3) = 0.27 as gTeat as at  m = n + 3; or 

for z near 1.5, t h e y  should contr ibute a t  worst 0.015/Vnn to the relative error. Even  

near ~, the  m a x i m u m  oscillation is a t  worst about  0 .05/Vn.  
_ (b) We now ignore the  oscillations, and examine the "average"  value of P1, say  
P1, for m and n near ly  equal. F rom (4.10) we have 

for a ny  c > 0. On the other  hand, for c = 0, we have from (2.7) 

P l = ' l e x p  { -  2 z2 + 0 ( 1 )  } • 

We are confronted with a disconcert ing discontinuity in P l  as a funct ion of c. I t  is 
of interest  to  note  t h a t  the  two formulae are reconciled if a cont inui ty  correction is 
used. 

I n  fact,  for c > 0, the  probabilities of individual z-values are of order 1In '1', so 
tha t  (5.1) continues to hold when a cont inui ty  correction is employed. A t  c = 0, on 
the other  hand, Pr(Z+ = z) = (2V2z/l/-nn) e -2z' .  The use of a cont inui ty  correction 
implies increasing the  est imate by  half of this amount ,  so tha t  (5.1) used with the 

correction will yield, to  order l / n ,  the  value/51 . (Incidentally,  the  oscillations for 
m = n + 1 are made  considerably more regular when the cont inui ty  correction is 
used.) 

(c) Since (5.1) holds for any  fixed c, it is t empt ing  to conjecture tha t  this formula  
m a y  be used for a rb i t ra ry  values of m and n. This conjecture, however,  is easily 
disproved by  considering the case m = n p, where p is an integer. By  use of Stirling's 
formula it  can be shown t h a t  the  y th  term of the  sum given in Section 2 for N (a) is 

Tb~2 7~ba 

a l/n exp (n - y) 2 (p + I)  y (n - y) + 
~/2 z tp  ( p +  i)  ya ( n _  y) 2 p ( p + l ) y  

( 2 y - n ) a  . ( 2 p + l ) n ( n - 2 y ) a  3 ( 1 ) }  
+ 2 p y ( n - y )  ~- 6 [ p ( p +  1 ) y ( n - y ) ]  2+ 0 

when y and n - y are bo th  of order n. If  we make the subst i tut ions y = v n and a = 

] /p-~ + 1) z, we find 
1 

z exp - 1 - v (1 - v) P1 - 1/2,~,,3 (1_ v) 2v ( i - , , )  2 Vv(~-+l)~ 
0 

(p+ 1 ) ( 2 v - 1 ) ( 2 p +  1) (1-2v)z2]}  
v ( l - v )  ~ v~-(~-- ~2  ] dv .  
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T h e  v a r i o u s  i n t e g r a l s  m a y  b e  r e d u c e d  b y  s u b s t i t u t i n g  1 - 2  v = u w h e n  0 < v < ½ 
a n d  2 v -  1 = u w h e n  ½ < v < 1, a d d i n g  t h e  i n t e g r a n d s ,  a n d  t r a n s f o r m i n g  t o  t h e  
g a m m a  i n t e g r a l .  W e  f i n d  

3 Y p ( p  + 1) V~n ~ 0 (5 .2)  

w h i c h  a g r e e s  w i t h  t h e  a p p r o p r i a t e  spec i a l  case  of C o r a l l a r y  2 i n  B l a c k m a n  (1956)  
a f t e r  m a k i n g  t h r e e  c h a n g e s ,  a p p a r e n t l y  m i s p r i n t s ,  i n  t h e  l a t e r .  

W h e n  a c o n t i n u i t y  c o r r e c t i o n  is e m p l o y e d ,  f o r m u l a  (5.2) b e c o m e s  

T h i s  s i m p l e  f o r m u l a  is t h u s  s h o w n  t o  b e  c o r r e c t  for  m = n,  fo r  m a n  i n t e g r a l  m u l t i p l e  
of  n ,  a n d  " o n  t h e  a v e r a g e "  f o r  m n e a r l y  e q u a l  to  n .  O n  t h e  b a s i s  of a l i m i t e d  n u m e r i e £ 1  
i n v e s t i g a t i o n ,  i t  a p p e a r s  t o  w o r k  r e a s o n a b l y  wel l  i n  o t h e r  eases ,  a n d  c a n  p e r h a p s  
b e  r e c o m m e n d e d  as  a g e n e r a l  i n t e r p o l a t i o n  f o r m u l a .  

University o] Cali/ornia, Berkeley, Cal., U.S.A. 
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