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The significance probability of the Smirnov two-sample test

By J. L. Hopges, Jr.2

With 3 figures in the text

1. Introduction

In 1939 N. V. Smirnov proposed the following rank-order test for the two-sample
problem. Let zy, ..., =, and ¥, ..., y, be samples of independent observations from
populations with continuous distribution functions F and G, respectively. Form from
the samples the empirical distribution functions F,, and @, ; that is, mF,(u) is the
number of the observations z, ..., z,, which do not exceed %, with n@, (u) defined
analogously. To test the hypothesis F =G we use the statistic D = sup | F,, () —

Uu

G, (u)|, large values of which are significant. We may without loss of generality
assume m = n.

It is clear that the signficance probability Pr {D = d| F = G}, which we shall denote
throughout by P,, is independent of the common value of F = @; that is, the test
(like all rank-order tests for the two-sample problem) is similar over the class of
all continuous distributions. Further, the fact that sup | F,,(x) — F(u)| tends to 0

in probability as m-—oco implies that the test is consistent against all alternatives
F = @. These properties of similarity and consistency, together with a certain mathe-
matical elegance, give the test wide appeal to mathematical statisticians. A consider-
able literature has developed, the proposer of the test has been awarded a Stalin
prize (Kolmogorov and Hindin 1951), and the test has begun to appear in applied
handbooks. The test is not very powerful against specific alternatives such as shift
(van der Waerden 1953), but this could hardly be expected in view of its consistency.

Smirnov’s test was suggested by analogy with the earlier test of Kolmogorov (1933)
for the one-sample problem. In fact, Smirnov’s test generalizes Kolmogorov’s, for
when n — co we may replace G, by @, and D becomes Kolmogorov’s statistic for
the hypothesis that F equals a completely specified G. Thus general results on the
Smirnov test usually give (by the limit passage m —oo) results on the Kolmogorov
test. We shall not however attempt to discuss the significance problem for Kolmo-
gorov’s test, nor shall we take up the many variants of Smirnov’s test which have
been suggested.

Smirnov’s test also appears in a one-sided version. We may use D+ = sup[F,,(u) —

u
G, (u)] to test the hypothesis that F (u) < G(u) for all . This form of the test is in
1 This paper was written while the author was a fellow of the John Simon Guggenheim memorial

foundation, and a guest of Stockholms hogskola. It is a pleasure to record appreciation for the
courtesies extended to me by the hogskola and its rector, Professor Harald Cramér.
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fact often appropriate when we wish to know whether a new method of treatment
(producing the population @) gives larger values than the standard treatment (popula-
tion F) for some quantile. We shall denote by P, the quantity Pr {D+= d| F = G},
which is the size of the one-sided test. One can also define a non-symmetrical two-
sided test statistic, which includes D and D+ as special cases. While no essential
difficulties appear in doing this, we shall not discuss the general statistic as its
usefulness does not appear to justify the considerable notational complication
required.

In spite of the fact that the Smirnov test has been in use for nearly twenty years,
the computation of P, and P, has not been satisfactorily dealt with, nor does it
even seem to be widely realized that a computational problem exists. We review
in Section 2 the methods now available, and give in Section 3 the results of a brief
numerical investigation showing the inadequacy of those methods. In Section 4 we
present a technique which is useful when m — # is small, and which serves to illuminate
the complexity of the problem. Among the remarks in the concluding Section 5 is
an interpolation formula which appears to give considerably better values than
the currently standard technique.

2. Methods for obtaining values of P, and P,

The user of Smirnov’s test, faced with the problem of obtaining a value of P, or
P, corresponding to the observed value of D+ or D, has available a variety of methods,
which we shall now review.

(a) Direct computation

As the distribution F = @G is continuous, we may assume that the m + n observa-
tions are distinct. Since the samples are drawn from the same population, we may
imagine that they were obtained by first drawing m + » observations, and then select-
ing at random m of these to form the first sample. Thus, under the null hypothesis

F =@, each of the (m:b-n) possible orderings of the samples with respect to each

other has the same probability 1 / (m M n) As with all rank-order tests, the problem
7

of computing P; and P, reduces to a purely combinatorial one.

The solution of the combinatorial problem, and incidentally the calculation of
the values of D+ and D, is aided by a graphical device. We arrange the m + n observa-
tions in increasing order on a common sequence, and associate with this arrangement
a path in the z,y plane. We begin at the origin, and (reading the observations from
smallest to largest) take a unit step to the right for each z-observation, and a unit
step up for each y-observation. The path terminates at the point (m,n), and from it
we can reproduce the ranks of the two samples in their common array. Figure 1
illustrates the process for samples in the order indicated by zyzyzrzyyxz.

Such a graphical representation is of course a standard method in classical prob-
ability, for example in the problem of gambler’s ruin. It is usually presented with
steps to the right and left instead of to the right and up (Korolyuk and YaroSevs'kii
1951, Gnedenko and Korolyuk 1951) but the present version, which is used by Drion
(1952), is more convenient for use with ordinary graph paper.
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Fig. 1.

Suppose that of the first « + y observations in the common array, just # come from
the first sample. Then between the (x + y)th and (z + ¥ + 1)st observations, we shall
have F,(x) —G,(x) =x/m —y/n = (nx — my)/mn, which is proportional to the
distance of (x,y) from the diagonal of the rectangle with corners (0,0) and (m,n).
Therefore to determine D+ (D) we need only locate those points @ (@) on the path

which are farthest below (farthest from) the diagonal. In Figure 1, D+ =%, corre-
sponding to either of the points labelled @+, while D =}, eorresponding to the point
labelled @.

To compute P, for an observed path, we may count those paths which never get
as far from the diagonal as the farthest point on the observed path. Construct
boundaries (Figure 2), parallel to the diagonal and at the same distance from it as @.
The number 4 (z,y) of ways to go from (0,0) to (z,y) while staying strictly inside
the boundaries satisfies the recursion formula

A@,y)=A(xz—Ly) +A(xy—1) (2.1)
with starting values 4 (0,y) = 4 (x,0) = 1. The desired value 4 (m,n) can be computed
by simple additions, as illustrated on Figure 2, where P, =1 — A (m,n) / (m:n) =

97/105. This technique, which will be referred to as the inside method, is effective for
small sample sizes but becomes rapidly less so as m and » increase. For fixed values
of P, the number of additions increases as »”* and the size of the numbers increases
exponentially.

The work can be substantially reduced by two devices: (i) Until the boundary is
reached, we are simply generating combinatorials by Pascal’s triangle, so that an
initial part of the work is unnecessay. (ii) By symmetry, we need carry on only until
z +y = 4(m + n), and use the fact that the number of paths through (x,y) is the prod-
uct of A(x,y) and 4 (m — =2, n —y). Finally, when m and » have a large common
factor, and P, is large, Polya’s (1948) method for exact sequential analysis may be.
useful.
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This inside method can also be used for P,, but since the number of additions now
increases as n®, the alternative outside method is usually preferable. We count the
paths which reach the (lower) boundary, classifying them according to the point
(z,y) at which they first reach (or pass) it. If B(x,y) is the number of ways to go
from (0,0) to z,y) without previously reaching the boundary, then the total number
of paths reaching the boundary is

mtn—x—y
;B(w,y)( ney ) (2.2)

We may compute B successively for y =0, 1, ..., by observing that B(z,y) is (x '; y)

diminished by the number of those ways of going from (0,0) to z,y) which previously
reach the boundary. The latter number can easily be found with the aid of earlier
B values. This process, proposed by Korolyuk (1955a), is illustrated below for the
problem of Figure 2.

8 16
7~
e
»
4_4, 3
/ -
A e
7 e
/ 2 I’ 3 /
v 7
e 7
/
1 2 2 2
v
e
Ve
7
Fig. 2.
x+y) (m+n—x—y)
x B (z,
Yy ( y (,y) n—y
0 2 1 3 10 1 70
1 4 5 2 2 10
2 5 21 7 3

3
Thus, B(4,1) =5 — 3, where the 3 represents the number ( 1) of ways to go from

(2,0) to (4,1). The sum of products of the final column is 111, the number of paths
reaching the boundary, so that P, =111/210.

We note that the outside method can also be nused for P, when the boundaries are
so far apart that a path cannot reach both, in which case P, =2P,. Even if a few
paths can reach both boundaries, it may be best to allow for these separately and
use the outside method.
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(b) Tables

Massey has published two tables of P,, both computed by the inside method.

(i) In Massey (1951) we are given 1 —P,, to from 2 to 6 significant figures, for
m =n =1(1)40 and for @ =2(1)13 where d =a/n. At m =n =40 the last decimal is
not reliable. This table is a useful complement to formula (2.4) below.

(ii) Massey (1952) gives 1 — P, to 5 decimals, for all n < m < 10 and all d, and for
selected values of n< m and d for m> 10. Unfortunately this table does not seem
to be reliable. In checking about 125 values, using the method of Section 4, I found
the following 16 instances in which I could not verify Massey’s value of P,. The
first of the given values is taken from Massey (1952), while the second is mine.

Table 1.
.n m d Pr(Dzd) n m d Pr(Dzd)
6 7 36 00874 Q0816 7 10 56 00607 00452
[ 8 21 00533 00466 8 10 22 09877 09511
7 8 26 34297 31313 23 07683 07043
27 28205 25221 9 10 54 03436 03027
28 22238 19254 63 00719 00704
35 06371 05594 12 16 30 00577 00525
7 10 50 01584 01399 31 00376 00331
53 01100 00946 15 20 31 01414 01363

It seems unlikely that Massey’s second table will be extended in its present form
to cover very large sample sizes, because the number of possible values of D increases
so rapidly. It can be shown that D has 1 + [} rs] + (£ — 1) s possible values, where
m=rt, n=st, and r and s are relatively prime. While 568 entires suffice for all
n < m< 10, 8707 would be required for n» < m < 20, and one can show (using known
facts on the density of relative primes) that the number of entries required to cover
n<m< M is asymptotically M*[27(3) —((4)]/16 £(2) =0.0502 M4. While P, and
P, could be programmed for efficient electronic computation, the cost of publishing
an adequate table would be excessive.

(c) Closed expressions

In a few special cases one can obtain expressions for P; and P, which are relatively
easy to compute.

(i) When m == our rectangle becomes a square, the boundaries have slope 1,
and we can use a reflectional method. Let the boundary be y =z — a, where a =1,
2, ..., m. A path reaching the boundary will first do so at some point . We reflect
that part of the path from (0,0) to @ about the boundary, generating a path from

2 .
(a, — a) to (n,n). As the number of these is ( " , and as the correspondence is one-
n—a

()
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To compute P,, we must allow for paths which reach both boundaries, which can
be done by repeated reflections. We find

I I I s T

The argument is classical, and is given for example by Gnedenko and Korolyuk
(1951) and Drion (1952).

(ii) It has recently been pointed out that similar results hold when m = n p, where p
is a positive integer. Recall the quantity B entering into the inside method. Korolyuk
(1955a) noted that of those paths to the point (z,y) on the boundary py =z —a
which have previously reached it, exactly 1/(p + 1) approach (x,y) through (x,y — 1).
From this it follows that

pia-(3) oo (77

When this is substituted into (2.2) we see that the number of paths reaching the
boundary is

-M[n—a/p]~_’q:_ (p+Dy+a ((p+l)(n-y)—a).
N (a)= ygo (p+1)?/+a( y ) n-y

We then of course have P, =N (a) / ((p +n1)n) .

Two attempts have been made to obtain a corresponding result for P,. Korolyuk
(1955a, p. 86) produced a formula, but it contains a partitional sum that would be
difficult to compute. The formula given in Blackman (1956) is unfortunately in-
correct, and the revised formula (Blackman 1957) is not suited for easy computation.

(iii) A closed formula (4.4) for P, when m =n + 1 is developed in Section 4 below.

(d) Large-sample approximations

(i) In his original papers (1939a, b) Smirnov proved that, as m and »—co so that
m/n—q we have, for fixed 2> 0,

Pr{ mn D*gz1 e 2R (2.5)
m+n J

PT{WDzz] 1 —K(2)=2[e 2% —e 2@ 262" _ ..., (2.6)
m-+n I

The function K, which also appears in the limit theory of the Kolmogorov test,
has been tabled by Smirnov (1939b, 1948) to 6 decimals for its argument at intervals
of 0.01 over the entire range. Alternative proofs or heuristic proofs of (2.5) and 2.6)
have been given by Feller (1948), and Doob (1949). (See also Donsker 1952.)
Smirnov’s theorems suggest the introduction of new random variables Z =

Vmn/(m +n)D and zt =Vmn/(m + n)Dt. We shall hereafter always restrict z
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to possible values of Z and Z+, and shall refer to z as the distance variable of the
boundary. It is clear that, if 2’ and 2z’ are consecutive possible values of Z or Z+,
and if 2'> 222", then Pr {z™ = Z} =Pr {Z" = 2"}, so we lose no generality by re-
stricting 2. To permit z to assume arbitrary values, as is customary in the literature,
leads to considerable and needless notational complication. Similarly, d will always

denote a possible value of D or D+, with z = an/ (m +n) d, ete.

It is a truism that a limit theorem can be used to justify many different large-sample
approximations. For example, we might on the basis of (2.5) approximate Pr(D* = d)
by exp { —2mnd?/(m +n)}, but this quantity could with equal reason be used to
approximate Pr(D+t> d), which in some cases is substantially different.

It has been noted by Drion (1952) that good results are obtained, when m ==,
if we approximate P, = Pr(D = d) by the quantity 1 — K (V%n d). The corresponding
observation for P, has been made by H. E. Daniels (J. Roy. Stat. Soc. B (1956),
V. 18, p. 22). These observations suggest the use of the large-sample approximations

P,=¢?* and P,=1-K(z),

for P; and P, respectively. This numerical finding can be reinforced by an asymptotic
expansion of (2.3) and (2.4). Using Stirling’s formula and expanding the logarithms

involved, it is easy to show that when n—coc and a =0 (Vﬁ),

a®  a? at 1
PF“*’{‘TW“G—W 0 (;)}

The substitution @ =z} 2 gives

2 2 1\
P, = —o2ry P12 =] 2.7
) exp{ z+n( % +On2J (2.7)
which shows that the use of 151 as an approximation for P, will lead to a relative error
of order 1/n, when m = n. Note that in this case, the customary continuity correction

would introduce an error of order 1/ Vn; but see Section 5(a). A similar analysis
shows that

2 2 —_ % 1
Py=e 2% o232 | 268 _ 1 g (l) =P, —-P}+P}—--+0 (;) - (2.8)
n .
Essentially these expansions are to be found in Gnedenko (1952). (The version in

Gnedenko (1954) appears to be in error.)
(i) Korolyuk (1954, 1955b) has recently developed asymptotic expansions for

P, and P, giving the terms of order 1/ Vn and 1 /m for arbirary m, n. His formulae
would appear to provide means for dealing with the practical problem of determining
P, and P,. However, their correctness has been challenged by Blackman, in his
review of Korolyuk’s paper [Mathematical Rewiews 16 (1955) 839], and again in
Blackman (1956). He finds that Korolyuk’s results are not consistent with earlier
results of Smirnov (1944) on the one-sample problem, with some of Gnedenko’s
results for m = n, nor with Blackman’s own results for m = p.
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As a consequence of the theory developed in Section 4, it follows that
Va2 mn Pr{Z+= 2,,} — 1]

does not tend to a limit as m, n—>oo, 2,,—>2, m/n—1. Thus, not only is the
particular expression for P, given by Korolyuk wrong, but no general expression of
this simple character can be right. Korolyuk uses analytic machinery on a function
of two discrete variables in a formal way, without verifying its applicability. In
particular he ignores the lattice structure of the boundary of his region, and it fol-
lows from the development of Section 4 that the structure of the boundary in some

cases influences the term of order 1/Vn.

3. Numerical examination of the Smirnov approximations

The preceding section leads to this main conclusion: except for quite small m, we
shall usually either have to carry out a rather heavy computation to obtain the s1gmf1-

cance probablility, or else rely on the approx1mat10nsP and P based on Smirnov’s
principal term limit theorem. Although these have been in use for nearly twenty
years, I have not been able to find any numerical examination of their accuracy,
except when m =n. The present section presents the results of a brief numerical
study, for n» =12, m =13(1)18, and 0.05> P, > 0.002.

We shall report our results in terms of the relative, not the absolute, accuracy of
the approximations. This may be motivated from the point of view of the Neyman-
Pearson theory, by observing that an error of given percentage in determining the
significance level of a test will usually result in a percentage error of the same order
of magnitude in the power fucntion generally. Again, from the Bayesian viewpoint,
a percentage error in small P results in a posterior: odds in error by about the same
percentage, without regard to the absolute error in P.

In the range studied, P2 /P, and P, /Py will be nearly identical. From (2.6) we see

that P = 2P [1-P}+P§— --] so that the two-tailed approximation is almost
exactly double the one- taﬂed approximation. Correspondingly, the actual value
P, is either exactly 2 P, or else very nearly so throughout our range. The required
values of P, were computed by the method of Section 4 and by the outside method.

The results are shown as Figure 3, which for each m gives log,(P,/P,) against z.
An examination of this figure reveals several interesting features.

(1) The relative errors are perhaps surprizingly large. For comparison, for m =n =12,
the relative errors of the two values of P,, in the same range of P,, are 9% and 23 %.
When we add a single observation to one sample, the relative errors are increased
to range from 38 9% to 180 9. This example may serve as a useful warning against
the common belief that increased sample sizes always favor an asymptotic approxi-
mation.

(ii) The relative error is by no means monotone in z; instead there are wild oscilla-
tions at m = 13, which gradually subside as m is increased to 16, but which seem to
reappear at m =17 only to vanish at m =18.

(iii) If we try to average out the oscillations by some sort of trend line, we see that
the “average” relative error increases—perhaps linearly—with z.
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(iv) But, for fixed 2, the average is not monotone in m. In general it falls as m is
increased, but at m =17 it is higher than at m = 16.

These numerical results raise both practical and mathematical problems. The
Smirnov approximation is seen to be highly inaccurate for values of m and n which
are already large enough for direct computations to be arduous. Further, some
mathematical explanation is desirable for the phenomena just observed. We shall
in the two following sections give partial solutions for these problems.

4. Nearly equal sample sizes

Considerations of efficiency or symmetry usually lead to specifying m =n in the
design of comparative experiments, but one or more observations is often lost. As
a result, the problem of calculating P; and P, when m and n are nearly but not exactly
equal acquires practical importance, especially since the Smirnov approximation is
particularly bad in this case. We shall now develop a theory appropriate when
m —n =c is small. We begin by establishing a general lower bound for P;.

For brevity we shall refer to the line segments y =z —a, for a=c¢, ¢ +1, ..., m
and y = 0, x < m, as mirrors. Each path reaches at least one mirror; of these, the
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one with largest @ will be called the end mirror. A path touches.its end mirror in at
least one point; the lowest of these is the end point. The random coordinates of the
end point will be denoted by (X, Y) and we write X —Y = 4. We shall use the random
variable A to index the mirrors.

The reflection method (Section 2¢) gives at once

Pr(dza) = (’::Z)/(m:”) (4.1)

Furthermore, it enables us to calculate the number of ways to go from (0,0) to
(@ + vy, y) without previously touching the mirror 4 = a, which will be denoted by
I(a,y). This number is the same as the number of ways to go from (0,0) to (@ +y — 1,

y) without touching A = a. There are (a + 2;/_ l) ways toreach (@ +y — 1, ), but

by reflection we see that (a,+2 yl— 1) of these have touched 4 =a. Hence
y—
a+2y—-1> (a+2y—1)
Ia,y)= ( - . (4.2)
(a,y) y y—1

Similarly, the number of ways to go from (2 —y, y) to (m,n) without crossing (but
possibly touching) the mirror 4 =a is I(n +a +1—m, m —a —y). Thus

(m;:n)Pr(A=a,and YSu= 2 I@ylnt+ta+l—m, m—a—y). (43)
y=0

Consider now a lower boundary line L, corresponding to a most distant point (x+,y*).
The line L: m(y —y*) = n(x — ") will intersect at least one mirror; let the highest
mirror which L intersects be 4 =oa. Then « is the smallest integer greater than or
equal to z+ — my*/n. It is easy to show that the ordinate of the point of intersection
of L and 4 =«, which we shall denote by vn, is equal to n[l —g(zt —my*/n)}/c,
where g (») denotes the fractional part of ». The variable v thus defined will be called
the phase variable of L. The ordinate of the point of intersection of L with 4 =o +4
is then n(v + i/c). Finally, for the distance variable z we have the expression

mn {octvn vn
z=l/ —_— >
min m n

so that wmvoss)f A lnta,

Any path whose end point lies on or below L must of course reach or pass L. There-
fore

+ a+c (nw+ije)]
(mn ”) Pz (::Z)+u§u 3 Ty Imratl-mm=-a-y). (&4)
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‘We shall denote the right side of (4.4) by (m;:— n) Pf. Pt is thus a lower bound for

P,, and equals, P, if and only if L cuts a single mirror, which will always be the case
when ¢ =1. Thus (4.4) provides an exact closed expression for P, when m =n» + 1.
It is intuitively plausible that Pf should be close to P; when c is small, and it is
shown below that P, —P7 =0(1/n) when n—>co and ¢ is bounded.

The most notable feature of P} is that it depends in a simple way on a function, I,
of only two variables, while P, itself depends on the four variables m, », z+, and y*.
We give a short table of I, suitable for computing P; when m = 30. From the 323
values of Table 2, and a table of combinationals, one can easily obtain any of thou-
sands of accurate estimates for P;. (As explained in Section 3, 2P may then be used
to estimate P, if the latter is not too large.)

As an example, we take m =20, » =16, and seek P, corresponding to a path
with farthest point (17,6). The boundary L is 5(y — 6) =4 (z — 17), which cuts the
mirrors 4 =10, 11, so that o« =10. The ordinates of the points of intersection of
L with 4 =10 and 4 =11 are respectively 2 and 6. As most of the mirror 4 =11

- - - - +
lies below L, it is quicker to compute the complement of (4.3) with respect to (m " n)
Pr(4 =a). We have

(?g) P} = (396)—[1(11,7)1 (8,2)+1(11,8)(8,1)+1 (11,9} (8,0)]+
+[I(10,0) I (7,8)+1(10,1) I (7,9) +1I (10,2) I (7,10)]
=9.1407 x 107

This gives Pf = 0.01251. Massey (1952) gives P, = 0.02511, and since the probability
of reaching both boundaries is negligible, this implies P; = 0.01256. In the range
P,< 0.1, 2 PY never differs from P, as given by Massey by as much as 1% of P,.
The accuracy of P will of course decrease as ¢ increases, but even at n =12, m =20
Pf is considerably superior to P,.

We shall now develop an asymptotic expression for P,, correct to terms of order
1/ Vn, for what may be called “nearly equal’” sample sizes. Consider a sequence
{my,n;) of sample sizes, such that n, —oco and m, —n, = ¢, is bounded. With each
(my,my) i3 associated a boundary L, with distance variable z,, phase variable v,
and significance probability P,,. We assume that z, is bounded and bounded away
from 0, so that a;, will be of exact order V. To simplify typography we shall omit the
subscript k hereafter.

A straightforward application of Stirling’s formula to (4.1) shows that

2 1
Pr(Aza)zexp{—a——Fggﬁ-O(*)} (4.5)
nn n
when a = O(V;). From this it follows that
2 . 1
Pr(A=a)= 2 ’"4—0(—)'
n 7
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On substituting @ =V2n z +vc + o/ Vn) into (4.5), we find

Pr(Azoc+c)=exp{~2z2—(2vc+c)%+O(%)}- (4.6)
n

Similarly

2V2z
Va

Since the mirrors cut by L have probability of order 1/ Vn, it is enough to deter-
mine Pr(Y <un|A4 =« +1) to constant order. From (4.2), it can be shown that

Pr(A=a+1)=

e“2z'+0(—:;) fori=0,1, ..., c (4.7)

I(a,y)=2"""*"a exp {— % + 0(%)} / Vo y™ (4.8)
n

when y =0{n). When we substitute this into (4.3) and make the usual integral ap-
proximation of a sum, we find

Pr(Ygun|A=oc+i)=(I)[;(;_(—1;—__—:;;]+0(1), (4.9)

where @ is the normal distribution function. On substituting (4.6), (4.7), and (4.9)
into (4.4), we obtain

. V22 2V22°2 i
P} = exp{—zzz_ v + Vo i;(,ly*"(v+£)} (4.10)

where ¥, (w)=0 [7/_;———3(1::—2] —u

It remains to show that P, — P{ =0 (1/n) in order to establish (4.10) as an expres-
sion for P; with error of order 1/n. The argument will be given for simplicity only
in the case m == + 2. A path counted in P, but not in P{ must (i) reach but not
pass the mirror 4 =a for z +y < n, and then (ii) reach but not pass the mirror
A =a+1 for 2 +y>n. Let § be the point in which such a path crosses z +y =n.
For a given value of S, the behavior of the path after S is conditionally independent
of its behavior before 8. As a consequence of (4.6), each of the events (i) and (ii) has
probability of order 1/Vx, uniformly in S.

The expression (4.10) has a number of interesting features. (i) Each of the three
terms in the exponent has an interpretation. Thus —22? corresponds to the Smirnov
approximation P,. The second term — V2 z/ Va represents the “‘average’ error of the

Smirnov approximation; we note that it is of order 1/ Vn, and that it is proportional
to z, as was suggested empirically in section 3. Further, it does not depend on ¢. The

third term represents the oscillatory component. This is also of order 1/ Vn, which

shows that it is not possible to express P, to accuracy 1/ Vn in a formula of the type
proposed by Korolyuk.
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(ii) The function ¥ was derived by Malmquist (1954), using the heuristic argument
of Doob (1949), as the limiting conditional distribution of the ordinate of the furthest
point, say Y+, given the value of Z+. Our argument, which is restricted to the case
when ¢ is bounded, permits this limiting distribution to be derived rigorously when
Z+ is restricted to an appropriate interval, and also shows that the result is not
correct for arbitrary small intervals for Z+. We thus have an example of a problem
in which the heuristic argument fails unless properly restricted.

(iii) From symmetry we see that V', (u) + ¥, (1 —u)=0. It follows that Z ¥,
. llcc_1 .
(v + (2;) =0 for 2 cv an integer, and that f 2 (v + i) dv =90, so that the oscillatory
]

i=0

part averages out to zero over a cycle of the phase variable v. Further, it can be

c—-1
shown from the Euler-Mclaurin formula that max > ¥, {v+ ) —0 as ¢-+o0, which
v i-0

“explains”’ the phenomenon, observed in Section 3, of damped oscillations as m is
increased. A few values of the maximum oscillation are given in Table 3.

c-1 :
Table 3. max > ¥, (x +%)
4

i=0

z c=1 2 3
1 0.13 0.04 0.006
1.5 0.21 0.03 0.013
2 0.26 0.10 0.011

(iv) The formula shows that the error of the Smirnov approximation may be quite
large even for substantial values of n, particularly when ¢ =1. For example, when

m =n+1 and z =1.5 corresponding to P = (.022, the relative error of P, at the

least favorable phasing is about 3/Vn Vn, so that the sample sizes must be about 900 to
assure a 10 % relative error. The same goal is achieved at n = 20 when the sample sizes
are equal.

We conclude with an extension of these results to the two-sided test. As remarked
above, in practice the approximation P, =2 P, will usually serve; and since the re-
sults for P, are considerably more complicated than those for P;, we shall give only
an outline of methods. Corresponding to the end mirror 4, we now have upper and
lower end mirrors, say 4, and 4,. Instead of (4.1) we now obtain, analogously to
(2.4),

m+tn m+n m+tn m+n
P = <a—c)= — —
( n ) r(dzzaor d;za—c) 2(n+a) (n+2a) (n+2a,—c)+

(4.11)
The first term on the right side of (4.4) is thus replaced by (writing% + ¢ for ¢ in (4.11),

m+n m-+n m+n
2 — — +
(m+oc) (n+2oc+2c) (n+2 oc+c)
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If we carry out work analogous to that which gave (4.6), we find

Prd,saor dyza+e)=2Pr(Aza+c){l —[Pr(dZa+c)P+ -} (412

a relation analogous to the formula P, =2 P;(1 — P§ +--) of Section 2. If n or P,
is very large, the second term in (4.12) may be worth using.

A similar extension is possible for the second term on the right side of (4.4). Instead
of the function I, we have J defined by J(a,y) = the number of ways to go from
(0,0) to (a + y,y) without previously touching either A =a or 4 = — a. An application
of the reflection method yields

J(a,yy=I(a,y)—IBa,y—a)+I(ba,y—2a)—I(Ta,y—3a)+-

which enables one to compute an analog to Pf. Corresponding to (4.8), J (a,%) has an
expansion consisting of the right side of (4.8) multiplied by 1 — 3¢ 2%"¥ + .-,

If we ignore paths influencing P, only to order 1/n, we can classify the paths
reaching one or both boundaries into the following sets. (a) Paths reaching 4 =« +¢
or A= —oa or both; (b;) paths reaching 4 =« + 4 below its intersection with the
lower boundary, but not reaching A =« +4 + 1 nor 4 = — «; (¢;) a set of paths analo-
gous to b; but with the boundaries interchanged. The set {b;) will confribute to P,
a quantity analogous to (4.9), but with (4.9) replaced by a series whose first term is
(4.9). The remaining terms will be of order 1/ Vn, but in practice they are usually
negligibly small.

5. Conclusion

We conclude with three remarks or conjectures on the nature of the general problem

of computing P, to order 1//n.

(@) It seems likely that the oscillatory behaviour demonstrated above for m/n
near 1, will also obtain for m/n near any rational number r/s, where r> s and r and s
are relatively prime. We shall give an heuristic argument which also yields a quantita-
tive formula for the oscillation. If the latter is correct, the oscillation will be of prac-
tical interest in only a few cases.

Suppose m is “near” (r/s)n. Analogously to the end mirrors of section 4, we define
the end line of a path as the line r(y — y+) = s(z — z+), and again index these lines by
their z-intercept, a. Now sa takes on consecutive integral values, and consecutive z
values differ by 1/ Var(r +s). This suggests that the limiting probability of an end
line is 42¢72%/Vnr(r +s). This is V2/r(r +5) times its value when m = n.

We define the end point of a path as the lowest (highest) point which the path
reaches on its end line, when m> (< )rn/s. Malmquist’s heuristic argument suggests
that the limiting conditional distribution of the ordinate of the end point, given the
end line, is again given by (4.9); in fact, any other form for this distribution would
not be reconcilable with the result of Malmquist cited above.

Finally, we notice that the number of end lines cut by the boundary is, in the
limit, (i) ¢s when m = rn/s +e¢, or (il) ¢cr whenn = sm/r + ¢. Combining, we should
find the asymptotic magnitude of the oscillation to be l/2/r (r +s) times as great
as it is when m =n + ¢s in case (i), or m = n+ cr in case (ii). In particular, the oscilla-
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tion at (n =12, m =17) should be about V2/ 15 = 0.37 times as great as that at
(n =12, m = 14). The empirical results of Section 3 are in reasonable agreement with
this prediction.

A comparison of the conclusion of this heuristic argument with Table 3 suggests
that the oscillatory aspect of P, is likely to be of practical interest only when m and n
are nearly equal, and to a lesser extent when m/n is near §. Thus, for m/n near §,
the oscillations should be at worst only V2 (4 + 3) = 0.27 as great as at m =n +3; or
for z near 1.5, they should contribute at worst 0.015/ Vn to the relative error. Even
near §, the maximum oscillation is at worst about 0.05/ Vn.

_ (b) We now ignore the oscillations, and examine the “average” value of P,, say
Py, for m and n nearly equal. From (4.10) we have

P1=expl—2zz- Vﬁﬁo(%)} (5.1)
n

for any ¢> 0. On the other hand, for ¢ =0, we have from (2.7)

P1=1_’1exp{—2z2+0(%)}-

We are confronted with a disconcerting discontinuity in P, as a function of c. It is
of interest to note that the two formulae are reconciled if a continuity correction is
used.

In fact, for ¢> 0, the probabilities of individual z-values are of order 1/n", so
that (5.1) continues to hold when a continuity correction is employed. At ¢ =0, on
the other hand, Pr(Z+=z)= (21/5 z/ Vn)e 2%. The use of a continuity correction
implies increasing the estimate by half of this amount, so that (5.1) used with the
correction will yield, to order 1/n, the value P;. (Incidentally, the oscillations for
m =mn+1 are made considerably more regular when the continuity correction is
used.)

(¢) Since (5.1) holds for any fixed c, it is tempting to conjecture that this formula
may be used for arbitrary values of m and n. This conjecture, however, is easily
disproved by considering the case m = n p, where p is an integer. By use of Stirling’s
formula it can be shown that the yth term of the sum given in Section 2 for N (a) is

alVn { na? na
expy — - +
Vompp+ 1)y (n—y) 2p(p+l)y(n—y) 2(@+1yn—y)
2y—n)a +(2p+l)n(n—2y)a3 0(1)}
2py(n—y) Blpp+lyr—yI " \n
when y and n — ¥ are both of order n. If we make the substitutions y =vn and a =
Vp(p+1) z, we find

P - z B 2 )I B 2 [ P
: V2—nv3(l—v)fexp (2v<1~v) ' " 2Vaprinlo -9

0

-\d'v.

J

(p+1)(2v=1) (2p+1)(1—-29)2°
T w(l—-v) 342 (1—v)? ]
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The various integrals may be reduced by substituting 1 —2v =« when 0<v< $}
and 2v~1=wu when }<wv<1, adding the integrands, and transforming to the
gamma integral. We find

P exnl_op_ 221 2 O(Ey, 5.2
TR T 3Vppr D) Vn n/) &2

which agrees with the appropriate special case of Corallary 2 in Blackman (1956)
after making three changes, apparently misprints, in the later.
When a continuity correction is employed, formula (5.2) becomes

2z m+2n 1
P1= "2 2‘_—"_—‘—.__::‘ 0 — - 5.3
exp{ i 3 Vm'n(m+n)jL (n)} (®2)

This simple formula is thus shown to be correct for m = n, for m an integral multiple
of n, and “on the average” for m nearly equal to n. On the basis of a limited numerical
investigation, it appears to work reasonably well in other cases, and can perhaps
be recommended as a general interpolation formula.

University of California, Berkeley, Cal., U.S.A.
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